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Abstract—Most already existing indices used to compare
two strict partitions with different number of clusters are
based on coincidence matrices. To extend such indices to fuzzy
partitions, one can define fuzzy coincidence matrices by means
of triangular norms. It has been shown this can require some
kind of normalization to reinforce the corresponding indices.
We propose in this paper a generic solution to perform this
normalization considering the generators of the used triangular
norms. Although the solution is not index-dependant, we focus
on the Rand index and some of its fuzzy counterparts.
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I. INTRODUCTION

In unsupervised classification, partitioning a set X of n

objects into c clusters is a common task. It results in a

partition matrix U , whose general term uik represents the

membership degree of the kth object xk to the ith cluster.

A partition matrix can take values in numerous spaces.

We will distinguish the main ones [1], called the sets of

possibilistic, fuzzy and crisp (or hard) partition matrices,

respectively : Mpcn = {U ∈ R
c n : uik ∈ [0, 1]}, Mfcn =

{U ∈ Mpcn :
∑c

i=1 uik = 1}, Mhcn = {U ∈ Mfcn : uik

uik ∈ {0, 1}}. For sake of simplicity we identify a partition

with the corresponding partition matrix. Choosing the best

partition, according to the feature space of objects, the

number of clusters or the parameters of a specific algo-

rithm is a problem of great interest. A solution consists

in computing a concordance measure between a partition

and the data called internal index [2]. When one wants to

evaluate the agreement with an expert-assessed and supposed

ground-truth reference partition, an external index will be

preferred [3]. This last approach is generalized to the com-

parison of two partitions obtained, for instance, with two

different algorithms or the same algorithm with two different

parameterizations and has lead to the definition of numerous

relational indices, topic of this paper.

Historically defined for crisp partitions, numerous indices

were recently proposed for the comparison of fuzzy parti-

tions, in order to take into account the non-exclusive mem-

bership of objects to clusters. We will distinguish indices

relying on a direct approach from those extending crisp

indices. Among the first ones, let us cite those constructed

from a measure of similarity based on the comparison of

the whole set of α-cuts of the two partitions [4], a pseudo-

distance between rows of partitions matrices viewed as fuzzy

sets [5], or a simple and intuitive extension of the transfer

distance to the fuzzy case [6]. Most of the crisp indices

are based on the contingency matrix of pairs of objects

belonging or not to the same cluster in both partitions to

be compared, defined from the coincidence matrices of the

two partitions. Most of fuzzy indices of the second type

aim at extending the definition of the crisp coincidence

matrices with fuzzy set theory tools that allow to model

set-theoretic operations [3]. A majority of authors has used

triangular norms for this purpose [7]. Unfortunately, this

kind of construction can lead to counterintuitive values for

the coincidence matrix elements, so that they have to be

normalized. In this paper, we propose a generic solution to

perform this normalization considering either the additive or

the multiplicative generator of the used triangular norm.

The remaining part of this paper is organized as follows.

In Section II, we first recall the basics of relative indices

based on contingence matrices for crisp partitions and give

the definition of one of them, specifically the Rand index.

Then, two particular extensions to fuzzy partitions are re-

viewed, both based on a fuzzy contingency matrix defined

by means of triangular norms. Section III is concerned by

the normalization problem of fuzzy coincidence matrices.

The generic solution we propose is given, the derivation for

most of triangular norms is provided, and the behavior of

the resulting Rand indices is discussed considering simple

examples of strict, fuzzy and possibilistic partitions. In

Section IV, we report experimental results which show the

pertinence of the proposed solution. The conclusion and

some perspectives for future work are drawn in Section V.

II. CONTINGENCY INDICES

A. Strict Indices

The (n × n) coincidence matrix ΨU of (xk,xl) pairs

of objects of general term ψU,kl, associated with a crisp

partition U ∈ Mhcun, is defined by:

ΨU = tU U. (1)

Given another crisp partition V ∈ Mhcvn associated with

ΨV , the contingency matrix C of q = n (n−1)
2 different pairs

of objects, crossing U and V , is defined by:

C(U, V ) =

(

n11 n10

n01 n00

)

(2)



where nα β (α, β = 0, 1) represent the number of pairs (k, l),
k < l such that ψU,kl = α AND ψV,kl = β. Is is easy to

show that n00 + n01 + n11 + n10 = q.

From the contingency matrix, numerous indices have been

defined to compare two strict partitions, e.g. in [8], [9]. The

most known and probably most controversial one is the Rand

Index, taking values in [0,1] and defined by:

RI(U, V ) =
n00 + n11

n00 + n01 + n11 + n10
. (3)

which is maximum when U = V since n11 = q.

Example 1: Consider two partitions Uh =

(

1 1 0
0 0 1

)

and

Vh =

(

0 1 0
1 0 1

)

in Mh23. We have C(Uh, Uh) =

(

1 0
0 2

)

and

C(Uh, Vh) =

(

0 1
1 1

)

which result in Rand index values of

RI(Uh, Uh) = 1 and RI(Uh, Vh) = 0.33 as expected.

The main problem of RI is that its expected value E(RI)
is not null when both partitions are drawn at random, a

behavior obviously due to a certain number of agreements

brought by chance. For crisp partitions, the Adjusted Rand

Index [10] overcomes this drawback and is generally pre-

ferred. However, it is based on E(RI) under an assumption

which only holds for integer values, making it formally

valid for crisp partitions comparison but not valid for fuzzy

or possibilistic partitions, so we will use the classical RI

instead. Many other indices exist, e.g. in [7], [11], [12].

B. Extended Indices by Means of Triangular Norms

A triangular norm (t-norm) is a commutative, associative

and monotonic function ⊤ : [0, 1]2 → [0, 1], satisfying

⊤(a, 1) = a. Some extensions also use the triangular conorm

(t-conorm) which is the dual operator ⊥ of a t-norm with

respect to the usual fuzzy complement. Basic and main

parametrized families of couples (⊤λ,⊥λ) are given in Table

I, see [13] for an extensive review. Parametric couples allow

to control the way the values are aggregated and special

values of λ make the couples correspond to some basic ones.

For instance, taking λ = 1, both ⊤AA1 and ⊤H1 t-norms

reduce to ⊤P , and both ⊤SS1 and ⊤Y1 t-norms reduce to

⊤L. For a fuzzy partition U ∈ Mfcun, the general term

ψU,kl of the associated coincidence matrix (1) is no more a

sum of binary products with output in {0, 1} but in [0,1].

Since the product is a particular t-norm (⊤P ), the most

common approach consists in extending the product to any

t-norm ⊤. Following Borgelt’s notations [3], one can replace

ΨU by Ψ⊤
U , of general term

ψ⊤
U,kl =

cu
∑

i=1

⊤(uik, uil). (4)

Thus, all strict comparison indices own their fuzzy exten-

sion, computed from a fuzzy contingency matrix C⊤(U, V ),
whose elements n⊤

α β (α, β = 0, 1) are no more integers but

fuzzy cardinalities defined by:

Table I
BASIC TRIANGULAR NORMS AND MAIN PARAMETRIZED FAMILIES.

Standard ⊤M (a, b) = min(a, b)
Produit ⊤P (a, b) = a b

Łukasiewicz ⊤L(a, b) = max(a + b − 1, 0)

Aczel-Alsina
⊤AAλ

(a, b) = e
−
(

(− ln a)λ+(− ln b)λ
)1/λ

λ ∈ R
⋆
+

Dombi
⊤Dλ

(a, b) =

(

1 +

(

(

1−a
a

)λ
+
(

1−b
b

)λ
)1/λ

)−1

λ ∈ R
⋆
+

Frank ⊤Fλ
(a, b) = ln

(

1 +
(λa−1) (λb−1)

λ−1

)

/

ln λ
λ ∈ R

+⋆\[1]
Hamacher ⊤Hλ

(a, b) = a b
/

(λ + (1 − λ) (a + b − a b))
λ ∈ R+

Schweizer-Sklar ⊤SSλ
(a, b) =

(

max
(

aλ + bλ − 1, 0
))1/λ

λ ∈ R
⋆

Sugeno-Weber ⊤SWλ
(a, b) = max

(

a+b−1+λab
1+λ , 0

)

λ ∈] − 1, +∞[
Yager ⊤Yλ

(a, b) = max
(

1 − ((1 − a)λ + (1 − b)λ)1/λ, 0
)

λ ∈ R
⋆
+

n⊤
α β(Ψ⊤

U ,Ψ
⊤
V ) =

n
∑

k=2

k−1
∑

l=1

⊤((1 − α) + (2α− 1) ψ⊤
U,kl,

(1 − β) + (2β − 1) ψ⊤
V,kl

)

(5)

Note that (4) does not restrict to fuzzy partitions but also

holds to any partition in Mpcun or Mhcun. If U and V are

crisp partitions, the ΨU and ΨV are binary, C⊤(U, V ) =
C(U, V ), and the resulting indices are exactly the strict ones,

i.e. RI⊤(U, V ) = RI(U, V ). For comparison purpose, we

need to briefly recall the set-theoretic based extension of

the contingency matrix C(U, V ) proposed by Campello [7].

Since nα β are the cardinalities of sets Uα ∪ Vβ , where U1

(U0) is the set of pairs of objects belonging to the same

cluster (different clusters) in U , and V1 (V0) the counterpart

for V , the author proposes to model the belongingness to

clusters, union of sets and cardinality of sets by use of

a t-norm, a t-conorm and the sigma count operator. Thus,

C(U, V ) is extended to Cf (U, V ) by:

n
f
α β(U, V ) =

n
∑

k=2

k−1
∑

l=1

⊤
(

⊥cU

i, j = 1;
α = 1, j = i;
α = 0, j 6= i

U ij
α (k, l),

⊥cV

i, j = 1;
β = 1, j = i;
β = 0, j 6= i

V
ij
β (k, l)

)

(6)

where U ii
1 and V

ii
1 are the fuzzy sets of pairs (k, l) of

objects belonging to the ith cluster in U and V respectively,

and U
ij
0 and V

ij
0 the fuzzy sets of pairs (k, l) of objects

belonging to the ith and jth clusters (with i 6= j, such as

they are in different clusters) in U and V respectively, see

details in [7]. As for the previous construction, all strict

comparison indices own their fuzzy counterpart, in particular

the Rand Index to which the author refers as Fuzzy Rand

Index. We will denote it RI⊤f for writing convenience. Note

that RI⊤f (U,U) = 1 only if U ∈ Mhcun, so it is recom-

mended to use this index to compare a fuzzy partition to a

crisp reference one. Recently, Campello’s construction has

been strongly criticized, in particular because the underlying



topological relationships existing in partitions are not taken

into account [5]. Regardless of the pertinence of this fact, we

will use it as a reference, because it is the most different (by

construction) but comparable approach (contingency matrix)

to Borgelt’s and our ones, while the alternative in [5] is not.

To conclude this section, one should notice that nothing

prohibits the use of different (families of) t-norms and t-

conorms for the computations of the intermediate terms

involved in both Borgelt’s and Campello’s constructions

leading respectively to the RI⊤ and RI
f
⊤ indices, either

to counterpart/reinforce the behavior of each operator or to

underline some situation. This could be the topic of a whole

study, and since it would result in an important number of

combinations, we restrict ourselves to a single t-norm (and

the corresponding dual t-conorm if needed) at a time.

III. A SOLUTION TO THE COINCIDENCE MATRIX

NORMALIZATION PROBLEM

A. Motivation

Extending comparison indices as shown in the previous

section may produce undesirable results. Let us consider the

fuzzy coincidence matrix as defind by (4). Whatever the t-

norm, diagonal terms ψ⊤
U,kk representing the degree with

which each xk is as in the same class as itself, are no more

equal to 1. In [9], where the extension of indices to fuzzy

partitions is formalized with matrices and consequently only

the product is used, Brouwer proposes to replace the inner

product of rows of U with the cosine-correlation. It is

easy to see that it means replacing ψ⊤
U,kl with ⊤P in the

computation of ΨU by:

φ⊤P

U,kl =
ψ⊤P

U,kl
√

ψ⊤P

U,kk

√

ψ⊤P

U,ll

. (7)

We denote the transformed coincidence matrix by Φ⊤P

U .

As the author notices it, this transformation does not affect

the resulting comparison indices if the partitions are crisp,

simply because it does not modify the coincidence matrices.

Example 2: Consider Uf =

(

0.7 0.9 0.1
0.3 0.1 0.9

)

in Mf23 ;

Ψ⊤P
Uf

=





0.58 0.66 0.34
0.66 0.82 0.18
0.34 0.18 0.82



 and Φ⊤P
Uf

=





1 0.96 0.49
0.96 1 0.22
0.49 0.22 1



.

Not only the diagonal terms change because of interactions.

Our proposition is to generalize this idea to the coincidence

matrices extended by any t-norm.

B. Solution and Properties

In order to obtain, from a fuzzy coincidence matrix Ψ⊤
U ,

a matrix Φ⊤
U , normalized in the sense that all its diagonal

terms φ⊤U,kk are equal to 1, for any t-norm, one only has to

find a function K⊤(a) : [0, 1] → [0, 1] such that:

a

⊤
(

K⊤(a),K⊤(a)
) = 1

⇔ ⊤
(

K⊤(a),K⊤(a)
)

= a. (8)

Given (⊤,K⊤), (7) is then easily generalized by:

φ⊤U,kl =
ψ⊤

U,kl

⊤
(

K⊤
(

ψ⊤
U,kk

)

,K⊤
(

φ⊤U,ll

)) . (9)

This transformation does not affect the indices if partitions

are crisp. Indeed, if U ∈ Mhcun, then ψ⊤
U,kk = ψ⊤

U,ll = 1
and consequently, the denominator equals 1 by (8).

Proposition 1: For the basic standard, product and

Łukasiewicz t-norms, the normalizing functions K⊤ are :

K⊤M
(a) = a, K⊤P

(a) =
√
a and K⊤L

(a) = a+1
2 .

Proposition 2: Given an archimedean1 t-norm ⊤, with

additive generator f⊤ or multiplicative generator g⊤, the

normalizing function K⊤ such that (8) is

K⊤(a) =







f−1
⊤

(

f⊤(a)
2

)

g−1
⊤

(

√

g⊤(a)
) (10)

where f−1
⊤ and g−1

⊤ are the pseudo-inverses of f⊤ and g⊤.

The normalizing functions of parametrized families of t-

norms of Table I, obtained with their additive generator f

are given in Table II, proofs being left to a long forthcoming

paper. In the case where the values of λ make the t-norm

to be equal (or tend) to a basic one or another, provided

it is archimedean (⊤P , ⊤L), the corresponding normalizing

function is recognized, e.g.: K⊤AA1
(a) = a

1
2 = K⊤P

(a),
K⊤H1

(a) =
√
a = K⊤P

(a), K⊤SS1
(a) = a+1

2 = K⊤L
(a),

K⊤Y1
(a) = 1− 1−a

2 = K⊤L
(a). For values of λ out of the

ranges specified in Table I, one must use the corresponding

generator or compute the limits. We illustrate the first

alternative by the Sugeno-Weber t-norm, which leads to the

Łukasiewicz one if λ = 0. The ⊤SW0 additive generator and

its pseudo-inverse are defined by f(a) = f (−1)(a) = 1 − a

and (10) gives: K⊤SW0
(a) = 1 − 1−a

2 , actually equals

K⊤L
(a). As an example of limits computation, consider the

Frank t-norm which is equal to the standard, the product

and the Łukasiewicz basic t-norms when λ approaches

0, 1 and +∞ respectively. By using the Taylor series if

needed, it is easy to prove that: K⊤F0
(a) → a = K⊤M

(a)
if λ → 0, K⊤F1

(a) → √
a = K⊤P

(a) if λ → 1,

K⊤F+∞
(a) → a+1

2 = K⊤L
(a) if λ → +∞. The same

property holds for relations between parametrized families

of t-norms. For example, Hamacher and Dombi t-norms are

equals if their respective parameter value is λ = 0 and

λ = 1. From the generator and the pseudo-inverse of ⊤H0
,

defined by f(a) = 1−a
a

and f−1(a) = 1
1+a

, we obtain by

(10): K⊤H0
(a) = 1

1+ 1−a
2a

, which is equal to K⊤D1
(a).

Example 3: Consider Uf of Ex. 2. With ⊤H0
, we have

Ψ⊤H
Uf

=





0.71 0.73 0.39
0.73 0.87 0.20
0.39 0.20 0.87



 and Φ⊤H
Uf

=





1 0.93 0.49
0.93 1 0.23
0.49 0.23 1



.

1a t-norm ⊤ is archimedean if ⊤(a, a) < a for all a ∈ [0, 1]



Table II
ADDITIVE GENERATORS AND PSEUDO-INVERSES OF PARAMETRIZED

FAMILIES OF ARCHIMEDEAN T-NORMS, AND NORMALIZING FUNCTIONS

t-norm f(a) f−1(a) K⊤(a)

⊤AA (− ln a)λ e−a1/λ
a

(

1
2

)1/λ

⊤D

(

1−a
a

)λ (

1 + a1/λ
)−1 (

1 +
(

1
2

)1/λ 1−a
a

)−1

⊤F ln
(

λ−1
λa−1

) ln
(

1+(λ−1) e−a
)

ln λ

ln

(

(λ−1)

√

λa−1
λ−1

+1

)

ln λ

⊤H ln
(

λ+(1−λ)a
a

)

λ
ea+λ−1

λ
√

a√
λ+(1−λ) a+(λ−1)

√
a

⊤SS
1−aλ

λ (1 − λ a)1/λ
(

aλ+1
2

)1/λ

⊤SW 1 − ln(1+λ a)
ln(1+λ)

(1+λ)1−a−1
λ

√
(1+λ)(1+λ a)−1

λ

⊤Y (1 − a)λ 1 − a1/λ 1 − 1−a

21/λ

The proposed generic normalization allows to transform

the fuzzy cardinalities n⊤
α β(Ψ⊤

U ,Ψ
⊤
V ) given by (5) by

n⊤
α β(Φ⊤

U ,Φ
⊤
V ). For any (⊤,K⊤)-combination, one can de-

rive new versions of every existing comparison index, pro-

vided it is based on a contingency matrix. We denote RI⊤K
the so derived Rand index.

C. Numerical Comparisons of Crisp, Fuzzy and Possibilistic

Partitions

We discuss here the influence of the normalization on

the Rand index by comparing the resulting RI⊤K to the non

normalized RI⊤ presented in Section II. Five compatible

partitions of different kind are chosen for this purpose:

• U1 =





0 0 0 1
1 1 0 0
0 0 1 0



 ∈ Mh34,

• U2 =





0.1 0.2 0.1 0.7
0.9 0.8 0 0.3
0 0 0.9 0



 ∈ Mf34,

• U3 =





0.28 0.3 0.28 0.43
0.47 0.45 0.25 0.32
0.25 0.25 0.47 0.25



 ∈ Mf34,

• U4 =





0.05 0.1 0.05 0.35
0.45 0.4 0 0.15
0 0 0.45 0



 ∈ Mp34,

• U5 =





0.140 0.150 0.140 0.215
0.235 0.225 0.135 0.160
0.125 0.125 0.235 0.125



 ∈ Mp34.

These matrices are chosen such that:

• U1 is the closest crisp partition w.r.t. the others,

• between the two fuzzy partitions, U2 is closer to U1

than U3 because it is less fuzzy,

• between the two possibilistic partitions, U4 is closer

to U1 than U5 because of a bigger gap between its

membership degrees,

• the possibilistic partition U4 is closer to U1 than the

fuzzy one U3 for the same reason,

• due to their construction, the fuzzy partitions U2 and

U3 are quite close to the possibilistic ones U4 = U2

2

and U5 = U3

2 , the closeness between U3 and U5 being

more significant because the differences between their

values are even smaller.

The results obtained on all partition couples (Ui, Uj) are

reported in Table III, for two basic t-norms (⊤M , ⊤P )

and two parametric ones (⊤H , ⊤F ) with two values of

λ. In each cell of each symmetric subtable, the upper

(resp. lower) value refers to RI⊤ (resp. RI⊤K) computed

from (Ψ⊤
Ui
,Ψ⊤

Uj
)) (resp. (Φ⊤

Ui
,Φ⊤

Uj
) normalized by the K⊤

functions). On can observe several specific situations:

1) increased values, sometimes in a significant way (depend-

ing on the t-norm) when comparing fuzzy partitions with

themselves, e.g. RI⊤K(U3, U3) = 0.89 vs RI⊤(U3, U3) =
0.51 with ⊤H0

,

2) either the same behavior or a slight but not significant

decrease (high magnitudes), when comparing possibilistic

partitions with themselves, e.g. RI⊤K(U5, U5) = 0.76 vs

RI⊤(U5, U5) = 0.54 with ⊤M , and RI⊤K(U4, U4) = 0.79
vs RI⊤(U4, U4) = 0.89 with ⊤P ,

3) the same behavior is met when comparing close partitions

of a different type, a fuzzy and a possibilistic one, e.g.

RI⊤K(U3, U5) = 0.90 vs RI⊤(U3, U5) = 0.47 with ⊤H0
,

and RI⊤K(U3, U5) = 0.85 vs RI⊤(U3, U5) = 0.87 with

⊤H5 ,

4) more or less decreased values when comparing the

crisp partition U1 with the fuzzy and possibilistic ones,

an extremely weakness arising for the closest partitions

(U2, U4) and becoming greater for the less close partitions

(U3, U5) for any t-norm, e.g. RI⊤K(U1, U2) = 0.79 vs

RI⊤(U1, U2) = 0.82 with ⊤P , and RI⊤K(U1, U5) = 0.26
vs RI⊤(U1, U5) = 0.81 with ⊤F5

.

The above examples clearly show the interest of the nor-

malization, which allows to rise and lower significantly the

indices with pertinence, for some low cost weakenings. With

⊤M , the values of RI⊤K do not differ from those obtained

with RI⊤ since U4 and U5 are not involved. This result

is explained logically by the fact that for crisp and fuzzy

partitions, we have
∑cu

i=1 uik = 1 and thus ψ⊤M

U,kk = 1 and

finally φ⊤M

U,kl = ψ⊤M

U,kl. In the case of possibilistic partitions,

the reinforcement or the weakening of RI⊤K compared to

RI⊤ depends directly on the membership degrees, and thus

on the elements of the partitions. For ⊤M and ⊤P , one

can also establish that RI⊤K(Ui, U4) = RI⊤K(Ui, U2) and

RI⊤K(Ui, U5) = RI⊤K(Ui, U3). This result comes from a

trivial property of both t-norms, whose (trivial) proof is left

to the reader : RI⊤K(Ui, Uj) = RI⊤K(αUi, Uj). Since ⊤M is

the largest t-norm, the values of the induced RI⊤ are greater

than those obtained with any other t-norm. By making

possible pertinent reinforcements, normalization yields to

the loss of this property for RI⊤K . As a final result, let us

consider, given a parametric t-norm of Table III, the indices

as a function of λ, and let D =
∑ |RI⊤(λ1) − RI⊤(λ2)|

and DK =
∑ |RI⊤K(λ1) − RI⊤K(λ2)|. For both Hamacher

and Frank t-norms, D is about four times DK . This shows

that, for parametrized families of t-norms, the proposed RI⊤K
is less sensitive to the choice of λ than RI⊤.



Table III
RAND INDEX RI⊤ VALUES (UP) AND NORMALIZED ONES RI⊤K (DOWN) FOR THE COMPARISON OF FIVE PARTITIONS WITH VARIOUS T-NORMS

⊤M U1 U2 U3 U4 U5

U1
1.00 0.78 0.32 0.81 0.58

1.00 0.78 0.32 0.78 0.32

U2
0.70 0.42 0.67 0.55

0.70 0.42 0.70 0.42

U3
0.76 0.29 0.44

0.76 0.42 0.76

U4
0.74 0.56

0.70 0.42

U5
0.54

0.76

⊤H0
U1 U2 U3 U4 U5

U1
1.00 0.79 0.46 0.80 0.66

1.00 0.77 0.22 0.73 0.21

U2
0.70 0.48 0.68 0.58

0.73 0.43 0.72 0.42

U3
0.51 0.45 0.47

0.89 0.46 0.90

U4
0.78 0.67

0.72 0.45

U5
0.61

0.91

⊤F0.1
U1 U2 U3 U4 U5

U1
1.00 0.80 0.52 0.82 0.74

1.00 0.78 0.23 0.77 0.23

U2
0.71 0.52 0.70 0.64

0.75 0.42 0.76 0.43

U3
0.50 0.52 0.51

0.88 0.43 0.88

U4
0.83 0.77

0.76 0.43

U5
0.73

0.88

⊤P U1 U2 U3 U4 U5

U1
1.00 0.82 0.62 0.83 0.78

1.00 0.79 0.25 0.79 0.25

U2
0.75 0.59 0.74 0.70

0.79 0.42 0.79 0.42

U3
0.56 0.65 0.64

0.86 0.42 0.86

U4
0.89 0.86

0.79 0.42

U5
0.85

0.86

⊤H5
U1 U2 U3 U4 U5

U1
1.00 0.86 0.76 0.84 0.82

1.00 0.84 0.30 0.83 0.27

U2
0.85 0.76 0.82 0.80

0.88 0.42 0.87 0.40

U3
0.83 0.87 0.87

0.83 0.42 0.85

U4
0.96 0.96

0.87 0.40

U5
0.96

0.86

⊤F5
U1 U2 U3 U4 U5

U1
1.00 0.84 0.69 0.83 0.81

1.00 0.81 0.27 0.82 0.26

U2
0.79 0.66 0.77 0.74

0.82 0.43 0.82 0.42

U3
0.67 0.76 0.76

0.83 0.42 0.83

U4
0.93 0.92

0.82 0.41

U5
0.92

0.84
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Figure 1. RI⊤(R, Qc), RI⊤K(R, Qc) and RI⊤
f

(R, Qc) for the data set

(A), for c = 2, 12, with ⊤H0
(left) and ⊤H100

(right)

IV. EXPERIMENTAL RESULTS

A. Comparing two Fuzzy Partitions Provided by FCM

Following the work by Campello [6], we first consider a

2-dimensional data set (A) composed of 400 points drawn

from a mixture of 4 overlapping normal distributions of 100
points each with means (1, 1), (1, 3), (3, 1), and (3, 3) and

equal covariance matrices Σ = 1
2I . The Fuzzy C-Means

algorithm (FCM) [1] is used to produce a reference partition

R and a collection of fuzzy c−partitions Qc to be compared

to R, c varying from 2 to 12. The known true centers of

the clusters are used to initialize FCM in order to obtain

R. FCM is run 10 times to obtain 10 partitions Qc, for

each value of c. Six t-norms are used to compute index

values: ⊤H0 , ⊤H5 , ⊤H100 ⊤F0.1 , ⊤F1 and ⊤F100 . Values of

RI⊤(R,Qc), RI
⊤
f (R,Qc) and RI⊤K(R,Qc) are computed

for all resulting Qc, and the maximum value of each index

out of 10 runs for each value of c is stored. As expected,

all indices exhibit a local maximum at c = 4. Moreover,

for all the tested t-norms, the values of RI⊤K overcome the

values of RI⊤ and RI⊤f . For the other values of c, relative

positions of each index curve clearly depend on both the t-

norm and λ. For instance, for c = 2, the differences between

the magnitudes of the indices increase with λ in favour of

RI⊤K , in particular with the Hamacher family, as illustrated

in Fig. 1. Both RI⊤ and RI⊤f curves have a similar shape,

and the larger λ, the smaller the difference. Moreover, they

share a tendency to drop slowly or not to drop since c

becomes greater than the true number of clusters, whereas

the proposed RI⊤K keeps a good dynamic. This behavior

agrees with and strengthens what we observed in section

III-C concerning its reinforcement ability.

B. Comparing a Fuzzy and a Possibilistic Partition Provided

by FCM and PCM

Let us consider another data set (B), constructed similarly

to data set (A), with less separated means: (1, 1), (1, 2.5),
(2.5, 1) and (2.5, 2.5) and same Σ. The same procedure

is used to produce the reference partition R. As well, the

Possibilistic C-Means algorithm [1] is run to generate 10

possibilistic c = 4−partitions Qp. The indices RI⊤(R,Qp),
RI⊤f (R,Qp) and RI⊤K(R,Qp) are computed using the same

6 t-norms, and their maximum value out of the 10 partitions

Qp for each t-norm ⊤ is reported in Table IV. For each

index, the average value over each t-norm, as well as the

standard deviation are also reported. The average value of

RI⊤K is significantly smaller than the others ones (0.42 vs

0.64 and 0.70). This is explained by the 10 possibilistic

partitions Qp whose values are small as compared to the

values of R, so the clusters are smoother fuzzy sets. This

can be connected to a previous discussion, see section III-C

(case 4). Moreover, the standard deviation values show that

RI⊤K (0.04) is less sensitive to the t-norm choice than RI⊤

(0.18) and RI⊤f (0.07).

C. Sensitivity to the Fuzzifier Exponent of FCM

Let us consider the well known Fisher Iris data set

composed of three classes of 50 flowers each described by

4 physical attibutes. Two classes have a substantial overlap



Table IV
RAND INDEX RI⊤ , RI⊤

f
AND RI⊤K VALUES WITH DIFFERENT T-NORMS

t-norm ⊤H0
⊤H5

⊤H100

⊤F0.1
⊤F1

⊤F100 av. std→
⊤M

=
⊤P

→
⊤L

RI⊤ 0.40 0.60 0.94 0.55 0.60 0.73 0.64 0.18

RI⊤
f 0.54 0.63 0.73 0.55 0.57 0.62 0.70 0.07

RI⊤
K 0.46 0.41 0.34 0.43 0.44 0.42 0.42 0.04

in the feature space. The expert-assessed crisp partition is

chosen as the reference one (R). Although it has been

shown in [14] that FCM provides best results for m lying in

[1.5, 2.5], we run it to produce fuzzy partitions Qm, one for

each m ∈ {2, ..., 11}. Again, the resulting indices values are

computed using the same 6 t-norms. Comments on the shape

and the relative positions of indices curves remain valid,

see section IV-A. In particular, the larger m, the fuzzier

partitions Qm and the larger the slope of RI⊤K , whereas

RI⊤ and RI⊤f approach a quite high asymptotic value, as

shown in Fig. 2. As opposed to the first experiment, λ does

not have so much influence on the indices magnitudes, and

almost no influence on RI⊤K . Nevertheless, it modifies the

shape of the curves. The larger λ, the smoother the drop.
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Figure 2. RI⊤(R, Qm), RI⊤K(R, Qm) and RI⊤
f

(R, Qm) for the data

set (B), with different values of the fuzzifier exponent m = 2, 11, with
⊤F0.1

→ ⊤M (left) and ⊤F1
= ⊤P (right)

V. CONCLUSION

In this article, we propose a generic solution to perform

some kind of normalization of a fuzzy coincidence matrix.

It is based on the additive or the multiplicative generator of

the triangular norm used to define the coincidence matrix.

We derive the normalizing functions of the basic triangular

norms and the main parametrized families of triangular

norms. It is shown that the approach allows to correctly

fullfil the demand to overcome some disagreements en-

countered when using non normalized coincidence matrices.

The proposition enables to define new versions of any

existing relative indices that are based on a contingency

matrix, such as the Rand index. Results obtained on several

synthetic examples and data sets show a better behavior of

the so derived Rand index compared to its non normalized

versions. Moreover, this statement holds for the comparison

of partitions of different kind (crisp, fuzzy, possibilistic).

When parametric triangular norms are used, the proposed

index appears to be less sensitive to the parameter, whose

adjustment can be really subtle in practice and can require

a preliminary learning process.

We plan to study the empirical density of the resulting

indices, according to the methodology developed in [15].

Replacing triangular norms by better adapted functions is

another perspective.

REFERENCES

[1] J. Bezdek, J. Keller, R. Krishnapuram, and N. Pal, Fuzzy
Models and Algorithms for Pattern Recognition and Image
Processing. Kluwer Academic, 1999.

[2] W. Wang and Y. Zhang, “On fuzzy cluster validity indices,”
Fuzzy Sets and Syst., vol. 158, no. 19, pp. 2095–2117, 2007.

[3] C. Borgelt, “Finding the number of fuzzy clusters by resam-
pling,” in 16th IEEE Int. Conf. on Fuzzy Syst., 2006, pp.
48–54.

[4] S. Bodjanova, “Comparison of fuzzy partitions based on their
α-cuts,” Fuzzy Sets and Syst., vol. 105, no. 1, pp. 99–112,
1999.
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