

MMootthheerr FFuuggggeerr:: MMiinniinngg
HHiissttoorriiccaall MMaannuussccrriippttss wwiitthh
LLooccaall CCoolloorr PPaattcchheess

Qiang Zhu
Eamonn Keogh

Dept. of Computer Science &
Engineering, University of

California, Riverside, CA 92521

qzhu@cs.ucr.edu
eamonn@cs.ucr.edu

Abstract— Initiatives such as the
Google Print Library Project and

the Million Book Project have
already archived more than ten

million books in digital format, and
within the next decade the majority

of world’s books will be online.

Although most of the data will
naturally be text, there will also be
tens of millions of pages of images,

many in color.
While there is an active research
community pursuing data mining

of text from historical manuscripts,
there has been very little work that
exploits the rich color information
which is often present. In this work

we introduce a simple color
measure which both addresses and

exploits typical features of
historical manuscripts. To enable

the efficient mining of massive
archives, we propose a tight lower
bound to the measure. Beyond the
fast similarity search, we show how
this lower bound allows us to build

several higher-level data mining
tools, including motif discovery and
link analyses. We demonstrate our
ideas in several data mining tasks
on manuscripts dating back to the

fifteenth century.

Keywords-Historical Manuscripts;
Color Indexing

I. INTRODUCTION

In the last decade, million of books, maps and historical
manuscripts have been digitized and made freely available
[12]. It is now clear that within a few years a significant
fraction of world’s books will be online. While these
digitized texts will be an invaluable resource for researchers
to browse and search, we feel that the additional step of
mining these manuscripts will reveal new insights,
knowledge and historical context. In a similar vein,
technology writer Kevin Kelly has observed, “the real magic
will come in the second act, as each word in each book is
cross-linked, clustered, cited, extracted, indexed, analyzed,
annotated, remixed, reassembled and woven deeper into the
culture than ever before” [16]. While this remark explicitly
singles out text, a similar argument can be made for images.
Clearly most of the data gleaned from scanned books will be
text, but there will also be tens of millions of pages of
images. Many of these images will defy automatic
annotation for the foreseeable future, and CAPTCHA-based
[29] or crowdsourcing efforts [14] are likely to have only
limited impacts on these problems. A considerable fraction
of the images may, however, be amiable to annotation by
algorithms that can exploit the color information which is
often available in historical manuscripts.

While there is much work on indexing images by color,
most of it assumes that we are indexing atomic images,
typically photographs. For example, much work has been
done to support queries such as “find photos of sunsets” [19]
or commercially useful queries such as “find shoes in this
color” [17]. In contrast, here we are interested not in global
color queries, but local region-of-interest queries, which we
call patches. In Figure 1 we show some examples of the type
of images1 we are interested in mining.

Figure 1. left) Two pages from The secret book of honour of the Fugger
1545-1548 [4]. right) Two pages from an 1834 text on fish [1].

Here we can imagine an historian might be interested in
searching a massive archive to discover examples of the coat
of arms of Lucas Fugger, which consists of a golden deer on
a light blue background. In Figure 1.left we have a local
patch that matches this description, but note that the global
color of the page is dominated by other colors.

While there is much less work on local color matching,
there is some. For example, in [26] the authors proposed a
technique called Histogram Backprojection to determine the
location of a query object in one image (provided that the
query appears in that image), and in [5] the authors described
a scale and translation invariant image retrieval system.
However, these works, and their many extensions [20] only
consider query-by-content for main memory search.

1 Because of the nature of the problems we are considering, many of the figures in

this work are best viewed in color. A color version is online at [27].

In contrast, we are interested in more general data
mining for local color regions, and for datasets which are so
large that they must be disk-resident. As we shall show,
existing color matching measures work well for historical
manuscripts, but the existing works are severely limited in
their scalability, especially if we look beyond query-by-
content and consider more complex data mining operations.

In Figure 1 we show an observation which we plan to
exploit to mitigate the scalability problems. Note that while
the leftmost page from each manuscript can be considered
somewhat “dense”, the rightmost pages are relatively
“sparse”. As we shall show in Sections IV and V, by
adaptively exploiting this variability of density, we can prune
off a huge fraction of the search space, and we can produce
much smaller indices, both of which in turn can allow us to
answer queries much more efficiently.

The rest of this paper is organized as follows. In Section
II we discuss the necessary background material. In Section
III we introduce a lower bound that is at the heart of our
search, and algorithms that exploit it are introduced in
Section IV. Section V sees extensive empirical evaluation of
our ideas, and we offer conclusions and directions for future
research in Section VI.

II. NOTATION AND BACKGROUND

Before describing our algorithm, we first give the
following definitions.

In the domain of our interest, the natural atomic unit is a
single image or page:

Definition 1: A Page is a color image P, which is
represented as a H×W×3 matrix where H and W are the
height and width of the page, respectively. Each pixel of
the page corresponds to a triplet (R, G, B) in the matrix P,
denoting the value in the red, green and blue channels, or
the pixel may contain NaN to indicate transparency.

We use the RGB color space because it is familiar and
we found empirically it works very well in our domain.
However, all the lower bounds and algorithms introduced in
this work can work in any color space. Note that we allow
the pixel to have a NaN value indicating no color in that
pixel. We use this value to replace the background color of
the page at a preprocessing step. As we shall see later,
removing the background color allows us to avoid the trivial
solution of matching backgrounds when we want to find
repeated patterns (motifs). Automatically finding the
background color of an historical text is an important
subroutine in other problems (OCR etc.) and is an essentially
solved problem for all but the most pathological texts [8].

As noted in Section I, we are not interested in page-level
queries, instead we want to enable local region-of-interest
queries, which are more challenging and useful. We define
these lower level units as color patches:

Definition 2: A Color Patch is a rectangular window CP
in a page. CP can be specified by four variables: the row
r and the column c in P of its top left corner, its height h
and width w. Then CP = P(r:r+h–1, c:c+w–1,:). Here 1 ≤ r
≤ H–h+1 and 1 ≤ c ≤ W–w+1.

Note that our basic primitive is a rectangle. We had
considered allowing more general shaped patches (circles,
triangles, etc). However, as we shall show empirically,
rectangles allow the effective retrieval of shapes which are

clearly non-rectangular (fish, butterflies, coats-of-arms, etc),
so we restrict our definitions to rectangles for simplicity.

Also note that we can consider a whole page as a color
patch, as a special case. Finally, we define the higher level
unit that organizes pages, a book:

Definition 3: A Book is a set B containing N pages. Note
that due to the scanning process, and the handcrafted
nature of some historical manuscripts, the size of pages
from the same book may not be exactly the same.

Having this three-level hierarchy (color patch, page and
book) in mind, we are now in a position to define the nearest
neighbor of a color patch.

Definition 4: Given a color patch Q and a book B, the
Nearest Neighbor of Q in B is a color patch NN with the
same size of Q and most similar to Q. More formally, for
any color patch CP with the same size of Q in B, Dist(Q,
NN) ≤ Dist(Q, CP).

In definition 4, we have not yet given an explicit distance
measure between two color patches. While a number of color
descriptors (representations) exist, the Color Histogram is
one of the most widely used. It is easy to calculate, invariant
to translation, insensitive to small changes in viewpoint
(angle and distance), and has been proven to be effective in
several content based image retrieval (CBIR) systems [7] [25]
[26].

Definition 5: The Color Histogram of a color patch CP,
denoted as Hist(CP), is a vector which counts the
frequency of each possible color in a given color space.

In a RGB color space which has 8 bits for each channel,
the total number of colors is (28)3. Maintaining so many
colors is impractical and unnecessary. Furthermore, it is
likely to hurt accuracy, since two colors that are
imperceptibly different to the human eye may map to
adjacent but different bins, thus accumulating significant
distance. One solution to mitigate this problem is to use a
“warping-like” measure [15]; however, this will require
dramatically more computational power per distance
calculation, and make it difficult to design an effective lower
bounding search. Therefore, we use quantization to alleviate
the abundance of colors problem.

In keeping with the majority of the literature, colors are
quantized into K bins. The value of K (<< 224) is a user-
defined parameter choice, but the exact value does not matter
too much from several dozens to several thousands [26].

In Figure 2 we illustrate the notations introduced thus far
with a toy example.

Figure 2. An illustration of some basic notations. left) A 6×10 page
showing a (slightly modified) Benin flag. The 4×3 green window on the
left is one of its color patches. right) A matrix of the same size as the page,
with the number indicating the bin_id of corresponding pixels. For
simplicity, we set K = 4 and assign one bin for each color. Note that for

surrounding transparent pixels, we set bin_id = 0. The color histogram can
be easily obtained from this matrix, which is {8,12,1,7}.

Having determined that the color histogram is the most
suitable descriptor for color patches, we must consider the
most appropriate similarity/distance measure for them. Not
surprisingly, lots of measurements for color histograms have
been proposed in the last three decades [19][23][24],
including simple ones such as Euclidean Distance and
Histogram Intersection [26], and more complex techniques
such as Histogram Quadratic Distance [7], Histogram
Refinement [21], and Color Set Distance [25], etc. After
extensive testing on our domain of interest we chose the
Histogram Intersection, because of both its (relative)
efficiency and accuracy. Note however that the focus of this
paper is not to make an argument about the “best” color
distance measure in general, but rather to show that we can
adapt and augment a popular distance measure to solve data
mining problems in a domain that has received surprisingly
little attention.

Definition 6: Given a query color patch Q and a
candidate color patch C, the Histogram Intersection
between them is defined as:

 



K

i

iCHistiQHistCHistQHistHI
1

]))[(],)[(min())(),((

(1)

In the above equation, K is the number of bins in both
Hist(Q) and Hist(C). The HI value tells how many pixels are
in common (falling into the same bins) between Q and C.
We can simply use its inverse as a distance measurement2:

),(

1
),(

CQHI
CQDist  (2)

It may be noted that our proposed distance measure does
not encode the spatial relationships of the colors within the
query region. As it happens, it is this fact that allows us to
create tight lower bounds to the measure, thereby enabling
our fast search and mining algorithms. However, this is
merely a fortunate side effect. The need for spatial
relationship invariance emerged from conversations with
domain experts. In Figure 3, we can see two motivating
examples: While the parity of left/right orientation typically
does have meaning for some heraldic shields, it is often
ignored, as in the examples from a 16th century book shown
in Figure 3 (left). Likewise, while most organisms are
bilaterally symmetric, they may be illustrated at arbitrary
orientations, as in the two examples show in Figure 3 (right).

Figure 3. A section of images to demonstrate the need for spatial-location
invariant distance measures. From left to right: in page 109 of [4], in page
108 of [4], an image of a Death’s Head Moth from 1849 [3], and one from
1860 [28].

2 For simplicity, Dist(Q,C) is short for Dist(Hist(Q),Hist(C)), the same applies to

HI(Q,C) in the equation (2). Without ambiguity, we will use these notations in all
the remaining text.

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0

0

0

0

0

0

0 0

2 2 2 4 4 4 3

2 2 2 4 4 4 4

2 2 2 1 1 1 1

2 2 2 1 1 1 1

In spite of the above, there are some circumstances where
color locality matters; Figure 4 shows some examples.

Figure 4. A section of image pairs that are clearly distinct, but essentially
indistinguishable under the distance measure introduced in equation (2).

In the event that spatial sensitivity is necessary in a
particular domain, we can achieve this by dividing the query
region into (for example) four quadrants, and defining a new
measure as the sum of the four local measures. However,
because our domain experts, genealogists, an ichthyologist
and an historian of science, did not find a compelling
example where spatial sensitivity was critical to the success
of query-by-content or a higher order data mining query in
their domains, we defer a further discussion of this idea to an
online appendix [27].

Our color measure is simple, and the domain of interest
does feature the complex issues of staining, fading,
degradation, and problems where very subtle distinctions are
required. The reader may wonder if the proposed measure is
powerful enough to be useful. We will forcefully assuage
such doubts in the experimental section of this work. In the
meantime we content ourselves with a simple demonstration.
Color printing of images became possible only in the 19th
century. Before that, color images were produced by using
copper engravings to print in black ink, and these images
were then hand-colored individually, in a process called
aquatinting. We obtained two versions of a classic work on
marine life by Louis Renard (b. ca. 1678.) [22]. The two
versions were published 35 years apart, and almost certainly
hand-colored by two different artists. Nevertheless, as we
can see by the clustering of a subset of data from both texts
in Figure 5, in each case a query image from one book does
return the corresponding image from the other.

Figure 5. Five hand-colored images from the 1754 version of [22] and five
hand-colored images from the 1789 version of the same text. An inspection
of a higher resolution color version of this figure in [27] makes it clearer
that these images are significantly different in both color and texture.

III. A LOWER BOUND TO THE COLOR DISTANCE

We begin by describing the brute force algorithm to
search for the nearest neighbor of a query color patch. This
allows us to concretely define the search problem and
motivates the need for a more efficient solution.

As shown in Table 1, the brute force algorithm compares
the query with all color patches of the same size, and updates
the best-so-far whenever a better match is found.

Table 1. The brute force algorithm to search the nearest neighbor of a user-
given query Q in a book B

Algorithm [NN] = NN_BruteForce(Q,B)
1
2
3
4
5
6
7
8
9
10
11
12
13
14

best-so-far = INF;
h = height(Q); w = width(Q);
foreach page P in B
 H = height(P); W = width(P);
 for row  1:H–h+1
 for col  1:W–w+1
 CP = P(row:row+h-1,col:col+w-1,:);
 if Dist(Q,CP) < best-so-far
 best-so-far = Dist(Q,CP);
 NN = CP;
 endif
 endfor
 endfor

endforeach

As we can see in the nested for-loop at lines 5 and 6, we
need (H-h+1)×(W-w+1) distance calculations for each page.
If a book contains 500 pages with the size 2000×1500, and
the size of a query color patch is 400×400 (all typical values),
then the total number of color patches we need to check is
more than 881 million. If each distance calculation takes one
microsecond, this translates to about 15 minutes. Note that
for some problems this may actually be acceptable. Given
that it may take hours to scan a single historical manuscript
of value, for some data mining/search queries we may be
willing to wait overnight for a gem of information that has
evaded scholars for centuries. However, such performance
clearly precludes interactive real-time search, the number
one requested feature from our domain experts. Furthermore,
in many cases similarity search is not an end goal in itself,
but a frequently-called subroutine in a higher level data
mining algorithm. Thus, we must drastically improve the
performance of the brute force search.

Attempts have been made to speed up the individual
calculations of the Histogram Intersection value with various
approximations [26], but the time complexity is still linear to
the size of the dataset. However, even if the Histogram
Intersection value could be exactly calculated one hundred
times faster, it would still not allow for a real-time
interactive search. What is need is a way to eliminate the vast
majority of the calculations altogether. We can quickly see
how this might be achieved with a simple example. Figure
6.right recalls the toy example shown in Figure 2. Consider
the two queries shown in Figure 6.left; could they have
perfect matches in Page-1? It is easy to see that we can
answer this question without having to resort to the brute
force search, just by examining their global histograms. Note
that Query-1 has two red, six green, zero blue and one
yellow pixels {2,6,0,1}. So in order for it to have an exact
match, Page-1 must also have at least this number of pixels
in its histogram, and it does, it has {8,12,1,7}.

Could Query-2 have a perfect match? The answer is
clearly no. With a histogram {0,4,5,0} it needs at least 5 blue
pixels to have a perfect match, but Page-1 can only provide it
with 1.

Figure 6. left) Two example queries with their color histograms. right) A
sample page (cf. Figure 2) and its (global) histogram.

At the risk of redundancy we will further illustrate this
idea with real world examples. In Figure 7.left, a query color
patch featuring a shield with a golden deer on a blue
background is shown, and in Figure 7.right, two candidate
pages are shown. Let us first consider Page 1. Assume that
we have already encountered a moderately similar object
before searching this page, then the best-so-far value
probably will not decrease after checking all color patches in
Page 1. We can make this claim because a global view of
the entire page reveals that it contains few blue pixels, the
dominant color of the query. In other words, even if we
perform a histogram intersection between Hist(Query) and
Hist(Page 1), the blue bin(s) with a high value in Hist(Query)
will have no match. If the entire page cannot supply enough
pixels to match the query, then clearly no color patch inside
Page 1 can supply enough pixels to match the query. This
idea allows us to prune Page 1 with just a single calculation.
As for Page 2, which contains a very similar color patch
(only the direction of the deer is different) to the query in its
bottom left corner, we cannot prune it after checking the
color statistics for the whole page. However, if we had
recursively divided the page into two halves (an idea we will
shortly develop), the “pruning” idea could still be applied to
the top half page, since it does not contain enough blue and
golden pixels, and we could focus our search on the bottom
half page, where a good match exists.

Figure 7. A query color patch and two pages from [4]. Note Page 2
contains a very similar color patch to the query in the bottom left corner.

Now we are ready to formally define the lower bound to
the color distance in equation (2). If a color patch CP(r,c,h,w)
is contained in another color patch CP’(r’,c’,h’,w’); in other
words, r ≥ r’, c ≥ c’, h ≤ h’, w ≤ w’, then:

),()',(CPQDistCPQDist  (3)

Proof:
Since CP is contained in CP’, any pixel in CP also

belongs to CP’, thus we have:
 )])[(])['((iCPHistiCPHisti

]))['(],)[(min((iCPHistiQHisti

)]))[(],)[(min(iCPHistiQHist (4)
With (1) and (4), we have:
))(),(())'(),((CPHistQHistHICPHistQHistHI  (5)
With (2) and (5), we can obtain (3). □

IV. MINING AND SEARCH ALGORITHMS

In the last section we briefly hinted at the utility of the
lower bound distance in searching through two sample pages;
here we will explore more formally how we can incorporate
the lower bound into similarity search and data mining.

As noted in Section I, we need to scale to massive
datasets, so a disk-based indexing method is required. We
can index each page by its color histogram (PageHist),
which is a very compact representation of the original color
image (When setting the number of bins K = 63, for a 24-bit
color page of size 2000×1500, the space reduction is about
40000:1). We have shown in the last section that by just one
comparison with the PageHist, an entire page can be pruned
(i.e. Page 1 in Figure 7). In addition, as we shall show later,
the PageHist can provide us with a very good
searching/mining ordering by a simple heuristic strategy.

While the PageHist information can sometimes help us
prune off entire pages, it does not contain any information to
guide our search within a page (i.e. Page 2 in Figure 7), so
we also need to obtain color histograms for lower level
patches. To prevent the need for repeated transformations
from the color space to histogram, we record a BinMatrix for
each page (cf. Figure 2.right), which provides the bin_id of
each pixel, as a preprocessing step. The color histogram of a
specific patch in a page can then be easily obtained by a
simple summation of its corresponding area in the BinMatrix.
BinMatrix is stored on the disk, and retrieved when a search
inside its corresponding page is initiated. As we will show in
Section V, such retrieval is only necessary for a tiny portion
of all pages and so the resulting I/O overhead is marginal.

A. Nearest Neighbor Search

In the example illustrated in Figure 7, we first compare
the query to the whole page, and if the matching value is
worse than the best-so-far, we can immediately prune the
entire page; otherwise, we must continue by comparing the
query to lower level patches of this page. Note that this idea
lends itself to a classic divide-and-conquer framework.

As with all divide-and-conquer algorithms, we must be
careful that data on the edge of the “division line” does not
get missed. As Figure 8 hints at, we achieve this by having
an appropriate amount of overlap between divided sections.

We first show the algorithm (in Table 2) which updates
the current nearest neighbor in a color patch, given the height,
width and histogram of the query, and BinMatrix of the patch.
This algorithm will become a subroutine in our algorithm for
searching an entire book (see Table 3 later in this section).

Query

Page 1 Page 2

Page-1 {8,12,1,7}

Query-2

{0,4,5,0} {2,6,0,1}

Query-1

Table 2. Divide-and-conquer algorithm to update the current nearest
neighbor of a given query in a color patch

Algorithm UpdateNN_DC(h,w,Hist_Q,BinMatrix)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

H = height(BinMatrix); W = width(BinMatrix);
if (h×w)/(H×W) ≥ StopRatio

NN_BruteForce(h, w, Hist_Q, BinMatrix);
return;

endif
RowOffsets = (H-h+1)/Sec;
ColOffsets = (W-w+1)/Sec;
for x = 1:Sec
 StartCol = ColOffsets×(x-1)+1;
 EndCol = (x<Sec)?(ColOffset×x+w-1):W;
 for y = 1:Sec

StartRow = RowOffsets×(y-1)+1;
EndRow = (y<Sec)?(RowOffset×y+h-1):H;

 subBinMatrix=BinMatrix(StartRow:EndRow,StartCol:EndCol);
Hist = GetHist(subBinMatrix);
if Dist(Hist_Q, Hist) < best-so-far
 UpdateNN_DC(h, w, Hist_Q, subBinMatrix);
endif

 endfor
endfor

In the above divide-and-conquer algorithm, lines 6-15
correspond to the “divide” phase: a patch is divided into
Sec×Sec sub-patches, which are assigned 1/Sec of possible
offsets in the row-wise and column-wise respectively (line 6
and 7). Lines 2-5 and line 16-18 correspond to the “conquer”
phase: if the current patch is small enough, i.e. the area ratio
of the query to the patch is above a certain value (line 2),
then we simply perform a brute force search in it (line 33);
otherwise, we update the current NN in its sub-patches (line
17), to which the (lower bound) distance is smaller than best-
so-far (line 16). In the example shown in Figure 8, a page is
divided into 2×2 sub-patches.

Figure 8. left) A query of size h×w. right) A page of size H×W, which is
divided into 2×2 sub-patches (only two on the left are plotted). Note there
is an overlap between them to include all offsets.

The only two parameters that need to be set are StopRatio
and Sec. We can set StopRatio to any value ≤ 1. If StopRatio
≤ (h×w)/(H×W) (the area ratio of the query to the page), then
no division would be performed and the algorithm degrades
to the brute force algorithm; If StopRatio = 1, then we would
have to divide the page until the size of the query, which is
another undesirable “extreme point”. In this case, when the
patch gets very close to the query size, very few sub-patches
can be pruned, and it is more efficient to do a brute force

3 NN_BruteForce in Table 2 (search the query in a patch) is only slightly different

from the one in Table 1 (search in a book), and is thus omitted for brevity.

search. Although we know the best StopRatio has a value
between (h×w)/(H×W) and 1, it is difficult to estimate the
optimal value in advance. This is because the optimal value
depends on both the data (the book) and the user’s query.

However, finding a good (but not necessarily optimal)
value for the StopRatio is easy. Notice that the choice of
“valid” StopRatio is quite limited, because given the height
and width of the page and query, and the value for Sec, the
maximal depth of division is a fixed small number. In
addition, as we will show in the next section, once the depth
is above a certain number, the running time does not change
much (it only increases slightly when approaching the
maximal depth), and this holds for queries in various sizes
and content on different datasets. Given that the value is not
critical, we learn a good value by experimenting on a small
set of queries, and simply hard code that value thereafter.

For the second parameter Sec, its value can be any
integer in the range [2, min(H-h+1, W-w+1)]. A larger Sec
reduces the size of sub-patches, and thus obtains a tighter
lower bound distance. However, as noted in Figure 8, there
are overlaps between sub-patches, and the area of overlaps
increases with the value of Sec:

WH

SecwwWSechhH

WHSecSubWSubH

PatchAreaSubPatchAreasumOverlapArea








))1()1)(()1()1((

)())(()(
2

 (6)

This tells us that the cost of tighter lower bounds is to be
forced to check more area and more sub-patches. If Sec =
min(H-h+1, W-w+1), we can obtain the tightest lower bound,
but we also generate the most sub-patches, and the algorithm
would be similar to a brute force one (in which the size of
the sub-patch equals that of the query, and so the lower
bound distance is the exact distance). Another drawback of
setting a larger Sec is that the algorithm has to maintain
many sub-patches before we can prune them.

 Our empirical testing suggests something that has been
hinted at in other domains [6]. Once a lower bound is
reasonably tight, making it tighter has little extra value,
especially when searching large datasets. For example, the
top left sub-patch in Figure 8 can be pruned even if Sec is set
to just 2. In section V we will show in almost all cases,
setting Sec to 2 can achieve excellent performance, and that
the exact value of Sec is not critical to the performance.

We can now give the full algorithm to search for the
nearest neighbor of a given color patch in a book in Table 3:
Table 3. Fast algorithm using the lower bound distance to search the
nearest neighbor NN of a query Q in a book B

Algorithm [NN] = NN_LB(Q,B,PageHist,BinMatrix)
1
2
3
4
5
6
7
8
9
10
11
12

best-so-far = INF;
h = height(Q); w = width(Q); Hist_Q = Hist(Q);
foreach page B{i} in B
LB(i) = Dist(Hist_Q,PageHist(B{i}));

endforeach
Sort pages by I such that LB(I(i))≤LB(I(i+1));
foreach page B{I(i)} in B
 if LB(I(i)) ≥ best-so-far
 break;

 endif
 UpdateNN_DC(h,w,Hist_Q,BinMatrix{I(i)});
endforeach

Query

h

w
(H-h+1)/2

h-1 H

(W-w+1)/2 w -1

W

Lines 3-5 first calculate the lower bound distance from
the query to each page, then lines 7-12 search pages in the
increasing order of their lower bound distances. Our
experimental results in Section V will show that by using this
simple heuristic strategy, the eventual nearest neighbor is
always found in the first few pages and the algorithm can be
stopped at any time after a very short startup time. Once we
find a page whose lower bound distance is not smaller than
best-so-far (line 8), the algorithm can be terminated (since
we can guarantee that there is no better match remaining).

It is obvious that finding a smaller best-so-far early on
helps to prune more aggressively. In addition to sorting all
pages (line 6), we apply two more optimizations in each page
search (omitted in Table 2 and Table 3 for brevity):

 We can quickly find a good “first best-so-far”. We
downsample the query and the first page, find the NN by
the brute force algorithm in the downsampled space, and
then project back the location of NN to the original page
to obtain the “first best-so-far” value.

 We can sort sub-patches based on their distances to the
query. Then we check most promising sub-patches first,
and can terminate the search in a patch when the lower
bound distance to the next sub-patch is not less than the
best-so-far.

B. Motif Discovery

As we shall see in our experimental section, the query-
by-content algorithm introduced in the previous section has
already proven useful to several domain experts. However,
true data mining comes with the discovery of previously
unknown patterns. In this section we show that we can
further extend our ideas to allow for the discovery of patterns
which repeat within or between books. As this idea closely
models the idea of DNA motifs and time series motifs [18],
we call such patterns color patch motifs.

Definition 7: The Color Patch Motif is a pair of color
patches {CP, CP’} of the given size h×w that is most
similar among all possible pairs (excluding those residing
in the same page) in a book B.

This definition generates an incredibly large search space.
If we consider the example in Section III, then the brute
force motif discovery algorithm has to compare each color
patch in a page to all color patches in other pages. The
number of comparisons required is about 7.75×1017. Clearly
we need to design an efficient algorithm. Before we design
the algorithm for efficient motif discovery, it is helpful to
first answer the following questions:
 Do we really need to compare all these pairs?

If we learn the experience we gained from the nearest
neighbor search, the lower bound distance defined in formula
(3) between a query and color patches can be trivially
extended to our motif discovery scenario. For two patches
CP1 and CP2, which are contained in larger patches CP1’
and CP2’ respectively, we have:

)2,1()'2,'1(CPCPDistCPCPDist  (7)

This means that if the distance between two patches is
larger than best-so-far, no better motif can be found between

these two patches. Therefore, a similar divide-and-conquer
algorithm as the one shown in Table 2 can be applied.
 Is one motif enough?

The definition above will only return the most similar
pair of color patches, a single pattern. If we generalized it to
instead find top N motifs, many trivial matches with a slight
shift (say, 1 pixel away) from the best motif would be
returned. If N is not large enough, then all top motifs may
correspond to a single pattern. We can generate a more
diverse top N motif set by answering the next question.
 Do we need to return the exact location of motifs?
 One factor contributing to the diversity problem is that we
have to return the exact location of the motifs with the exact
user-specified size. If instead we returned two slightly larger
patches, which contain a motif pair of the size specified by
users, the end user would surely not care. As we shall see,
this slight relaxation of the problem makes it much easier to
produce an efficient algorithm.

Given this relaxed definition, trivial matches can be
combined into these slightly larger patches (we call them leaf
patches below). Astute readers may see that leaf patch pairs
may also be trivial, but should note that the quantity of trivial
matches decreases significantly (e.g.: even for a leaf patch
only 9 pixels larger in height and width, it contains 100
patches of the motif size; and two such leaf patches can
contain up to 10,000 trivial matches). Furthermore, as we
will show in the next section (Figure 13, etc), by simply
plotting all leaf patches, or just showing one leaf patch pair,
the patterns are still quite obvious to the human eye.

Having made these observations, we are now in a
position to formalize the algorithm to update the current best
motif between two patches, given the (user-specified) height
and width of the motif, BinMatrix of two patches and the
distance between them. Table 4 makes this concrete:
Table 4. Algorithm to update the current best motif of size h×w between
two patches (BinMatrix1 and BinMatrix2) with distance d.

Algorithm UpdateMotif(h,w,BinMatrix1,BinMatrix2,d)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

H = height(BinMatrix1); W = width(BinMatrix1);
if (h×w)/(H×W) ≥ StopRatio
 Hist1 = BinMatrix1(1:h,1:w);

Hist2 = BinMatrix2(1:h,1:w);
if Dist(Hist1, Hist2) < best-so-far
 best-so-far = Dist(Hist1,Hist2);
endif
Save BinMatrix1, BinMatrix2, d;
return;

endif
Divide both patches into Sec×Sec sub-patches;
foreach sub-patch p in 1st patch
 foreach sub-patch q in 2nd patch
 if Dist(p,q) ≤ best-so-far
UpdateMotif(h,w,BinMatrix_p,BinMatrix_q,Dist(p,q));

 endif
 endforeach
endforeach

When a pair of patches is small enough (line 2) 4, we do
not issue a brute force search as we did for the nearest
neighbor search in Table 2; instead, we only calculate the
distance for one pair of sub-patches (which can be the one in

4 Here we assume two patches are in a similar size for simplicity. The algorithm can

be easily extended to handle the case where their size differs a lot [27].

the top left corner, as shown in lines 3-4) contained in the
leaf patch pair, and use this value to update best-so-far (lines
5-7). Each leaf patch pair along with their distance are also
recorded for further reference (line 8), since we have not
checked all but one sub-patch pair of the motif size.

If two patches are not small enough, we divide them into
sub-patches as in Table 2, and calculate all pair-wise
distances. A further check between sub-patches is required
only when the lower bound distance is not larger than best-
so-far (lines 14-16), based on formula (7).

By doing this, we save time by eliminating brute force
searches between leaf patches, while still guaranteeing that
there is no false dismissal: the top one motif must exist in
one recorded leaf patch pair. The proof is straightforward:

Proof:
We denote the top one motif pair as M1 and M2, and two

leaf patches containing them as LP1 and LP2.
With formula (7), we have:
)2,1()2,1(MMDistLPLPDist  (8)
With the definition of the motif , we have:
 farsobestMMDist )2,1((9)
With (8) and (9), we have:
 farsobestLPLPDist )2,1(
Which means, LP1 and LP2 can always pass the test in

line 14 of Table 4, and thus will be recorded. □

One thing worth mentioning in the above algorithm is
that the evaluation of StopRatio is quite different from the
one in Table 2. Here we do not only care about the speed but
more about the quality of retrieved results. StopRatio has to
be close to 1, or the lower bound distance of leaf patch pairs
would be too loose and we would not find a similar color
patch pair of the user specified size. Given that the “valid”
StopRatio is quite limited and its value is discrete, it is not
hard to pick one. However, we should also keep in mind that
the judgment for a good StopRatio is subjective and thus we
make it adjustable. For example, the user can increase
StopRatio if he/she wants to find more similar patterns.

Finally, the framework of the complete algorithm to find
motifs from a book is very similar to the one in Table 3. We
first calculate lower bound distances between all pairs of
pages, and sort page pairs in the increasing order of their
distances, and then for each pair call UpdateMotif in Table 4.
The search can be terminated if the distance between two
pages is larger than best-so-far. The last step is to scan all
saved leaf patch pairs, removing those with larger distances
than the eventual best-so-far.

V. EMPERICAL EVALUATION

We have designed all experiments such that they are
easily reproducible. To this end, we have built a webpage [27]
which contains all datasets and code used in this work,
together with spreadsheets which contain the raw numbers
displayed in all the figures. In addition, the webpage contains
additional experiments which we could not fit into this work.

We divide our empirical evaluation into two sections:
The first section contains informal case studies to
demonstrate the utility of our system, and give the reader an

intuition as to the kinds of scenarios in which our ideas can
be used. In the second section we evaluate our ideas using
the classic data mining metrics of sensitivity to parameters,
speed, etc.

A. Case Studies

1) Query by Content
An historian at UC-Riverside wishes to find out how long

humans have known that fish in the genus Scorpaena are
poisonous. Fortunately, illustrated books on fish have been
popular since the 16th century and hundreds of such books
are now online. We indexed one such text from 1834, since
its title “A Selection of the Most Remarkable and Interesting
of the Fishes found on the Coast of Ceylon” refers to the
region the historian is interested in. A Google image search
found an illustration of one member of the genus, Scorpaena
scrofa, and, as shown in Figure 9, we used this image as a
query to our book.

The best match to our query shows a member of the
genus, Scorpaena mile, and the accompanying text does not
mention that the fish is poisonous.

In this case we were fortunate enough to find an
illustration of a member of Scorpaena. Suppose we were not
so fortunate, could we obtain a good match using a real
image of a fish?

Figure 9. left) A query image of an illustration of Scorpaena scrofa and its
best match in the text [1]. right) For context, six random other fish from
the same text.

To test this possibility, we queried the database with the
first three images retrieved in a Google image search for
“Scorpaena”. Figure 10 shows the results.

Figure 10. Three images of real fish from the genus Scorpaena. Each of
them was used as a query to the text [1], and each of them found the same.

Query

Best
Match

In the above four scenarios, the average time taken to
find the exact nearest neighbor was 16.5 seconds (ranging
from 5.6 to 29.0 seconds); however, the time to report the
page on which the best match occurs took less than 0.1
second, allowing a truly interactive search. Note that in every
case our query window size was smaller than the correct
matching fish, and in the wrong orientation; however, it is
clear in these experiments these are not critical sensitivities.

While we envision our work primarily for finding
patterns within and between historical texts (cf. Section I),
the results shown in Figure 10 emboldened us to consider
one example where there is great utility in querying
historical texts with modern images.

Historians and genealogists often need to search
manuscripts to trace lineages. In addition to using text, they
often use coats of arms as clues. Coats of arms are extremely
common in Western manuscripts beginning in the fourteenth
century (similar emblems exist in other cultures, for example,
the Japanese Mon). In some cases a single text may have
over 1,000 examples of different coats of arms.

In this case, finding query images is easy, since there is a
huge wiki-like community of amateur historians that have
created clean idealized versions of coats of arms; Figure
11.left shows an example. Some individual enthusiasts have
collected or created more than 50,000 examples [10].

Figure 11. left) A modern idealized version of the coat of arms of Fugger
von Babenhausen is used as a query. center) The best match to query in the
1545 text, Das Ehrenbuch der Fugger. right) A zoom-in of the best match.

As we can see in Figure 11.left the modern images are
idealized, “clean” and created with a small color palette.
Could such images be correctly matched to real hand-colored
instances from 500-year-old texts? To test this we queried a
text Das Ehrenbuch der Fugger (The secret book of honor of
the Fugger, referred as Fuggers book for short below) [4].
This manuscript impressively illustrates the genealogical
self-esteem of the Fugger family, a famous dynasty of
wealthy merchants. The text contains portraits of 138
members of the family, including the matriarch, the Mother
Fugger, together with their coats of arms. Figure 11.center
shows the best match to the query, and Figure 11.right shows
an enlarged detail.

While the nearest neighbor is similar, with some editing
we can make it more similar. Figure 12 illustrates this.

Figure 12. left) We can edit the coat of arms discovered in our search by
removing the center panel and stretching the two remaining sections to
meet in the middle. right) The resulting image looks more like the query.

We did not do the additional step of reversing the
direction of the three horns in the bottom left quarter, since
the handedness of objects is (typically) irrelevant in heraldry.
This result suggests that the coat of arms we found was the
original Fugger von Babenhausen coat of arms, augmented
(the technical term is Quartered) by the insertion of a new
panel. This query suggests that our distance measure is quite
robust to “distortions” in the image, especially to the
inevitable differences in the color palettes used by modern
historians and the color palettes available to medieval artists.

Before moving on, it would be remiss of us not to
comment on an invariance that our measure achieved. Both
the original and query arms show a woman holding a mitre
(“Pope’s hat”). In the query image the woman in clearly
Caucasian and blond. However, in the discovered coat of
arms the woman appears to African. This is not the result of
discoloration of the original color, or an error by the artist.
From external sources we discovered that the black figure is
the women mentioned in the Biblical book Song of Songs
1:5 “I am black but comely, O daughters of Jerusalem, ...”.
The explanation as to why the query image features a white
woman is the obvious and disquieting one. According to Ralf
Hartemink, a noted expert on heraldry, “In the 19th and early
20th century many black people were made white, as racism
became more common...” [11].

2) Motif Discovery
We first tested our motif discovery algorithm on the 526

page Fuggers book which we investigated in the last section.
Due to space limitations, we show two typical examples in
Figure 13, and archive the complete results in [27].

Figure 13. left) A pair of pages which contains 27 leaf patch pairs, with 6
leaf patches on left page and 7 on the right page displayed. right) another
pair contains 170 leaf patch pairs, with 16 and 18 leaf patches on each page.

In the above results, we plotted out all leaf patches (the
highly overlapped rectangles), without specifying which two
are in a pair. However, as we can see, this does not affect the
utility of the patterns. So instead of allowing the algorithm to
test all 170 combinations (in Figure 13.right), we can have
the algorithm save time by reporting just one pair, which
may not be optimal, but will surely satisfy a user.

Our work on datasets made us realize a limitation of
motif discovery. The domain expert in this field wanted to
ask questions such as “Are there two or more examples of a
shield that is not a Fuggers shield, indicating that two or
more members of the same family had married into the
Fuggers dynasty?”. This translates to “Are there motifs that
do not feature pale blue and gold?”. To answer such queries
we need to do supervised motif discovery. These essentially
reduce to the constraint of must-include or must-exclude
these colors. Such constraints are trivial to include in our

R
em

ov
e

ce
nt

er
 p

an
el

 Stretch both sides
towards the center

algorithm. For brevity, we defer details to [27] and content
ourselves with a single example shown in Figure 14.

Figure 14. left) A photo of an orange/black butterfly used as a must-include
color constraint on motif discovery. right) A pair of tiger butterflies found
by the supervised motif discovery algorithm in [13].

3) Link Analyses
We can trivially extend our work on finding motifs

within a book, to finding motifs between two books. This
allows us to add hyperlinks between the two texts that
researchers can follow as they investigate a topic [2]. This is
a more challenging problem, since even two logically
identical items from different texts may vary much more in
the size, color palette used, style, etc. than those from the
same manuscript.

We performed link analyses on two old books about
butterflies. One of them contains illustrations of about 1250
species [9]. The other is a volume of “new” butterflies
(referred to as “Exotic Butterflies” below) [13]. As the latter
text is more heavily annotated, users who have questions
about the butterfly in the former book can find helpful
references in the latter one if there is a link created. It took
about one hour to “join” these two books, and in Figure 15
we show two representative links found.

Figure 15. Two links found between two butterfly books. Note that the
technique seems robust to the text variability (color palette, size, etc.).
According to an entomologist, the left match is correct at the genus level
and the right match is correct at the species level.

 These results are very assuring and alleviate our worries
about the variability that exists between different books.
Figure 16 shows some additional examples.

Figure 16. Two examples of links found by a motif join. Both matches are
correct at the species level.

B. Data Mining Metrics

1) Sensitivity to Parameters
Previously we discussed parameter settings theoretically.

Here we intend to show, empirically, that all parameters used
by our algorithms are relatively insensitive and that it is easy
to learn settings which generate effective and efficient results.

We first investigated the relation between Sec and the
execution time of our NN algorithm. Since for a given query
and a fixed Sec, the execution time varies when using
different StopRatio, we then tested all possibilities (recall
that the number of “valid” StopRatio is limited) to find the
best running time for different Sec. Figure 17.left shows the
results of 5 randomly chosen queries (distorted and only
taking 64% of their original area) in the Fuggers book.

We can clearly see that: (1) The best execution time of
large Sec (20,30 and 40) is much worse than small Sec; (2)
The best execution time of small Sec does not vary that much,
but still slightly increases with Sec. 3 out of 5 queries ran the
fastest when Sec = 2, while only 0.38 and 0.05 second slower
than the best (where Sec = 3) in the other two cases.

Next we checked the effect of StopRatio (i.e. the depth to
stop the division) on the execution time when Sec = 2. The
result for the same 5 queries is shown in Figure 17.right.

Figure 17. left) “Best execution time to find NN” vs. “Sec” for 5 randomly
chosen queries from the Fuggers book. Note only 20,30,40 are tested for
Sec >10. right) “Execution time to find NN” vs. “StopDepth” for the same
5 queries when Sec = 2. Note StopDepth = 1 corresponds to the brute-force
search (but still with the heuristic page order).

This plot suggests that as long as we do not set the
StopDepth too small, the execution time can be decreased to
a similarly low level by our algorithm. Hence, we set the Sec
to 2 and StopDepth to 8 for all experiments5.

The only really important parameter for motif discovery
is the motif size. It can be based on the domain knowledge
and users’ interests. However, for complicated datasets (e.g.:
butterflies), it is difficult to find such a “perfect” value. In
spite of this, however, it is clear that our algorithm can find
some motifs of different sizes (e.g.: Figure 15.right), and is
efficient enough to search of a range of sizes.

2) Speed and Anytime Property
We randomly picked 10 new queries from the Fuggers

book, and reran the NN search with learned parameters. The
average running time was 14.1 seconds (ranging from 1.0 to
39.0 sec). However, for 4 out of 10 queries, the best match
appeared on the first page returned, and it took less than 0.1
second. Even in the worst case, the best match was on the 6th
we retrieved. In comparison, a search using the brute force
algorithm took 14 hours. We archive the NN search result for
“Exotic Butterflies” in [27]. Its performance is even better:

5 We did the same experiments (as in Figure 17) on the “Exotic Butterflies”

book, and found the similar results, which we report at [27].

1 2 3 4 5 6 7 8 9 10 11
0

5K

10K

15K

T
im

e
(s

e
c)

2 3 4 5 6 7 8 9 10 20 30 40
0

200

400

600

800

1000

Value of Sec

B
es

t
T

im
e

(s
e

c)

Depth to Stop the Division

the best match was located on the first page for 8 out of 10
queries.

While motif discovery may need to run overnight, the
brute force algorithm would take years. Moreover, with the
heuristic search order, we can always stop at any time after a
very short startup time while still obtaining good results (see
Figure 18), essentially making it an anytime algorithm.

Figure 18. “Goodness of BSF” vs. “Time” for motif discovery in the
Fuggers book. The “goodness” is measured as “eventual BSF/current BSF”.

VI. CONCLUSIONS

We have introduced a novel lower bound for color
matching, and two data mining algorithms that exploit it. We
have shown our ideas allow true data mining, rather than just
query-by-content for the domain of historical manuscripts.
We have made all code and data freely available in order to
bootstrap additional research in this area.

REFERENCES
[1] Bennett, J. 1834. A selection from the most remarkable and

interesting of the fishes found on the coast of Ceylon. London, E.
Bull.

[2] Bourgeois, Le. F., and Kaileh, H. 2004. Automatic metadata retrieval
from ancient manuscripts. Document Analysis Systems: 75-89.

[3] D’Orbigny, C. 1849. Dictionnaire Universel d’Histoire Naturelle.
Renard & Martinet, Paris.

[4] Das Ehrenbuch der Fugger (The secret book of honour of the Fugger)
-BSB Cgm 9460, Augsburg, ca. 1545 - 1548 mit Nachträgen aus
späterer Zeit.

[5] Das, M., Riseman, E.M. and Draper, B.A. 1997. FOCUS: Searching
for Multi-Colored Objects in a Diverse Image Database. CVPR97
(756-761).

[6] Ding, H., et al. 2008. Querying and mining of time series data:
experimental comparison of representations and distance measures.
PVLDB 1(2): 1542-52.

[7] Faloutsos, C. et al. 1994. Efficient and Effective Querying by Image
Content. Journal of Intelligent Information Systems, 3:231-262.

[8] Garain, U., Paquet, T. and Heutte, L. 2006. On foreground-
background separation in low quality document images. International
Journal of Document Analysis 8(1): 47–63.

[9] Godman, Frederick D. et al. 1879-1901. Insecta. Lepidoptera-
Rhopalocera. Vol. III (Plates).

[10] Hartemink,R. 2010. Heraldry of the World.
http://www.ngw.nl/int/dld/o/oberkirb.htm

[11] Hartemink, R. 2010. (Personal communication) April 30th 2010.
[12] Herwig, M. (2007). Google's Total Library: Putting the World's

Books on the Web.
[13] Hewitson, William C. 1856. Illustrations of new species of exotic

butterflies: selected chiefly from the collections of W. Wilson
Saunders and William C. Hewitson.Vol I.

[14] Holley, R. 2009. Many Hands Make Light Work: Public
Collaborative OCR Text Correction in Australian Historic
Newspapers National Library of Australia. ISBN 978-0-642-27694-0

[15] Ioka,M. 1989. A method of defining the similarity of images on the
basis of color information, technical report RT-0030, IBM Research.

[16] Kelly, K. 2006. Scan This Book! N.Y. TIMES, May 14, § 6
(Magazine), at 42.

[17] Like.com. Http://www.like.com/
[18] Lin, J., Keogh, E., Lonardi, S. and Patel, P. 2002. Finding motifs in

time series. Proc. of 2nd Workshop on Temporal Data Mining.

[19] Liu, Y., Zhang, D., Lu, G. and Ma, W.-Y. 2007. A survey of content-
based image retrieval with high-level semantics. Pattern Recognition,
vol. 40, no. 1, pp. 262–282.

[20] Matas, J., Koubaroulis, D. and Kittler, J. 2000. Colour image retrieval
and object recognition using the multimodal neighbourhood signature.
In: Proc. of the ECCV. (2000) 48–64.

[21] Pass, G. and Zabih, R. 1996. Histogram refinement for contentbased
image retrieval. IEEE Workshop on Applications of Computer Vision,
pages 96–102.

[22] Renard, L., L. Poissons Ecrevisses et Crabes, de diverses couleurs et
figures extraordinaires, que l’on trouve autour des Isles Moluques et
sur les côtes des Terres Australes. Amsterdam.

[23] Rui, Y., Huang, T., and Chang, S. 1999. Image retrieval: current
techniques, promising directions and open issues. Journal of Visual
Communication and Image Representation 10, 39–62.

[24] Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A. and Jain, R.
2000. Content-based image retrieval at the end of the early years.
IEEE Trans. PAMI, vol. 22, no. 12, pp. 1349-1380.

[25] Smith, J. R. and Chang, S-F. VisualSEEk: a fully Automated
Content-Based Retrieval System. ACM Multimedia. 1996, pp. 87-98.

[26] Swain, M. J. and Ballard, D. H. 1991. Color indexing. International
Journal of Computer Vision, 7(1):11-32.

[27] Supporting webpage. http://www.cs.ucr.edu/~qzhu/
[28] The naturalist's library. Conducted by Sir William Jardine.

Entomology.
[29] Zhu, Q. and Keogh, E. 2010. Using CAPTCHAs to Index Cultural

Artifacts. IDA 245-257.

This research was funded by NSF grants 0803410 and 0808770.

0 1 2 3 4 5 6 7 8 9
x10 4

1

1.1

1.2

1.3

Time (sec)

G
o

od
ne

s

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

