
Polishing the Right Apple: Anytime Classification Also Benefits Data Streams with
Constant Arrival Times

Jin Shieh Eamonn Keogh
Dept. of Computer Science & Engineering

University of California, Riverside
{shiehj, eamonn}@cs.ucr.edu

Abstract— Classification of items taken from data streams
requires algorithms that operate in time sensitive and
computationally constrained environments. Often, the
available time for classification is not known a priori and may
change as a consequence of external circumstances. Many
traditional algorithms are unable to provide satisfactory
performance while supporting the highly variable response
times that exemplify such applications. In such contexts,
anytime algorithms, which are amenable to trading time for
accuracy, have been found to be exceptionally useful and
constitute an area of increasing research activity. Previous
techniques for improving anytime classification have generally
been concerned with optimizing the probability of correctly
classifying individual objects. However, as we shall see, serially
optimizing the probability of correctly classifying individual
objects K times, generally gives inferior results to batch
optimizing the probability of correctly classifying K objects. In
this work, we show that this simple observation can be
exploited to improve overall classification performance by
using an anytime framework to allocate resources among a set
of objects buffered from a fast arriving stream. Our ideas are
independent of object arrival behavior; and, perhaps
unintuitively, even in data streams with constant arrival rates
our technique exhibits a marked improvement in performance.
The utility of our approach is demonstrated with extensive
experimental evaluations conducted on a wide range of diverse
datasets.

Keywords-anytime algorithms; classification; nearest
neighbor; streaming data

I. INTRODUCTION

Classification of data arriving from a data stream is often
more difficult than the batch situation because the algorithm
must operate in a time sensitive and computationally
constrained environment. Traditional algorithms are often
unable to provide satisfactory performance while supporting
the highly variable arrival rates that typify such applications.
For example, a single data stream may produce items to be
classified at a rate that can range from milliseconds to
minutes [1][22]. Traditional classification algorithms
typically lack the mechanism for providing an intermediate
result prior to completion, and contract-based algorithms
require the time duration prior to execution [28]. In such
contexts, anytime algorithms have been found to be
exceptionally useful, and have recently been the subject of
extensive research efforts [8][12][16][17][22][27].

Anytime algorithms are algorithms which are amenable
to variable response times, by exchanging the quality of
response as a function of time [9][28]. In the case of
classification, quality is measured by the probability of
correct classification. More concretely, an anytime
algorithm, after a short period of initialization, can always be
interrupted to return some intermediate result. This flexibility
in response time allows anytime algorithms to be used with
great success in real-world environments with variable
constraints [8][13][23].

For anytime classification, one well established technique
is the anytime nearest neighbor classification algorithm [22].
This algorithm retains the strong points of the nearest
neighbor algorithm, its simplicity and generality 1 , while
greatly mitigating the problem associated with the linear time
complexity at classification time, a function of its “lazy”
behavior.

Previous techniques for improving anytime classification
have generally been concerned with optimizing the
probability of correctly classifying individual objects. In this
work, we show that substantial improvement in overall
classification accuracy performance can be achieved if the
optimization is performed relative not to each individual
object, but rather to a (possibly quite small) set of objects.

Our technique is a generalized framework which utilizes
a scoring function that estimates the intermediate result
quality of an object being processed. Here, the quality is an
estimate of the (relative) likelihood that we have the correct
class label for the object. Objects with a high initial quality
are unlikely to significantly improve their quality, even with
additional computation time. In contrast, objects with poor
initial quality have much greater room for improvement, and
are thus deserving of more resources. Using this intuition,
our framework intelligently and dynamically schedules
computational resources for each object. We show that the
lack of such inter-object consideration would otherwise
result in poor allocation of computation time and lead to
reduced performance. As expressed by the well-known
idiom, we would be polishing the wrong apple if we
allocated resources to an instance whose class label is
unlikely to change, even with more resources.

Our methodology is invariant to object arrival behavior,
and perhaps unintuitively, it is notable in that even with an
uniform object arrival rate we are capable of attaining a

1 I.e. The ability to use any distance measure, the ability weight features,
etc.

marked improvement in classification performance. This is
in contrast to the usual motivation for anytime algorithms,
which are typically presented to mitigate the effects of
variable object arrival behavior [12][22][27].

The remaining sections of the paper are organized as
follows: In Section II, we provide background material on
anytime algorithms and review related work on classification
techniques. We then present an overview of the anytime
nearest neighbor classifier in Section III. Section IV
motivates and introduces techniques for improving
classification accuracy by using a scoring function to
measure intermediate result quality and performing
computational resource allocation. Section V provides
additional details regarding the selection and formulation of
a scoring function. In Section VI we verify the utility of our
framework with experimental evaluation conducted on a
wide range of diverse datasets. Lastly, Section VII offers
some discussion and suggests directions for future work.

II. BACKGROUND AND RELATED WORK

Algorithms are considered anytime if they exhibit
specific characteristics [9][28], notably:

After a short period of initialization, the algorithm
becomes interruptible. That is, an intermediate result
can be returned at any time up to completion.
The quality of this result is measurable and improves
with additional computation time.
The change in quality is typically characterized by
diminishing returns, with the largest gains found in the
initial stages of computation.
An interrupted execution of the algorithm can later be
resumed for additional refinement without significant
overhead.

Figure 1 illustrates the prototypical tradeoff between
result quality and computation time in an anytime algorithm.
Such flexibility is advantageous when available computation
time is not known a priori (e.g. in data streams).

Due to their utility in real-world settings, anytime
algorithms have been extensively studied [11] and have
found application in a number of diverse domains.
Applications range from path planning in real time strategy
games [3] to the clustering of time series [17]. Significant
work has also been done to adapt or view [21] well
established machine learning algorithms under the anytime
framework. Some examples include Bayesian networks [13],
decision trees [10], nearest neighbors [22], and inductive
logic programming [18].

For anytime nearest neighbor classification of objects,
performance has been shown to be improved by reordering
the training set. One technique for generating such an
ordering is by repeatedly moving the worst exemplar to the
end of the list so that the most characteristic exemplars are
examined first [22] [25].

When classifying objects from a data stream it may not
be necessary or advantageous to compute classifications
serially, where the available computation time for each
object is the interarrival time between itself and the next
successive object. A more general methodology is to

separate the direct relationship between arrival rate and
object computation time. Instead, the available computation
time is dictated by some external variable or dependency.
This approach is less constrained and allows for the
concurrent processing of more than one object. For example,
in real-world monitoring scenarios, a typical query may be:
“Monitor object-stream X and event-stream Y (let λX, λY be
the arrival rates for X and Y, respectively, where λX >> λY),
classify objects arriving in X, and return their classification
upon the next event in Y.”

Note that if the object processing strategy is serial, then
simply optimizing the classification of each object
individually is clearly the optimal policy. However, if objects
are processed concurrently, then it is possible that we can do
much better than simply optimizing each object classification
in isolation [12][16]. This follows from the observation that
in virtually any set of objects, the change in result quality
with additional computation time will likely vary greatly
between each object. To obtain the greatest increase in
performance, we simply need a way to estimate and then
process the object(s) that can benefit the most from
additional computation. While this appears to be a “chicken-
and-egg” paradox (since during classification, we obviously
don't know if we have the true class label), as we shall see, at
least in the case of the nearest neighbor algorithm, that we
can cheaply obtain an approximation of how likely we have
the correct label, a confidence measure.

In this work, we apply this intuition to present a general
framework which can be used to increase the overall
performance in data stream classification. Our method uses a
“confidence” scoring function to estimate the quality of
intermediate results and assigns computation time to objects
with the lowest classification confidence. We demonstrate in
our experimental evaluation that once we have a reasonably
accurate scoring function, we can improve overall
classification performance. Note that classification remains
under anytime conditions and that the end times for objects
are never known a priori.

We have chosen to explore our observations with the
nearest neighbor algorithm. The nearest neighbor algorithm
has proven to be one of the most frequently deployed
classifiers, with accuracy which is competitive with other
techniques [22] [26]. The nearest neighbor algorithm has the
advantage of being non-parametric, capable of handling a
large number of classes, and easily adaptable to datasets

Figure 1. Anytime algorithms are interruptible after initialization. This
plot shows the increase in result quality with additional computation
time

which are dynamically changed or updated without
retraining or overfitting. Its primary disadvantage is the
linear time dependence on the number of training exemplars,
a property which can be mitigated by indexing the data
(when applicable), or with anytime algorithms such as the
one presented in [22]. While the work in [22] allows the
algorithm to be used in streams where one object may arrive
before the current object has completed processing, it does
not leverage the idea of varying computational resources
according to result quality when classifying a set of
concurrent objects.

III. ANYTIME NEAREST NEIGHBOR CLASSIFICATION

The nearest neighbor algorithm, well known for its utility
and range of applicability, is easily extended to fit under the
anytime framework. This section presents a review of the
anytime nearest neighbor classification (ANNC) algorithm
[22]. In Section IV, we will discuss how to generalize
ANNC for concurrent classification.

For clarity, the notation used in the following sections is
first presented in TABLE I.

TABLE I LIST OF NOTATION

Name Description
q An object to classify. Contains the following

fields:
q.pos Current training set position
q.class Current classification label
q.dist Current nearest neighbor distance
q.stopped Flag denoting user stoppage

Q A set of objects to classify
Qi Qi Q. Equivalent to q above
Q’ A set of objects to classify, which are

concurrent and in memory
D The set of training objects
Di Di D

Di.class The class label of this object
M Number of objects which can be buffered in

memory
NumClasses(D) Returns the number of unique class labels

represented within training set D
ScoreFcn(q) A function that returns a score which estimates

the intermediate result quality of object q
Distance(,) A context appropriate distance measure

Given an object to classify, q, and a set of training instances,
D, the ANNC algorithm finds the entry Di in D which
minimizes Distance(q, Dj). That is:

The returned classification is the corresponding class label
for Di, Di.class.

Note that we have not explicitly defined the Distance
measure used in ANNC. The ANNC can use any distance
measure (Lp-Norm, Hamming distance, graph edit distance,
Dynamic Time Warping, etc.) that is appropriate to a specific
context (time series, strings, graphs, categorical data, etc.). If
only a similarity measure is available, i.e. the cosine

similarity measure, we can simply define the ‘distance’ as
the reciprocal of the similarity measure.

A sketch of the ANNC algorithm is shown in TABLE II.
Lines 1-8 initialize q to an initial result. First, let
NumClasses(D) be the number of unique class labels in D,
where the first NumClasses(D) instances of D contain
exactly one exemplar from each class label. Then, the
initialization period does the following: q is iterated over the
first exemplar from each class and an initial classification is
obtained and saved as the intermediate result. While the
algorithm cannot be interrupted during this period, it only has
to iterate NumClasses(D) times, where NumClasses(D) <<
|D| and thus the time duration spent in initialization is
marginal.

Following initialization, the object being classified can
be stopped, then resumed at any time leading up to the
completion of training set evaluation. Lines 9-14 iterate
through the remaining training instances in D or until
stopped and update the nearest neighbor for q accordingly.
q.class is then returned as the classification result for q.

The generic algorithm just presented falls under the
anytime framework and achieves increased quality of results
(classification confidence) as a function of additional time.

TABLE II ANYTIME NEAREST NEIGHBOR CLASSIFIER

Function AnytimeClassifier(q, D)
1 q.dist← ∞
2 q.class ← null
3 for i ← 1 to NumClasses(D)
4 Dist← Distance(q, Di)
5 if Dist < q.dist
6 q.dist← Dist
7 q.class ← Di.class
8 q.pos ← NumClasses(D)
9 while !q.stopped and q.pos < |D|
10 q.pos← q.pos + 1
11 Dist← Distance(q, Dq.pos)
12 if Dist < q.dist
13 q.dist← Dist
14 q.class ← Dq.pos.class

This, in essence, is the current methodology for ANNC,
introduced in [22], except that work also suggests optimizing
individual object classification by identifying heuristics for
ordering the training set entries so that the most
characteristic exemplars are examined early on. This simple
idea is useful enough to have found real-world applications;
for example, it is used in a surveillance system created by
Toshiba [24].

In this work, we adopt the complementary methodology
of optimizing performance across a set of objects. In the
following sections, the motivation and advantages behind
such a method are presented and techniques for improving
overall classification performance are introduced.

IV. CONCURRENT OBJECT EVALUATION

For the purpose of explanation, it was convenient to
illustrate anytime classification with regards to a single
object. However, streaming data classification is more

accurately exemplified by a sequence of objects. Given this
consideration, our work examines the set of concurrently
processed objects and optimizes the scheduling of
computational resources towards maximizing overall
classification performance. Such evaluation is significant in
that simply optimizing individual object classification can
result in poor overall computational resource allocation and
performance. For expository purposes, consider a simple
example:

Suppose we have a set of objects to concurrently classify.
After some period of initial processing, in all but the most
pathological cases, we would expect that this set of objects
will contain intermediate results which span some range in
quality. As a simple example, suppose we have a database of
ten million objects, consisting of two classes of automobiles,
Japanese and American, and we have a pool of instances to
classify: {1995 Toyota Corolla, 2000 Ford Escort, 1998
Honda Civic,..., 1957 Hudson Hornet2}. Because the Toyota
Corolla is the bestselling car in the world, once we have
examined just the first 100 objects in the training database
we are practically guaranteed to have seen several examples
of Corollas. There is, therefore, little utility in comparing this
instance to the rest of the database. In contrast, the Hornet is
so rare, and so unlike other American cars, that it is very
unlikely to have been encountered in the first 100 items
visited. Its current nearest neighbor is as likely to be
Japanese as American.

Scheduling policies which do not take into account the
diversity in the set of currently processing objects will
almost certainly result in suboptimal resource allocation by
scheduling computation time to objects which already have
excellent intermediate results (i.e. Toyota Corollas). This is
time that can be better spent on objects which may benefit
most from additional computation. However, we do not
know the true class labels of the objects, and therefore how
can we know the likelihood that the tentative label is correct?
Our task resembles a well observed problem found in nature,
and our solution is also very similar to the solution that has
evolved in nature.

2 A rare American-made automobile.

Many birds and small mammals have large broods, and
the parents must allocate food resources among them [19].
From the point of view of the parent who is trying to
maximize her (less often, “his”) reproductive success, the
optimal thing to do is to feed each offspring equally.
However, birds cannot differentiate between their offspring,
so they cannot use any algorithm that requires labeling their
young. If their algorithm is to feed the most aggressive
young (a literally greedy algorithm), then the next time they
return with food, that aggressive offspring, fortified by recent
feeding, will be able to force itself to the front again and beg
for more food [20]. This will continue indefinitely until the
weaker siblings starve3.

The solution to this problem is that the young signal their
hunger level to the parent by the frequency of chirping. The
parent’s optimal algorithm is reduced to feeding the young
that signals the greatest need. This solution is nearly
universal among birds, and may have evolved independently
in different species [20].

We can see that our problem is nearly identical. We have
resources (CPU time) that we must distribute among objects
that have possibly varying levels of need (i.e. varying levels
of confidence in their classification). As we shall show in the
following section, our solution is nearly identical; we simply
need to have each object “signal” its need, based on an
estimate of how confident it feels about its current label. Of
course, we can never know exactly the probability of an
object having the correct classification; however, as we shall
see in Section VI, a simple heuristic is sufficient to produce
improvements in overall accuracy.

A. Scheduling Policies
If a data stream is sparse, then objects are processed in

isolation and without interference from other objects (in
effect, complete serial processing). In such scenarios, the
best performance can be achieved by utilizing any of the
previous approaches which optimize for single objects.
However, in most data streams we can expect to encounter at

3 We know that this would happen, because it does happen in cases of
brood-parasites such as the cuckoos

Figure 2. Net result quality across concurrent queries for various scheduling policies. Left) Result quality over time for two queries Q1 and Q2 (note that
Q2 arrives shortly after Q1). Right) Net result quality (Q1 and Q2) for various scheduling policies at evaluation time (hatched line)

some point a set of objects which have overlapping lifetimes.
Thus, given a data stream which contains a set of Q objects
distributed over the duration of the stream, at any given time
within the lifetime of the data stream, there exists some
subset, Q’ of Q, consisting of |Q’| number of objects being
classified, |Q| ≥ |Q’| ≥ 0. If the number of objects is neither
zero nor singular (|Q’| > 1), and because only one object may
be processed at a time, what is the scheduling approach that
attains the best overall performance over Q’?

Recall that the end time of each object is never known a
priori. Consequently, it is not possible to identify a global
optimum, over Q, beforehand. However, we can optimize
locally, over Q’, to improve performance. Let us first
introduce an illustrative example, consisting of two objects
Q1 and Q2, Q’ = {Q1, Q2}. Assume Q2 arrives shortly after Q1
and that the quality of result as a function of computation
time for each of the objects is known (as shown in Figure 2
Left).

One scheduling technique is the sequential or serial
scheduling of objects. That is, we classify each object, Qi,
using the ANNC algorithm described in Section III and
return a response when complete or upon the next arriving
object. Under serial scheduling, Q1 is stopped prematurely as
a result of Q2’s arrival. From the result quality over time plot
in Figure 2 Left we can see that Q2 obtains a high quality
result immediately following initialization, whereas Q1
requires additional computation time to reach a higher level
in quality. Due to the sequential nature of this scheduling
algorithm, a clearly suboptimal result is obtained (see Serial
Scheduling Policy in Figure 2 Right). The bulk of
computation time is devoted to Q2, resulting in a marginal
improvement in net quality. Notice that a much larger
increase in overall quality could have been achieved by
continuing to schedule Q1 even after the arrival of Q2.

Another scheduling policy is to divide computation time
equally among concurrently processing objects in a round
robin fashion. The result shown in Figure 2 Right is an
improvement over serial scheduling; however, the intuition
established in the previous solution is as follows: since Q2 is
able to obtain a high quality result quickly and Q1’s quality
remains poor, computation time is still best spent on
classifying Q1.

Let us now see how we can achieve even better results
than round robin scheduling. Our intuition dictates that we
should refrain from wasting computational resources on an
object when another object exists whose quality is lower.
Observe that such a scheme can be achieved if we have a
scoring function which returns an indicator of intermediate
result quality per object. Then the scheduling policy is
simply to schedule the object with the lowest score. For
example, if we use the plots in Figure 2 Left as our scoring
mechanism and schedule the computation accordingly, the
net result quality is shown in Figure 2 Right and is clearly the
best of the three presented techniques.

While it is impossible to have prior knowledge which
gives the exact change in quality over time, the score
scheduled technique remains highly effective if scoring
functions which are a close estimator of result quality exists.

We leave the discussion of scoring functions to Section V;
first, the score scheduling algorithm is presented.

B. Batch Evaluation
To introduce the use of a scoring function, we first

consider the slightly simplified task of classifying a set of
objects in batch fashion. In the next section, extensions
necessary for a streaming environment will be presented.
The batch score scheduled algorithm is shown in TABLE V.
Note that the segments of code devoted to the initialization
and updating of objects have been summarized in TABLE III
and TABLE IV, respectively.

The batch algorithm begins by initializing each object in
the input set (Lines 1-2). A priority queue containing the
entire set of objects is then created (Line 3). The priority
queue ordering is dictated by the scoring function, ScoreFcn
which provides an estimate of the quality of an object’s
intermediate result. At each iteration, the object with the
lowest score (lowest classification confidence) is scheduled
for computation and updated (Lines 4-8).

TABLE III INITIALIZING OBJECT CLASSIFICATION

TABLE IV UPDATING OBJECT CLASSIFICATION

Function Update(q, D)
1 if !q.stopped
2 q.pos← q.pos + 1
3 Dist← Distance(q, Dq.pos)
4 if Dist < q.dist
5 q.dist← Dist
6 q.class ← Dq.pos.class

TABLE V BATCH SCORE SCHEDULED CLASSIFIER

Function BatchScoreScheduledAnytimeClassifier
(Q, D, ScoreFcn)

1 for i←1 to |Q|
2 Initalize(Qi, D)
3 PriorityQueue Queue(Q, ScoreFcn)
4 while Queue.Size > 0
5 q← Queue.RemoveMin()
6 Update(q, D)
7 if !q.stopped and q.pos < |D|
8 Queue.Add(q)

Computational time for initialization is
O(C Numclasses(D)) per query, with C as the cost per
Distance(,) invocation. The priority queue is initialized in
O(S |Q|) time and the cost for each iteration of the score
scheduled computation is at most O(log|Q’|) to
RemoveMin() and O(C+S+log|Q’|) for the re-

Function Initialize(q, D)
1 q.dist← ∞
2 q.class ← null
3 for i ← 1 to NumClasses(D)
4 Dist← Distance(q, Di)
5 if Dist < q.dist
6 q.dist← Dist
7 q.class ← Di.class
8 q.pos ← NumClasses(D)

insertion/update, given that Q’ is the number of currently
processing queries, S is the cost per ScoreFcn() invocation,
when utilizing a standard heap-based priority queue. We
assume that objects can be asynchronously stopped and can
be lazily removed from the priority queue or in the case with
limited memory, purged at a cost of O(log|Q’|).

Given our intuition that the distribution of intermediate
result quality across a set of concurrently processing objects
is skewed, the number of scheduling iterations (and its
requisite overhead) can be significantly reduced by simply
tracking the confidence score of the next minimum item in
the queue, T, and performing computations on the current
object until stopped or its confidence score exceeds T.
Another technique for reducing framework overhead would
be to schedule computational resources at a coarser
granularity, that is, to increase the resources allocated per
iteration.

C. Streaming Evaluation
Extensions to the batch algorithm are necessary to make

the score scheduled algorithm suitable for a streaming
context. More concretely, we must incorporate the
consideration of the online arrival of objects and a finite
memory for buffering of concurrent objects. Our complete
framework is presented in TABLE VI.

TABLE VI STREAMING SCORE SCHEDULED CLASSIFIER

Function StreamingScoreScheduledAnytimeClassifier
(D, ScoreFcn, M)

1 PriorityQueue Queue(ScoreFcn)
2 while ContinueClassification
3 if NewObject
4 q ← GetNewObject()
5 Initalize(q)
6 if Queue.Size > M-1
7 Queue.RemoveMax()
8 Queue.Add(q)
9 else
10 q← Queue.RemoveMin()
11 Update(q, D)
12 if !q.stopped and q.pos < |D|
13 Queue.Add(q)

In Line 1, we initialize an empty priority queue and set the
ordering of objects to be dictated by the scoring function,
ScoreFcn. Line 2 examines a user-updateable flag to
determine if this online algorithm should continue. The
previous batch algorithm was able to simply check queue
size for termination; however, an empty queue is not
similarly indicative in an online, streaming environment
(consider the case where bursts of queries are separated by
long interarrival times, resulting in empty queues). The
algorithm then checks to see if a new object has arrived and
fetches it accordingly (Lines 3-4). Incoming objects are
initialized immediately (Line 5) and inserted into the queue
(Line 8). In the case that the current queue size plus the new
object will exceed the maximum buffer size, M, the object
with the largest score, is stopped and evicted (Lines 6-7).
This is the in-memory object with the highest classification

confidence. Lines 10-13 schedule the minimum scored
object for processing and are identical to the batch algorithm.
The computational time is the same as the batch algorithm,
with the addition that the priority queue is empty at
initialization and must also support the RemoveMax()
operation, which has O(log|Q’|) time complexity.

V. SCORING FUNCTION

Recall that the scoring function estimates intermediate
result quality. In a classification context, a high score would
imply that the current classification label is unlikely to
change, even if given sufficient time to run until completion.
Conversely, a low score is characteristic of an object whose
classification is likely to change.

Given that the nearest neighbor classifier seeks to find
the entry in the training set with the minimum distance, one
simple scoring method is to use the current best-so-far
nearest neighbor distance as the estimate for classification
confidence. The distance value is inverted so that higher
distances correspond to lower scores:

Note that we are not claiming that this scoring method is
the optimal one; our claim is merely that it is empirically
successful for many datasets. The framework is agnostic to
the scoring method, and a user with context specific
knowledge can formulate and tune a custom scoring function
accordingly. Furthermore, this generality allows for
applicability even in settings where the raw data may not be
directly accessible. For an example, one can imagine a black
box scenario where we only need to observe distances
between objects and not require direct access to the objects
themselves.

For comparative purposes, we will use the round robin
scheduling policy as a competitive baseline. As shown by the
example illustrated in Figure 2, round robin can offer a
significant improvement over serial scheduling. Furthermore,
and in contrast to the ScoreBsfDistance method, round robin has
the advantage of being starvation free. This property can
mitigate the adverse effects of outliers and prevent otherwise
a potential monopolization of computational resources.

VI. EXPERIMENTAL RESULTS

In this section, we examine the utility of our score
scheduled anytime nearest neighbor classifier by conducting
experimental evaluation of a wide range of diverse
classification datasets [2][15]. A list of the datasets used in
our experiments and their attributes are shown in TABLE
VII. Note that the data and code used in this work is archived
at [29], with annotations to allow reproduction of results.

For all datasets, we obtained testing and training splits
using 10-fold cross validation. The training exemplar order
for each fold is randomly permuted and all features are used.
Note that the training set invariant, where one exemplar from
each class is encountered first (during initialization), is
preserved.

Our dataset evaluation uses the Euclidean distance as the
distance function. An exception is the commercial
entomology case study presented in Section VI.D. There, we
use a compression based distance measure which has been
shown to have utility for differentiating textures [5].

Recall that given objects q and d, each with n-dimensions
the Euclidean distance is:

While Euclidean distance may not be the optimal
distance measure for every dataset, it has been shown to be
very competitive across many domains [7][14]. As our
primary objective is simply to show the improvement as a
result of using score scheduling to allocate computational
resources, the selection of Euclidean distance as the distance
measure is appropriate.

TABLE VII DATASETS USED FOR EXPERIMENTAL EVALUATION

A. Classification of Streaming Data
To evaluate the utility of score scheduled classification,

we simulate the classification of data streams with varying
rates of arrival. Our experimental data stream exhibits the
characteristic of constant or uniform arrival between
successive objects, and the exact interarrival time between
each object is modeled as the number of training set
exemplars (|D|) which can be evaluated:

The arrival rate is modeled as a function of |D| on an
account of its generality across all datasets. This is in
contrast to concrete numerical values (e.g. the data stream
operates at 100Hz) which may not always be applicable or
meaningful (due to the wide variability in dataset
characteristics: number of classes, feature space, exemplars
available).

Objects from the testing set, Q, enter the data stream in
accordance with the interarrival time until exhausted. For r =
1, the interarrival time between successive objects is exactly
the time needed to evaluate the entire training set and thus is
equivalent to complete serial classification. Our experiment

concludes when mean interarrival time has elapsed following
the arrival of the last object from the test set.

Classification accuracy is computed from the predicted
test labels and the true test labels. Note that this experimental
setup obtains classification accuracies which are dependent
on the order of arrival from the testing set. To remove such
bias, we average the classification accuracy for each

Name Classes Attributes Instances
Two-Pattern 4 128 5,000

AIBO Robot 2 100 12,100

Gun 2 150 200
Face 16 131 2,231
Leaf 6 150 442
CBF 3 128 1,000

Moth 35 Image
(~500x800) 772

JF 2 2 20,000
Letter 26 16 20,000

Pen Digits 10 16 10,992
Ionosphere 2 32 351

Figure 3. Classification accuracy of score scheduled anytime classifier
on constant data streams with varying rates of arrival

testing/training split over 10 random permutations of the
testing set. For this experiment, we assume that the
cardinality of objects being concurrently classified, |Q’|, can
be accommodated by the memory buffer (M > |Q’|).

As a general rule, we expect accuracy to decrease as the
arrival rate increases. This behavior can be attributed to the
reduced available computation time on average per object for
faster streams. However, we have occasionally observed
higher accuracy with increased arrival rate, beyond an
expected variability. This phenomenon is often caused by
non-separable classes or the presence outliers/noisy data and
resulting in a scenario where intermediate results have the
correct classification but the final nearest neighbor is of a
different class.

The classification accuracies from our score scheduled
approach on a variety of datasets are shown in Figure 3.
From the results, we see that we are typically able to obtain
an increase in accuracy over the round robin baseline. This
confirms our intuition that ScoreBsfDistance is a good indicator
of result quality by allocating additional computational
resources to objects which need it more.

Overall, round robin is a fairly competitive baseline. This
can be expected, as prior work [22] has shown that many
datasets have query objects which follow the prototypical
result quality over time behavior depicted in Figure 1. That
is, even evaluating just a small portion of the training set can
obtain a high quality result quickly, with additional
evaluation characterized by diminishing returns.

B. Effects of Constrained Memory on Classification
Accuracy
Performance degradation can occur when objects are

stopped prematurely and evicted from the buffer as a result
of memory constraints. As the score for each object is an
estimate of how confident we are about its class label, it is a
principled way of determining the eviction policy when
encountering memory constraints. That is, we simply evict
the object with the highest confidence score. For the round
robin baseline, a randomly chosen object is evicted. We
conducted experiments which varied the available memory
buffer size, M, from |Q| to 0.05*|Q|. From the four datasets
we evaluated for constant streams, the change in accuracy
was negligible. For each dataset the net change in accuracy

Figure 4. Classification accuracy on data streams with exponentially distributed interarrival times

per arrival rate was 1 percent or less. This indicates that our
methodology succeeds in evicting objects which are most
likely to have their true class label.

C. Streams with Non-Uniform Arrival
Data streams are often modeled with non-uniform

interarrival times. In this experiment, we show the accuracy
of score scheduled classification on such streams. We
simulate a data stream with an arrival process which is
modeled to be Poisson distributed with mean interarrival
times matching the constant streams presented in Section
VI.A. The arrival rates are:

Figure 4 shows the classification accuracy for
exponentially distributed interarrival times, computed as a
function of r. As shown on the Two-Pattern dataset, we are
able to obtain a definite increase in accuracy over the round
robin baseline. For the Face and Ionosphere dataset, we see
that our scheduling technique is able to improve performance
until r < [0.2-0.3], upon which there is insufficient
computation time to accurately discern a meaningful and
differentiating confidence value. Round robin outperforms in
this scenario because it is fair for all entries in memory.
Similar results are seen across the remaining datasets.

Overall, while round robin again performs competitively,
our score based scheduling is able to obtain a definitive
increase in overall accuracy for almost all values in the
parameter set.

D. A Case Study in Commercial Entomology
Several species of moths are harmful to agriculture. For

example, Epiphyas postvittana, the Light Brown Apple Moth
(LBAM) have larvae that feed on leaves and buds of plants,
reducing photosynthetic rate, which in turn leads to general
weakness and disfigurement.

In grapes and citrus, LBAM larvae can feed directly on
the fruit, and the resulting damage renders fruit
unmarketable. The LBAM is native to Australia, but
appeared in California in 2007. Since that time, the
California Department of Food and Agriculture has spent
$70 million on attempts to eradicate it from California. If not
eradicated, it is estimated it could cause $140 million in
damage each year [6].

Of course, attempts at eradication must be very careful;
many moths are important pollinators of plants. For example,
the Yucca moth (Tegeticula maculata) is the only animal that
is the right size and shape to pollinate yucca flowers. If it is
accidentally eradicated along with the LBAM, yucca flowers
would be threatened, which could further affect additional
fauna. Note that the LBAM is just one of the hundreds of
insects which are known to be harmful to agriculture,
livestock, or humans.

With this in mind, several companies, including ISCA
Technologies of Riverside CA, are developing AVIDs,
Automated Visual Identification Devices, which can

recognize individual species or genera. Most of these
systems currently just count the target insect, however
systems are being developed that selectively trap or kill only
the target insect, and release all others. In order to be
effective AVIDs must be cheaply mass produced, and
therefore have limited computational resources.

Recent work has shown that it is possible to accurately
classify moths using a compression-based distance measure
[5]. The distance measure is effective, but not being a metric
it does not allow an efficient indexing mechanism to make
classification more tractable. Below we describe our initial
experiments to port the compression-based distance measure
to resource limited hardware using our anytime framework.

As a preprocessing step, we first cluster the original
moth data into three dominant clusters to obtain more
exemplars per grouping. We then simulate non-uniform
insect arrival [4] using the methodology described in Section
VI.C. Due to resource constraints inherent in our target
environment, we set the available memory size to 5 percent
of the testing set, resulting in a memory buffer of only four
objects. Our classification accuracy compared to round robin
for different arrival rates is shown in Figure 5. We see that
the score scheduled approach consistently out performs
round robin.

VII. CONCLUSION AND FUTURE WORK

In this work, we presented a generalized framework
which utilizes a scoring function that estimates the
intermediate result quality of an object being classified. Our
framework extends existing anytime algorithms to a set of

Figure 5. Left) The adult Light Brown Apple Moth is harmless to
agriculture, however it’s larval form. Right) causes extensive damage to
several commercially important crops

Figure 6. Insect classification with memory buffer constrained to four
objects

concurrently processing objects by dynamically scheduling
computational resources for each object (in accordance with
its score). We showed over a wide range of diverse datasets
that the lack of such inter-object consideration would
otherwise result in poor allocation of computation time and
lead to reduced performance.

As future work, we look forward to examining more in-
depth, the utility of this framework and considering the
interplay between variability in object duration, amount of
concurrency, and different scoring methods. Additional real
world case studies would also reinforce the wide range
applicability of our framework.

ACKNOWLEDGMENT

This work was funded by NSF awards 0803410 and
0808770. We would like to thank Anna Watson and Michael
Mayo for the moth dataset.

REFERENCES

[1] Aggarwal, C. C., Han, J., Wang, J., and Yu, P. S. 2004. On
demand classification of data streams. In Proceedings of the
Tenth ACM SIGKDD international Conference on Knowledge
Discovery and Data Mining (Seattle, WA, USA, August 22 -
25, 2004). KDD '04. ACM, New York, NY, 503-508.

[2] Asuncion, A. & Newman, D.J. (2007).
UCI Machine Learning Repository
[http://www.ics.uci.edu/~mlearn/MLRepository.html].

[3] Butt, R. and Johansson, S. J. 2009. Where do we go now?:
Anytime algorithms for path planning. In Proc. of the 4th
international Conference on Foundations of Digital
Games (Orlando, Florida, April 26 - 30, 2009). FDG '09.
ACM, New York, NY, 248-255.

[4] Byers, J.A. 1996. Temporal clumping of bark beetle arrival at
pheromone traps: Modeling anemotaxis in chaotic plumes. J.
Chem. Ecol. 22:2143-2165.

[5] Campana, B. and Keogh, E. 2010. A Compression Based
Distance Measure for Texture. In Proceedings of the SIAM
International Conference on Data Mining, SDM 2010.

[6] CISR: Light Brown Apple Moth. Retrieved Jan 15, 2010,
from http://cisr.ucr.edu/light_brown_apple_moth.html.

[7] Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., and
Keogh, E. 2008. Querying and mining of time series data:
experimental comparison of representations and distance
measures. Proc. VLDB Endow. 1, 2 (Aug. 2008), 1542-1552.

[8] Esmeir, S. and Markovitch, S. 2005. Interruptible anytime
algorithms for iterative improvement of decision trees. In
Proc. of the 1st international Workshop on Utility-Based Data
Mining (Chicago, Illinois, August 21 - 21, 2005). UBDM '05.
ACM, New York, NY, 78-85.

[9] Grass, J. and Zilberstein, S. 1995 Anytime Algorithm
Development Tools. Technical Report. UMI Order Number:
UM-CS-1995-094., University of Massachusetts.

[10] Grumberg, O., Livne, S., and Markovitch, S. 2003. Learning
to order BDD variables in verification. Journal of Artificial
Intelligence Research.

[11] Hansen, E. A. and Zilberstein, S. 1996. Monitoring anytime
algorithms. SIGART Bull. 7, 2 (Apr. 1996), 28-33.

[12] Hui, B., Yang, Y., and Webb, G. I. 2009. Anytime
classification for a pool of instances. Mach. Learn. 77, 1 (Oct.
2009), 61-102.

[13] Hulten, G. and Domingos, P. 2002. Mining complex models
from arbitrarily large databases in constant time. In Proc. of

the Eighth ACM SIGKDD international Conference on
Knowledge Discovery and Data Mining (Edmonton, Alberta,
Canada, July 23 - 26, 2002). KDD '02. ACM, New York, NY,
525-531.

[14] Keogh, E. and Kasetty, S. 2002. On the need for time series
data mining benchmarks: a survey and empirical
demonstration. In Proceedings of the Eighth ACM SIGKDD
international Conference on Knowledge Discovery and Data
Mining (Edmonton, Alberta, Canada, July 23 - 26, 2002).
KDD '02. ACM, New York, NY, 102-111.

[15] Keogh, E., Xi, X., Wei, L. & Ratanamahatana, C. A. (2006).
The UCR Time Series Classification/Clustering Homepage:
www.cs.ucr.edu/~eamonn/time_series_data/

[16] Kranen, P. and Seidl, T. 2009. Harnessing the Strengths of
Anytime Algorithms for Constant Data Streams. In
Proceedings of Conference on Machine Learning and
Knowledge Discovery in Databases: 31-31.

[17] Lin, J., Vlachos, M., Keogh, E., and Gunopulos, D. 2004.
Iterative incremental clustering of time series. EDBT '04.

[18] Lindgren., T. 2000. Anytime inductive logic programming. In
Proc. of the 15th International Conference on Computers and
Their Applications. 439-442.

[19] MacNair, M.R. and Parker, G.A. 1979. Models of parent–
offspring conflict. III. Intra-brood conflict. Anim. Behav., 27:
1202–1209.

[20] Manser, M.B., and G. Avey. 2000. The effect of pup
vocalisations on food allocation in a cooperative mammal, the
meerkat (Suricata suricatta). Behavioral Ecology and
Sociobiology 48(November):429.

[21] Roy, N. and McCallum, A. 2001. Toward Optimal Active
Learning through Sampling Estimation of Error Reduction. In
Proc. of the Eighteenth international Conference on Machine
Learning (June 28 - July 01, 2001). C. E. Brodley and A. P.
Danyluk, Eds. Morgan Kaufmann Publishers, San Francisco,
CA, 441-448.

[22] Ueno, K., Xi, X., Keogh, E., and Lee, D. 2006. Anytime
Classification Using the Nearest Neighbor Algorithm with
Applications to Stream Mining. In Proc. of the Sixth
international Conference on Data Mining (December 18 - 22,
2006). ICDM.

[23] Seidl, T., Assent, I., Kranen, P., Krieger, R., and Herrmann, J.
2009. Indexing density models for incremental learning and
anytime classification on data streams. EDBT '09, vol. 360.
ACM, New York, NY, 311-322.

[24] Toyoshima, I. 2008. Surveillance system, surveillance method
and computer readable medium. U.S. Patent Application
20,090,322,875.

[25] Wilson, D. R. and Martinez, T. R. 2000. Reduction
Techniques for Instance-Based Learning Algorithms. Mach.
Learn. 38, 3 (Mar. 2000), 257-286.

[26] Xi, X., Keogh, E., Shelton, C., Wei, L., and Ratanamahatana,
C. A. 2006. Fast time series classification using numerosity
reduction. In Proceedings of the 23rd international
Conference on Machine Learning (Pittsburgh, Pennsylvania,
June 25 - 29, 2006). ICML '06, vol. 148. ACM, New York,
NY, 1033-1040.

[27] Yang, Y., Webb, G., Korb, K., and Ting, K. M. 2007.
Classifying under computational resource constraints:
anytime classification using probabilistic estimators. Mach.
Learn. 69, 1 (Oct. 2007), 35-53.

[28] Zilberstein, S., and Russell, S. 1995. Approximate reasoning
using anytime algorithms. In Imprecise and Approximate
Computation. Kluwer Academic Publishers.

[29] http://sites.google.com/site/icdm10annc.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

