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Abstract— Classification of items taken from data streams 
requires algorithms that operate in time sensitive and 
computationally constrained environments. Often, the 
available time for classification is not known a priori and may 
change as a consequence of external circumstances. Many 
traditional algorithms are unable to provide satisfactory 
performance while supporting the highly variable response 
times that exemplify such applications. In such contexts, 
anytime algorithms, which are amenable to trading time for 
accuracy, have been found to be exceptionally useful and 
constitute an area of increasing research activity. Previous 
techniques for improving anytime classification have generally 
been concerned with optimizing the probability of correctly 
classifying individual objects. However, as we shall see,  serially 
optimizing the probability of correctly classifying individual 
objects K times, generally gives inferior results to batch 
optimizing the probability of correctly classifying K objects. In 
this work, we show that this simple observation can be 
exploited to improve overall classification performance by 
using an anytime framework to allocate resources among a set 
of objects buffered from a fast arriving stream. Our ideas are
independent of object arrival behavior; and, perhaps 
unintuitively, even in data streams with constant arrival rates 
our technique exhibits a marked improvement in performance. 
The utility of our approach is demonstrated with extensive 
experimental evaluations conducted on a wide range of diverse 
datasets.
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I. INTRODUCTION

Classification of data arriving from a data stream is often 
more difficult than the batch situation because the algorithm 
must operate in a time sensitive and computationally 
constrained environment. Traditional algorithms are often 
unable to provide satisfactory performance while supporting 
the highly variable arrival rates that typify such applications. 
For example, a single data stream may produce items to be 
classified at a rate that can range from milliseconds to 
minutes [1][22]. Traditional classification algorithms 
typically lack the mechanism for providing an intermediate 
result prior to completion, and contract-based algorithms 
require the time duration prior to execution [28]. In such 
contexts, anytime algorithms have been found to be 
exceptionally useful, and have recently been the subject of 
extensive research efforts [8][12][16][17][22][27].

Anytime algorithms are algorithms which are amenable 
to variable response times, by exchanging the quality of 
response as a function of time [9][28]. In the case of 
classification, quality is measured by the probability of 
correct classification. More concretely, an anytime 
algorithm, after a short period of initialization, can always be 
interrupted to return some intermediate result. This flexibility 
in response time allows anytime algorithms to be used with 
great success in real-world environments with variable 
constraints [8][13][23].

For anytime classification, one well established technique 
is the anytime nearest neighbor classification algorithm [22]. 
This algorithm retains the strong points of the nearest 
neighbor algorithm, its simplicity and generality 1 , while 
greatly mitigating the problem associated with the linear time 
complexity at classification time, a function of its “lazy” 
behavior. 

Previous techniques for improving anytime classification 
have generally been concerned with optimizing the 
probability of correctly classifying individual objects. In this 
work, we show that substantial improvement in overall 
classification accuracy performance can be achieved if the 
optimization is performed relative not to each individual 
object, but rather to a (possibly quite small) set of objects.  

Our technique is a generalized framework which utilizes 
a scoring function that estimates the intermediate result 
quality of an object being processed. Here, the quality is an 
estimate of the (relative) likelihood that we have the correct 
class label for the object. Objects with a high initial quality 
are unlikely to significantly improve their quality, even with 
additional computation time. In contrast, objects with poor 
initial quality have much greater room for improvement, and 
are thus deserving of more resources. Using this intuition, 
our framework intelligently and dynamically schedules 
computational resources for each object. We show that the 
lack of such inter-object consideration would otherwise 
result in poor allocation of computation time and lead to 
reduced performance. As expressed by the well-known 
idiom, we would be polishing the wrong apple if we 
allocated resources to an instance whose class label is 
unlikely to change, even with more resources.

Our methodology is invariant to object arrival behavior, 
and perhaps unintuitively, it is notable in that even with an
uniform object arrival rate we are capable of attaining a 

1 I.e. The ability to use any distance measure, the ability weight features, 
etc.



marked improvement in classification performance. This is 
in contrast to the usual motivation for anytime algorithms, 
which are typically presented to mitigate the effects of 
variable object arrival behavior [12][22][27].   

The remaining sections of the paper are organized as 
follows: In Section II, we provide background material on 
anytime algorithms and review related work on classification 
techniques.  We then present an overview of the anytime 
nearest neighbor classifier in Section III. Section IV
motivates and introduces techniques for improving 
classification accuracy by using a scoring function to 
measure intermediate result quality and performing 
computational resource allocation.  Section V provides 
additional details regarding the selection and formulation of 
a scoring function. In Section VI we verify the utility of our 
framework with experimental evaluation conducted on a 
wide range of diverse datasets. Lastly, Section VII offers 
some discussion and suggests directions for future work.

II. BACKGROUND AND RELATED WORK

Algorithms are considered anytime if they exhibit 
specific characteristics [9][28], notably: 

After a short period of initialization, the algorithm 
becomes interruptible. That is, an intermediate result 
can be returned at any time up to completion. 
The quality of this result is measurable and improves 
with additional computation time. 
The change in quality is typically characterized by 
diminishing returns, with the largest gains found in the 
initial stages of computation. 
An interrupted execution of the algorithm can later be 
resumed for additional refinement without significant 
overhead.

Figure 1 illustrates the prototypical tradeoff between 
result quality and computation time in an anytime algorithm. 
Such flexibility is advantageous when available computation 
time is not known a priori (e.g. in data streams).

Due to their utility in real-world settings, anytime 
algorithms have been extensively studied [11] and have 
found application in a number of diverse domains. 
Applications range from path planning in real time strategy 
games [3] to the clustering of time series [17]. Significant 
work has also been done to adapt or view [21] well 
established machine learning algorithms under the anytime 
framework. Some examples include Bayesian networks [13], 
decision trees [10], nearest neighbors [22], and inductive 
logic programming [18].

For anytime nearest neighbor classification of objects, 
performance has been shown to be improved by reordering
the training set. One technique for generating such an 
ordering is by repeatedly moving the worst exemplar to the 
end of the list so that the most characteristic exemplars are 
examined first [22] [25]. 

When classifying objects from a data stream it may not 
be necessary or advantageous to compute classifications 
serially, where the available computation time for each 
object is the interarrival time between itself and the next 
successive object. A more general methodology is to 

separate the direct relationship between arrival rate and 
object computation time. Instead, the available computation 
time is dictated by some external variable or dependency. 
This approach is less constrained and allows for the 
concurrent processing of more than one object.  For example, 
in real-world monitoring scenarios, a typical query may be: 
“Monitor object-stream X and event-stream Y (let λX, λY be 
the arrival rates for X and Y, respectively, where λX >> λY), 
classify objects arriving in X, and return their classification 
upon the next event in Y.”

Note that if the object processing strategy is serial, then 
simply optimizing the classification of each object 
individually is clearly the optimal policy. However, if objects 
are processed concurrently, then it is possible that we can do 
much better than simply optimizing each object classification 
in isolation [12][16]. This follows from the observation that 
in virtually any set of objects, the change in result quality 
with additional computation time will likely vary greatly 
between each object. To obtain the greatest increase in 
performance, we simply need a way to estimate and then 
process the object(s) that can benefit the most from 
additional computation. While this appears to be a “chicken-
and-egg” paradox (since during classification, we obviously 
don't know if we have the true class label), as we shall see, at 
least in the case of the nearest neighbor algorithm, that we 
can cheaply obtain an approximation of how likely we have 
the correct label, a confidence measure. 

In this work, we apply this intuition to present a general 
framework which can be used to increase the overall 
performance in data stream classification. Our method uses a 
“confidence” scoring function to estimate the quality of 
intermediate results and assigns computation time to objects 
with the lowest classification confidence. We demonstrate in 
our experimental evaluation that once we have a reasonably 
accurate scoring function, we can improve overall 
classification performance. Note that classification remains 
under anytime conditions and that the end times for objects 
are never known a priori.

We have chosen to explore our observations with the 
nearest neighbor algorithm. The nearest neighbor algorithm 
has proven to be one of the most frequently deployed 
classifiers, with accuracy which is competitive with other 
techniques [22] [26]. The nearest neighbor algorithm has the 
advantage of being non-parametric, capable of handling a 
large number of classes, and easily adaptable to datasets 

Figure 1. Anytime algorithms are interruptible after initialization. This 
plot shows the increase in result quality with additional computation 
time



which are dynamically changed or updated without 
retraining or overfitting. Its primary disadvantage is the 
linear time dependence on the number of training exemplars, 
a property which can be mitigated by indexing the data 
(when applicable), or with anytime algorithms such as the 
one presented in [22]. While the work in [22] allows the 
algorithm to be used in streams where one object may arrive 
before the current object has completed processing, it does 
not leverage the idea of varying computational resources 
according to result quality when classifying a set of 
concurrent objects.

III. ANYTIME NEAREST NEIGHBOR CLASSIFICATION

The nearest neighbor algorithm, well known for its utility 
and range of applicability, is easily extended to fit under the 
anytime framework. This section presents a review of the 
anytime nearest neighbor classification (ANNC) algorithm 
[22]. In Section IV, we will discuss how to generalize 
ANNC for concurrent classification. 

For clarity, the notation used in the following sections is 
first presented in TABLE I.

TABLE I LIST OF NOTATION

Name Description
q An object to classify. Contains the following 

fields:
q.pos Current training set position
q.class Current classification label
q.dist Current nearest neighbor distance
q.stopped Flag denoting user stoppage

Q A set of objects to classify
Qi Qi Q. Equivalent to q above
Q’ A set of objects to classify, which are 

concurrent and in memory
D The set of training objects 
Di Di D

Di.class The class label of this object
M Number of objects which can be buffered in 

memory
NumClasses(D) Returns the number of unique class labels 

represented within training set D
ScoreFcn(q) A function that returns a score which estimates 

the intermediate result quality of object  q
Distance( , ) A context appropriate distance measure

Given an object to classify, q, and a set of training instances, 
D, the ANNC algorithm finds the entry Di in D which 
minimizes Distance(q, Dj). That is: 

The returned classification is the corresponding class label 
for Di, Di.class.

Note that we have not explicitly defined the Distance 
measure used in ANNC. The ANNC can use any distance 
measure (Lp-Norm, Hamming distance, graph edit distance, 
Dynamic Time Warping, etc.) that is appropriate to a specific 
context (time series, strings, graphs, categorical data, etc.). If 
only a similarity measure is available, i.e. the cosine 

similarity measure, we can simply define the ‘distance’ as 
the reciprocal of the similarity measure.

A sketch of the ANNC algorithm is shown in TABLE II. 
Lines 1-8 initialize q to an initial result. First, let 
NumClasses(D) be the number of unique class labels in D, 
where the first NumClasses(D) instances of D contain 
exactly one exemplar from each class label. Then, the 
initialization period does the following: q is iterated over the 
first exemplar from each class and an initial classification is 
obtained and saved as the intermediate result. While the 
algorithm cannot be interrupted during this period, it only has 
to iterate NumClasses(D) times, where NumClasses(D) <<
|D| and thus the time duration spent in initialization is 
marginal. 

Following initialization, the object being classified can 
be stopped, then resumed at any time leading up to the 
completion of training set evaluation.  Lines 9-14 iterate 
through the remaining training instances in D or until 
stopped and update the nearest neighbor for q accordingly. 
q.class is then returned as the classification result for q. 

The generic algorithm just presented falls under the 
anytime framework and achieves increased quality of results 
(classification confidence) as a function of additional time.

TABLE II ANYTIME NEAREST NEIGHBOR CLASSIFIER

Function AnytimeClassifier(q, D)
1 q.dist← ∞
2 q.class ← null
3 for i  ← 1 to NumClasses(D)
4 Dist← Distance(q, Di)
5 if Dist < q.dist
6 q.dist← Dist
7 q.class ← Di.class
8 q.pos ← NumClasses(D)
9 while !q.stopped and q.pos < |D|
10 q.pos← q.pos + 1
11 Dist← Distance(q, Dq.pos)
12 if Dist < q.dist
13 q.dist← Dist
14 q.class ← Dq.pos.class

This, in essence, is the current methodology for ANNC, 
introduced in [22], except that work also suggests optimizing 
individual object classification by identifying heuristics for 
ordering the training set entries so that the most 
characteristic exemplars are examined early on. This simple 
idea is useful enough to have found real-world applications; 
for example, it is used in a surveillance system created by 
Toshiba [24].

In this work, we adopt the complementary methodology 
of optimizing performance across a set of objects. In the 
following sections, the motivation and advantages behind 
such a method are presented and techniques for improving 
overall classification performance are introduced.

IV. CONCURRENT OBJECT EVALUATION

For the purpose of explanation, it was convenient to 
illustrate anytime classification with regards to a single 
object. However, streaming data classification is more 



accurately exemplified by a sequence of objects. Given this 
consideration, our work examines the set of concurrently 
processed objects and optimizes the scheduling of 
computational resources towards maximizing overall 
classification performance. Such evaluation is significant in 
that simply optimizing individual object classification can 
result in poor overall computational resource allocation and 
performance. For expository purposes, consider a simple 
example:

Suppose we have a set of objects to concurrently classify. 
After some period of initial processing, in all but the most 
pathological cases, we would expect that this set of objects 
will contain intermediate results which span some range in 
quality. As a simple example, suppose we have a database of 
ten million objects, consisting of two classes of automobiles, 
Japanese and American, and we have a pool of instances to 
classify: {1995 Toyota Corolla, 2000 Ford Escort, 1998 
Honda Civic,..., 1957 Hudson Hornet2}. Because the Toyota 
Corolla is the bestselling car in the world, once we have 
examined just the first 100 objects in the training database 
we are practically guaranteed to have seen several examples 
of Corollas. There is, therefore, little utility in comparing this 
instance to the rest of the database. In contrast, the Hornet is 
so rare, and so unlike other American cars, that it is very 
unlikely to have been encountered in the first 100 items 
visited. Its current nearest neighbor is as likely to be 
Japanese as American. 

Scheduling policies which do not take into account the 
diversity in the set of currently processing objects will 
almost certainly result in suboptimal resource allocation by 
scheduling computation time to objects which already have 
excellent intermediate results (i.e. Toyota Corollas). This is 
time that can be better spent on objects which may benefit 
most from additional computation. However, we do not 
know the true class labels of the objects, and therefore how 
can we know the likelihood that the tentative label is correct? 
Our task resembles a well observed problem found in nature, 
and our solution is also very similar to the solution that has 
evolved in nature.

2 A rare American-made automobile.

Many birds and small mammals have large broods, and 
the parents must allocate food resources among them [19]. 
From the point of view of the parent who is trying to 
maximize her (less often, “his”) reproductive success, the 
optimal thing to do is to feed each offspring equally. 
However, birds cannot differentiate between their offspring, 
so they cannot use any algorithm that requires labeling their 
young. If their algorithm is to feed the most aggressive 
young (a literally greedy algorithm), then the next time they 
return with food, that aggressive offspring, fortified by recent 
feeding, will be able to force itself to the front again and beg 
for more food [20]. This will continue indefinitely until the 
weaker siblings starve3. 

The solution to this problem is that the young signal their 
hunger level to the parent by the frequency of chirping. The 
parent’s optimal algorithm is reduced to feeding the young 
that signals the greatest need. This solution is nearly 
universal among birds, and may have evolved independently 
in different species [20]. 

We can see that our problem is nearly identical. We have 
resources (CPU time) that we must distribute among objects 
that have possibly varying levels of need (i.e. varying levels 
of confidence in their classification). As we shall show in the 
following section, our solution is nearly identical; we simply 
need to have each object “signal” its need, based on an 
estimate of how confident it feels about its current label. Of 
course, we can never know exactly the probability of an 
object having the correct classification; however, as we shall 
see in Section VI, a simple heuristic is sufficient to produce 
improvements in overall accuracy.

A. Scheduling Policies
If a data stream is sparse, then objects are processed in 

isolation and without interference from other objects (in 
effect, complete serial processing). In such scenarios, the 
best performance can be achieved by utilizing any of the 
previous approaches which optimize for single objects. 
However, in most data streams we can expect to encounter at 

3 We know that this would happen, because it does happen in cases of 
brood-parasites such as the cuckoos

Figure 2. Net result quality across concurrent queries for various scheduling policies. Left) Result quality over time for two queries Q1 and Q2 (note that 
Q2 arrives shortly after Q1). Right) Net result quality (Q1 and Q2) for various scheduling policies at evaluation time (hatched line)



some point a set of objects which have overlapping lifetimes. 
Thus, given a data stream which contains a set of Q objects 
distributed over the duration of the stream, at any given time 
within the lifetime of the data stream, there exists some 
subset, Q’ of Q, consisting of |Q’| number of objects being 
classified, |Q| ≥ |Q’| ≥ 0. If the number of objects is neither 
zero nor singular (|Q’| > 1), and because only one object may 
be processed at a time, what is the scheduling approach that 
attains the best overall performance over Q’?

Recall that the end time of each object is never known a 
priori. Consequently, it is not possible to identify a global 
optimum, over Q, beforehand. However, we can optimize 
locally, over Q’, to improve performance. Let us first 
introduce an illustrative example, consisting of two objects 
Q1 and Q2, Q’ = {Q1, Q2}. Assume Q2 arrives shortly after Q1
and that the quality of result as a function of computation 
time for each of the objects is known (as shown in Figure 2
Left).

One scheduling technique is the sequential or serial 
scheduling of objects. That is, we classify each object, Qi,
using the ANNC algorithm described in Section III and 
return a response when complete or upon the next arriving 
object. Under serial scheduling, Q1 is stopped prematurely as 
a result of Q2’s arrival. From the result quality over time plot 
in Figure 2 Left we can see that Q2 obtains a high quality 
result immediately following initialization, whereas Q1
requires additional computation time to reach a higher level 
in quality. Due to the sequential nature of this scheduling 
algorithm, a clearly suboptimal result is obtained (see Serial 
Scheduling Policy in Figure 2 Right). The bulk of 
computation time is devoted to Q2, resulting in a marginal 
improvement in net quality. Notice that a much larger 
increase in overall quality could have been achieved by 
continuing to schedule Q1 even after the arrival of Q2. 

Another scheduling policy is to divide computation time 
equally among concurrently processing objects in a round 
robin fashion. The result shown in Figure 2 Right is an 
improvement over serial scheduling; however, the intuition 
established in the previous solution is as follows: since Q2 is 
able to obtain a high quality result quickly and Q1’s quality 
remains poor, computation time is still best spent on 
classifying Q1. 

Let us now see how we can achieve even better results 
than round robin scheduling. Our intuition dictates that we 
should refrain from wasting computational resources on an 
object when another object exists whose quality is lower. 
Observe that such a scheme can be achieved if we have a 
scoring function which returns an indicator of intermediate 
result quality per object. Then the scheduling policy is 
simply to schedule the object with the lowest score. For 
example, if we use the plots in Figure 2 Left as our scoring 
mechanism and schedule the computation accordingly, the 
net result quality is shown in Figure 2 Right and is clearly the 
best of the three presented techniques. 

While it is impossible to have prior knowledge which 
gives the exact change in quality over time, the score 
scheduled technique remains highly effective if scoring 
functions which are a close estimator of result quality exists. 

We leave the discussion of scoring functions to Section V; 
first, the score scheduling algorithm is presented.

B. Batch Evaluation
To introduce the use of a scoring function, we first 

consider the slightly simplified task of classifying a set of 
objects in batch fashion. In the next section, extensions 
necessary for a streaming environment will be presented. 
The batch score scheduled algorithm is shown in TABLE V. 
Note that the segments of code devoted to the initialization 
and updating of objects have been summarized in TABLE III
and TABLE IV, respectively. 

The batch algorithm begins by initializing each object in 
the input set (Lines 1-2). A priority queue containing the 
entire set of objects is then created (Line 3). The priority 
queue ordering is dictated by the scoring function, ScoreFcn
which provides an estimate of the quality of an object’s 
intermediate result. At each iteration, the object with the 
lowest score (lowest classification confidence) is scheduled 
for computation and updated (Lines 4-8). 

TABLE III INITIALIZING OBJECT CLASSIFICATION

TABLE IV UPDATING OBJECT CLASSIFICATION

Function Update(q, D)
1 if !q.stopped
2 q.pos← q.pos + 1
3 Dist← Distance(q, Dq.pos)
4 if Dist < q.dist
5 q.dist← Dist
6 q.class ← Dq.pos.class

TABLE V BATCH SCORE SCHEDULED CLASSIFIER

Function BatchScoreScheduledAnytimeClassifier 
(Q, D, ScoreFcn)

1 for i←1 to |Q|
2 Initalize(Qi, D)
3 PriorityQueue Queue(Q, ScoreFcn)
4 while Queue.Size > 0
5 q← Queue.RemoveMin()
6 Update(q, D)
7 if !q.stopped and q.pos < |D|
8 Queue.Add(q)

Computational time for initialization is 
O(C Numclasses(D)) per query, with C as the cost per 
Distance( , ) invocation. The priority queue is initialized in 
O(S |Q|) time and the cost for each iteration of the score 
scheduled computation is at most O(log|Q’|) to 
RemoveMin( ) and O(C+S+log|Q’|) for the re-

Function Initialize(q, D)
1 q.dist← ∞
2 q.class ← null
3 for i  ← 1 to NumClasses(D)
4 Dist← Distance(q, Di)
5 if Dist < q.dist
6 q.dist← Dist
7 q.class ← Di.class
8 q.pos ← NumClasses(D)



insertion/update, given that Q’ is the number of currently 
processing queries, S is the cost per ScoreFcn( ) invocation, 
when utilizing a standard heap-based priority queue. We 
assume that objects can be asynchronously stopped and can 
be lazily removed from the priority queue or in the case with 
limited memory, purged at a cost of O(log|Q’|). 

Given our intuition that the distribution of intermediate 
result quality across a set of concurrently processing objects 
is skewed, the number of scheduling iterations (and its 
requisite overhead) can be significantly reduced by simply 
tracking the confidence score of the next minimum item in 
the queue, T, and performing computations on the current 
object until stopped or its confidence score exceeds T. 
Another technique for reducing framework overhead would 
be to schedule computational resources at a coarser 
granularity, that is, to increase the resources allocated per 
iteration.

C. Streaming Evaluation
Extensions to the batch algorithm are necessary to make 

the score scheduled algorithm suitable for a streaming 
context. More concretely, we must incorporate the 
consideration of the online arrival of objects and a finite 
memory for buffering of concurrent objects. Our complete 
framework is presented in TABLE VI.

TABLE VI STREAMING SCORE SCHEDULED CLASSIFIER

Function StreamingScoreScheduledAnytimeClassifier
(D, ScoreFcn, M)

1 PriorityQueue Queue(ScoreFcn)
2 while ContinueClassification
3 if NewObject
4 q ← GetNewObject()
5 Initalize(q)
6 if Queue.Size > M-1
7 Queue.RemoveMax()
8 Queue.Add(q)
9 else
10 q← Queue.RemoveMin()
11 Update(q, D)
12 if !q.stopped and q.pos < |D|
13 Queue.Add(q)

In Line 1, we initialize an empty priority queue and set the 
ordering of objects to be dictated by the scoring function, 
ScoreFcn. Line 2 examines a user-updateable flag to 
determine if this online algorithm should continue. The 
previous batch algorithm was able to simply check queue 
size for termination; however, an empty queue is not 
similarly indicative in an online, streaming environment 
(consider the case where bursts of queries are separated by 
long interarrival times, resulting in empty queues). The 
algorithm then checks to see if a new object has arrived and 
fetches it accordingly (Lines 3-4). Incoming objects are 
initialized immediately (Line 5) and inserted into the queue 
(Line 8). In the case that the current queue size plus the new 
object will exceed the maximum buffer size, M, the object 
with the largest score, is stopped and evicted (Lines 6-7). 
This is the in-memory object with the highest classification 

confidence. Lines 10-13 schedule the minimum scored 
object for processing and are identical to the batch algorithm. 
The computational time is the same as the batch algorithm, 
with the addition that the priority queue is empty at 
initialization and must also support the RemoveMax( ) 
operation, which has O(log|Q’|) time complexity.

V. SCORING FUNCTION

Recall that the scoring function estimates intermediate 
result quality. In a classification context, a high score would 
imply that the current classification label is unlikely to 
change, even if given sufficient time to run until completion. 
Conversely, a low score is characteristic of an object whose 
classification is likely to change. 

Given that the nearest neighbor classifier seeks to find 
the entry in the training set with the minimum distance, one 
simple scoring method is to use the current best-so-far 
nearest neighbor distance as the estimate for classification 
confidence. The distance value is inverted so that higher 
distances correspond to lower scores:

Note that we are not claiming that this scoring method is 
the optimal one; our claim is merely that it is empirically 
successful for many datasets. The framework is agnostic to 
the scoring method, and a user with context specific 
knowledge can formulate and tune a custom scoring function 
accordingly. Furthermore, this generality allows for 
applicability even in settings where the raw data may not be 
directly accessible. For an example, one can imagine a black 
box scenario where we only need to observe distances 
between objects and not require direct access to the objects 
themselves. 

For comparative purposes, we will use the round robin 
scheduling policy as a competitive baseline. As shown by the 
example illustrated in Figure 2, round robin can offer a 
significant improvement over serial scheduling. Furthermore, 
and in contrast to the ScoreBsfDistance method, round robin has 
the advantage of being starvation free. This property can 
mitigate the adverse effects of outliers and prevent otherwise 
a potential monopolization of computational resources.

VI. EXPERIMENTAL RESULTS

In this section, we examine the utility of our score 
scheduled anytime nearest neighbor classifier by conducting 
experimental evaluation of a wide range of diverse 
classification datasets [2][15]. A list of the datasets used in 
our experiments and their attributes are shown in TABLE 
VII. Note that the data and code used in this work is archived 
at [29], with annotations to allow reproduction of results.

For all datasets, we obtained testing and training splits 
using 10-fold cross validation. The training exemplar order 
for each fold is randomly permuted and all features are used.
Note that the training set invariant, where one exemplar from 
each class is encountered first (during initialization), is 
preserved.



Our dataset evaluation uses the Euclidean distance as the 
distance function. An exception is the commercial 
entomology case study presented in Section VI.D. There, we 
use a compression based distance measure which has been 
shown to have utility for differentiating textures [5].

Recall that given objects q and d, each with n-dimensions
the Euclidean distance is:

While Euclidean distance may not be the optimal 
distance measure for every dataset, it has been shown to be 
very competitive across many domains [7][14]. As our 
primary objective is simply to show the improvement as a 
result of using score scheduling to allocate computational 
resources, the selection of Euclidean distance as the distance 
measure is appropriate.

TABLE VII DATASETS USED FOR EXPERIMENTAL EVALUATION

A. Classification of Streaming Data
To evaluate the utility of score scheduled classification, 

we simulate the classification of data streams with varying 
rates of arrival. Our experimental data stream exhibits the 
characteristic of constant or uniform arrival between 
successive objects, and the exact interarrival time between 
each object is modeled as the number of training set 
exemplars (|D|) which can be evaluated: 

The arrival rate is modeled as a function of |D| on an 
account of its generality across all datasets. This is in 
contrast to concrete numerical values (e.g. the data stream 
operates at 100Hz) which may not always be applicable or 
meaningful (due to the wide variability in dataset 
characteristics: number of classes, feature space, exemplars 
available).

Objects from the testing set, Q, enter the data stream in 
accordance with the interarrival time until exhausted. For r = 
1, the interarrival time between successive objects is exactly 
the time needed to evaluate the entire training set and thus is 
equivalent to complete serial classification. Our experiment 

concludes when mean interarrival time has elapsed following 
the arrival of the last object from the test set. 

Classification accuracy is computed from the predicted 
test labels and the true test labels. Note that this experimental 
setup obtains classification accuracies which are dependent 
on the order of arrival from the testing set. To remove such 
bias, we average the classification accuracy for each 

Name Classes Attributes Instances
Two-Pattern 4 128 5,000

AIBO Robot 2 100 12,100

Gun 2 150 200
Face 16 131 2,231
Leaf 6 150 442
CBF 3 128 1,000

Moth 35 Image 
(~500x800) 772

JF 2 2 20,000
Letter 26 16 20,000

Pen Digits 10 16 10,992
Ionosphere 2 32 351

Figure 3. Classification accuracy of score scheduled anytime classifier 
on constant data streams with varying rates of arrival



testing/training split over 10 random permutations of the 
testing set. For this experiment, we assume that the 
cardinality of objects being concurrently classified, |Q’|, can 
be accommodated by the memory buffer (M > |Q’|). 

As a general rule, we expect accuracy to decrease as the 
arrival rate increases. This behavior can be attributed to the 
reduced available computation time on average per object for 
faster streams. However, we have occasionally observed 
higher accuracy with increased arrival rate, beyond an 
expected variability. This phenomenon is often caused by 
non-separable classes or the presence outliers/noisy data and 
resulting in a scenario where intermediate results have the 
correct classification but the final nearest neighbor is of a 
different class.  

The classification accuracies from our score scheduled 
approach on a variety of datasets are shown in Figure 3. 
From the results, we see that we are typically able to obtain 
an increase in accuracy over the round robin baseline. This 
confirms our intuition that ScoreBsfDistance is a good indicator 
of result quality by allocating additional computational 
resources to objects which need it more. 

Overall, round robin is a fairly competitive baseline. This 
can be expected, as prior work [22] has shown that many 
datasets have query objects which follow the prototypical 
result quality over time behavior depicted in Figure 1. That 
is, even evaluating just a small portion of the training set can 
obtain a high quality result quickly, with additional 
evaluation characterized by diminishing returns.

B. Effects of Constrained Memory on Classification 
Accuracy
Performance degradation can occur when objects are 

stopped prematurely and evicted from the buffer as a result 
of memory constraints. As the score for each object is an 
estimate of how confident we are about its class label, it is a 
principled way of determining the eviction policy when 
encountering memory constraints. That is, we simply evict 
the object with the highest confidence score. For the round 
robin baseline, a randomly chosen object is evicted. We 
conducted experiments which varied the available memory 
buffer size, M, from |Q| to 0.05*|Q|.  From the four datasets 
we evaluated for constant streams, the change in accuracy 
was negligible. For each dataset the net change in accuracy 

Figure 4. Classification accuracy on data streams with exponentially distributed interarrival times



per arrival rate was 1 percent or less. This indicates that our 
methodology succeeds in evicting objects which are most 
likely to have their true class label.

C. Streams with Non-Uniform Arrival
Data streams are often modeled with non-uniform 

interarrival times. In this experiment, we show the accuracy 
of score scheduled classification on such streams. We 
simulate a data stream with an arrival process which is 
modeled to be Poisson distributed with mean interarrival 
times matching the constant streams presented in Section
VI.A. The arrival rates are:

Figure 4 shows the classification accuracy for 
exponentially distributed interarrival times, computed as a 
function of r. As shown on the Two-Pattern dataset, we are 
able to obtain a definite increase in accuracy over the round 
robin baseline. For the Face and Ionosphere dataset, we see 
that our scheduling technique is able to improve performance 
until r < [0.2-0.3], upon which there is insufficient 
computation time to accurately discern a meaningful and 
differentiating confidence value. Round robin outperforms in 
this scenario because it is fair for all entries in memory.
Similar results are seen across the remaining datasets. 

Overall, while round robin again performs competitively, 
our score based scheduling is able to obtain a definitive
increase in overall accuracy for almost all values in the 
parameter set.

D. A Case Study in Commercial Entomology
Several species of moths are harmful to agriculture. For 

example, Epiphyas postvittana, the Light Brown Apple Moth 
(LBAM) have larvae that feed on leaves and buds of plants, 
reducing photosynthetic rate, which in turn leads to general 
weakness and disfigurement.

In grapes and citrus, LBAM larvae can feed directly on 
the fruit, and the resulting damage renders fruit 
unmarketable. The LBAM is native to Australia, but 
appeared in California in 2007. Since that time, the 
California Department of Food and Agriculture has spent 
$70 million on attempts to eradicate it from California. If not 
eradicated, it is estimated it could cause $140 million in
damage each year [6].

Of course, attempts at eradication must be very careful; 
many moths are important pollinators of plants. For example, 
the Yucca moth (Tegeticula maculata) is the only animal that 
is the right size and shape to pollinate yucca flowers. If it is 
accidentally eradicated along with the LBAM, yucca flowers 
would be threatened, which could further affect additional 
fauna. Note that the LBAM is just one of the hundreds of 
insects which are known to be harmful to agriculture, 
livestock, or humans. 

With this in mind, several companies, including ISCA 
Technologies of Riverside CA, are developing AVIDs, 
Automated Visual Identification Devices, which can 

recognize individual species or genera. Most of these 
systems currently just count the target insect, however 
systems are being developed that selectively trap or kill only 
the target insect, and release all others. In order to be 
effective AVIDs must be cheaply mass produced, and 
therefore have limited computational resources. 

Recent work has shown that it is possible to accurately 
classify moths using a compression-based distance measure 
[5]. The distance measure is effective, but not being a metric 
it does not allow an efficient indexing mechanism to make 
classification more tractable. Below we describe our initial 
experiments to port the compression-based distance measure 
to resource limited hardware using our anytime framework.

As a preprocessing step, we first cluster the original 
moth data into three dominant clusters to obtain more 
exemplars per grouping. We then simulate non-uniform 
insect arrival [4] using the methodology described in Section
VI.C. Due to resource constraints inherent in our target 
environment, we set the available memory size to 5 percent 
of the testing set, resulting in a memory buffer of only four 
objects. Our classification accuracy compared to round robin 
for different arrival rates is shown in Figure 5. We see that 
the score scheduled approach consistently out performs 
round robin.

VII. CONCLUSION AND FUTURE WORK

In this work, we presented a generalized framework 
which utilizes a scoring function that estimates the 
intermediate result quality of an object being classified. Our 
framework extends existing anytime algorithms to a set of 

Figure 5. Left) The adult Light Brown Apple Moth is harmless to 
agriculture, however it’s larval form. Right) causes extensive damage to 
several commercially important crops 

Figure 6. Insect classification with memory buffer constrained to four 
objects



concurrently processing objects by dynamically scheduling 
computational resources for each object (in accordance with 
its score). We showed over a wide range of diverse datasets 
that the lack of such inter-object consideration would 
otherwise result in poor allocation of computation time and 
lead to reduced performance.

As future work, we look forward to examining more in-
depth, the utility of this framework and considering the 
interplay between variability in object duration, amount of 
concurrency, and different scoring methods. Additional real 
world case studies would also reinforce the wide range 
applicability of our framework.
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