
On Finding Frequent Patterns in Event Sequences∗

Andrea Campagna and Rasmus Pagh
IT University of Copenhagen, Denmark

Email: {acam,pagh}@itu.dk

July 7, 2021

Abstract

Given a directed acyclic graph with labeled vertices, we consider the problem
of finding the most common label sequences (“traces”) among all paths in the
graph (of some maximum length m). Since the number of paths can be huge, we
propose novel algorithms whose time complexity depends only on the size of the
graph, and on the frequency ε of the most frequent traces. In addition, we apply
techniques from streaming algorithms to achieve space usage that depends only on
ε, and not on the number of distinct traces.

The abstract problem considered models a variety of tasks concerning finding
frequent patterns in event sequences. Our motivation comes from working with a
data set of 2 million RFID readings from baggage trolleys at Copenhagen Airport.
The question of finding frequent passenger movement patterns is mapped to the
above problem. We report on experimental findings for this data set.

Keywords: algorithms; graphs; sampling; data mining; patterns discovery.

1 Introduction
Sequential pattern mining has attracted a lot of interest in recent years. However, some
of the probabilistic techniques that have proven their efficiency in mining of frequent
itemsets have, to our best knowledge, not been transferred to the realm of sequence
mining. The aim of this paper is to take a step in that direction, namely, we propose an
analogue of Toivonen’s sampling-based algorithm for frequent itemset mining [10] in
the context of sequential patterns.

At a conceptual level we work with a new, simple formulation of the problem: The
input is a directed acyclic graph (DAG) where the vertices are events and there is an
edge between two events if they are considered to be connected (i.e., part of the same
event sequences). Vertices are labeled by the type of event they represent. This allows
certain flexibility in modeling that is lacking in many other formulations:

∗This work was supported in part by the SPOPOS project, supported by the Research and Innovation
Agency under the Danish Ministry for Knowledge, Technology and Development.

1

ar
X

iv
:1

01
0.

23
58

v1
 [

cs
.D

S]
 1

2
O

ct
 2

01
0

• Spatio-temporal events can be connected based on both spatial and temporal
closeness.

• Events that have an associated time range (rather than a single time stamp) can
be connected based on an arbitrary closeness criterion.

The data mining task we consider is to find the most common sequences of event
types (“traces”) among all paths in the DAG, or more generally all paths of some max-
imum length m. The challenge is to handle the huge number of paths that may be
present in a DAG.

Example Consider data on the history of URLs visited by a user, where each URL
is labeled by its domain name. If she visits the domains www.techcrunch.com,
www.oracle.com, and www.itu.dk in this order, there may be a connection be-
tween the first and second site, and between the second and third site. If all visits
happen within a few minutes one could also imagine that the second site was merely a
detour, and there is a connection from the first to the third site. This is naturally mod-
eled using a graph having URL visits as vertices, and directed edges between vertices
that we deem connected (based on any criterion, e.g., temporal closeness). We label
vertices by domain name, and look for frequently occurring label sequences, traces, on
paths in the graph.

goo tec ora itu goo

We might be interested in such frequent event sequences for a variety of reasons,
e.g. improved understanding of browsing behavior for advertisers (avoid paying for
many page impressions to the same user), and page recommendations (“users who
visited the same sequence of domains as you, often went on to the domain. . . ”). We
should be able to detect the connection between sites even if they are not visited in
succession. For example, many browsing histories will interleave visits to hubs such
as google.com and yahoo.com with visits to topic specialized domains.

1.1 Approach
We start from the observation that the number of paths in a DAG can be extremely
large, even if the path length is restricted to some small number m. For example, the
DAG pictured below has 16 vertices and 45 edges, but the number of paths is 10919.

More generally, we expect the number of paths to increase exponentially with m.
In our experiments we see that, even for small m, the number of paths is much larger
than the size of the DAG.

Our algorithm rests on a novel sampling procedure that is able to create a sample
of any desired size, in time that is linear in the size of the DAG (for preprocessing)

2

and the size of the sample. This allows a time complexity for the mining procedure
that depends only on the frequency ε of the most common traces, rather than the total
number of traces. We also apply a technique from data streaming algorithms to achieve
space that depends on ε rather than on the number of distinct traces.

Though our formulation does not capture all the many aspects present in other
approaches to sequential pattern mining, we believe that it possesses an attractive com-
bination of expressive modeling and algorithmic tractability.

1.2 Problem definition
We are given a directed acyclic graph G = (V,E), and a function label(v) that returns
the label of a vertex. A path p in G is a sequence of vertices v1, v2, . . . , vj ∈ V such
that (vi, vi+1) ∈ E for i = 1, . . . , j − 1. A path p has a trace label(p), which is the
vector of labels on the path. Let Sm be the multiset of all path traces of length at most
m, i.e.,

Sm = {label(p) | p is a path in G of length at most m} .

The data mining task is to find the most frequent traces in Sm. It comes in several
flavors:

• Top-k. For a parameter k, find the k traces that have the most occurrences in Sm

(breaking ties arbitrarily).

• Frequency ε. Find the set of traces that have frequency ε or more in Sm.

• Monte Carlo. For both the above variants we can allow an error probability δ
(typically allowing a false negative probability, i.e., that we fail to report a trace
with probability δ).

In this paper emphasis will be on Monte Carlo algorithms for the frequency variant.
However, we note that one can also obtain results for top-k by a simple reduction.

1.3 Related work
There is a large body of related work on sequential pattern mining, see e.g. [1, 3–5, 7–
9, 11]. These works deviate from the present one in that they consider the input as a
sequence of timestamped events, and allow a host of formulations of what kinds of sub-
sequences are of interest. In contrast, we put the modeling of interesting subsequences
into the description of the event sequence (by defining DAG edges), and the patterns
sought are simple strings. This allows us to do things that we believe have not been
done, and are probably difficult, in traditional sequential data mining settings, namely
making use of sampling methods.

The difficulty with sampling is that patterns can overlap in many ways, so any
straightforward approach will fail to produce a sample that correctly “represents” the
original data. As an example, suppose that the pattern a2m occurs in the input, which
means k+ 1 occurrences of am. If we sample events with probability 50%, the proba-
bility that an occurrence of am remains in the sample is 1/2. On the other hand, if there
are k + 1 non-overlapping occurrences of am, the probability that this is seen in the

3

sample may be much lower. For example, for the string (ambm)m+1 the probability
is O(m/2m), i.e., exponentially decreasing as m grows. This means that there is no
direct way of going from the number of occurrences in the sample to the number of
occurrences in the original string.

Similar problems make use of sampling methods in general graph mining difficult.
Suppose that we sample vertices (or edges) with probability p. If all triangles in a graph
overlap in a single vertex, the sample will contain no triangles at all with probability
1−p. On the other hand, if there is the same number of vertex (edge) disjoint triangles,
we are likely to sample close to a fraction p3 of them. As before, we cannot estimate
the number of occurrences in the original graph based on the number of occurrences in
the sample.

2 Our solution

2.1 Generation of all traces
As a warmup we consider the task of producing the multiset Sm of all traces having
maximum length m. We will use the notation Si(v) to denote the multiset of traces
corresponding to paths (of length at most i) starting in node v. Clearly S0(v) = ∅. For
i > 0 we have the recursive definition

Si(v) = {label(v)} × (ε ∪
⋃

v′, (v,v′)∈E

Si−1(v′)),

where ε denotes the empty trace (note that this symbol is different from ε denoting the
frequency), and

⋃
is multiset union. Clearly we have Sm =

⋃
v∈V Sm(v).

These equalities lead to a simple recursive algorithm, shown in Figure 1. It is easy
to see that if traces are represented in a reasonable way (e.g. as singly linked lists) the
running time is linear in the size |V |+ |E| of the graph and the total length of the traces
generated.

Succinct output. If we are satisfied with returning hash values of the traces (unique
with high probability) the time can be improved such that only O(1) time is used for
each trace, i.e. time O(|V | + |E| + |Sm|) in total. This can be done using a standard
incremental string hashing method such as Karp-Rabin [6]. Observe that the output is
sufficient to find the hash values of the most frequent traces in Sm (with a negligible
error probability). A second run of the procedure could then output the actual frequent
traces, e.g. by looking up the count of each hash value computed.

2.2 Generation of a random sample
If the patterns we are interested in occur many times, substantial savings in time can
be obtained by employing a sampling procedure. That is, rather than generating Sm

explicitly we are interested in an algorithm that produces each trace in Sm with a given
probability p, independently. This will reduce the expected number of samples to a
fraction p of the original. The choice of p is constrained by the fact that we still want to
sample each frequent trace a fair number of times (to minimize the probability of false
negatives being introduced by the sampling).

4

1: procedure ALLTRACES(v, t, i)
2: if i > 0 then
3: output t||label(v)
4: for each v′ where (v, v′) ∈ E do
5: ALLTRACES(v′, t||label(v), i− 1)
6: end for
7: end if
8: end procedure

9: for v ∈ V do
10: ALLTRACES(v, ε,m)
11: end for

Figure 1: The procedure ALLTRACES outputs the concatenation of a trace prefix t, and
each trace starting at v having length at most i. The notation || is for concatenation of
traces. Lines 7–9 call ALLTRACES for all vertices v, with the empty trace ε as prefix,
producing the multiset Sm of all traces of length at most m.

Counting phase Our algorithm starts by computing, for i = 1, . . . ,m the number
of paths v.c[i] of length at most i that start in each vertex v. We assume that this
can be done using standard precision (e.g. 64 bit) integers. The algorithm shown in
Figure 2 mimics the structure of the naı̈ve generation algorithm, but uses memoization
(aka. dynamic programming) to reduce the running time.

For each i ≤ m the cost of all calls to COUNTTRACES with parameters (v, i),
disregarding the cost of recursive calls, is easily seen to be proportional to the number
of edges incident to v. This means that the total time complexity of the counting phase
is O(|E|m). The space usage is dominated by an array of size m for each vertex, i.e.,
it is O(|V |m).

Sampling phase Consider the multiset Si(v) of traces, which has size v.c[i] by def-
inition. The probability that none of these traces are sampled should be (1 − p)v.c[i].
Conditioned on the event that at least one trace from Si(v) is sampled, we either have to
sample a trace of length more than one (starting with label(v)), or include the trace {v}
in the sample. In a nutshell, this is what the procedure SAMPLETRACES of Figure 3
does.

Let rand() denote a function the returns a uniformly random number in [0; 1], inde-
pendently of previously returned values. The condition rand() > (1 − p)v.c[m] holds
with probability 1 − (1 − p)v.c[m], so lines 14–16 call SAMPLETRACES if and only
if we need to sample at least one trace from Sm(v). In the procedure SAMPLE-
TRACES we use, similarly to above, a parameter t to pass along a trace prefix. The
variable out is used to keep track of whether a trace has been output in the recursive
calls. If out is false after all recursive calls we sample t||label(v). For each v′ with
(v, v′) ∈ E the probability that we do not sample any trace from label(v)||Si−1(v′)
is (1 − p)v′.c[i−1]/(1 − (1 − p)v.c[i]). This is exactly the correct probability since we
condition on at least one trace in Si(v) being sampled.

5

1: function COUNTTRACES(v, i)
2: if v.c[i] =null then
3: v.c[i]← 1
4: for each v′ where (v, v′) ∈ E do
5: v.c[i]← v.c[i]+COUNTTRACES(v′, i− 1)
6: end for
7: end if
8: return v.c[i]
9: end function

10: for v ∈ V do
11: COUNTTRACES(v)
12: end for

Figure 2: Recursive computation of the paths of traces for each starting vertex, using
memoization. The algorithm assumes that each value v.c[0] is initially set to zero, and
each value v.c[i], 0 < i ≤ m, is initially null.

1: procedure SAMPLETRACES(v, t, i)
2: out← false
3: for each v′ where (v, v′) ∈ E do
4: if rand()> (1− p)v′.c[i−1]/(1− (1− p)v.c[i]) then
5: SAMPLETRACES(v′, t||label(v), i− 1)
6: out← true
7: end if
8: end for
9: if out = false or rand()< p then

10: output t||label(v)
11: end if
12: end procedure

13: for v ∈ V do
14: if rand()> (1− p)v.c[m] then
15: SAMPLETRACES(v, ε,m)
16: end if
17: end for

Figure 3: The procedure SAMPLETRACES outputs the concatenation of a trace prefix
t and a random sample of the traces starting at v of length at most i. The traces are
sampled from the conditional distribution that is guaranteed to sample at least one trace.
As before, the notation || is for concatenation of traces, and ε denotes the empty trace.
Lines 13–17 call SAMPLETRACES for each vertex v with probability 1− (1− p)v.c[i],
to produce a sample of all traces starting at v having length at most i, where each trace
is chosen independently at random with probability p.

6

Refinement. Observe that the probability in line 4 may be precomputed for each
edge and value of i. Even with this optimization, a direct implementation of the pseu-
docode in Figure 3 may spend a lot of time in the for loop of SAMPLETRACES without
producing any output. To get a theoretically satisfying solution we may preprocess, for
each (v, i), the probabilities p1, p2, . . . , pd of making the recursive calls. Specifically,
for j = 0, . . . , d we consider the probabilities qj = Πj′≤j(1 − pj′) that no recursive
call is made in the first j iterations. If we choose r uniformly at random in [0; 1] then
the probability that qj−1 > r > qj is exactly the probability that the first recursive call
is in the jth iteration. Similarly, the probability that r > qd is exactly the probability
that no recursive call is made. Thus, by doing a binary search for r over qd, . . . , q0 we
may choose, with the correct probability, the first iteration j1 in which there should be
a recursive call. The same method can be repeated, using a random value r in [0; qj1]
to find the next recursive call, and so on.

In the worst case this uses time O(log |V |) per recursive call. We can exploit the
fact that we are searching for a random value r to decrease this to O(1) expected time.
The idea is to represent the values qj in a binary trie that is precomputed for each node.
In addition we store for each string s ∈ {0, 1}dlog de a pointer to the node in the trie that
corresponds to the longest prefix of s. The number of bits of r needed to determine its
position in qd, . . . , q0 is at most dlog de+ t with probability at least 1− 2−t. Using the
pointers we can thus in expected timeO(1) find the node in the trie that has the longest
common prefix with the binary representation of r. This, in turn, determines the rank
of r in qd, . . . , q0.

As before, we can choose to have a succinct output where traces are represented by
the hash values of their traces, with no increase in time complexity.

2.3 Time and error analysis
For the time analysis we focus on the refined implementation described above, since it
allows a clean and exact theoretical analysis. A similar analysis of the version stated
in the pseudocode can be made under the assumption that the outdegree of vertices in
G is bounded by a constant. Observe that if SAMPLETRACES makes c recursive calls
this takes expected time O(1 + c). Also observe that the total number of procedure
calls is upper bounded by the total length of all sampled traces — this is because each
recursive call is guaranteed to produce at least one output. Combining these facts we
see that the expected time for all calls to SAMPLETRACES is linear in the length `
of all traces sampled. Notice that the expected value of ` is O(p|Sm|m). Since ` is
independent of the random choices determining the running time of the data structure
in the refined implementation we can conclude that the total expected running time of
the code in Figures 2 and 3 is O(|V |+ |E|m+ p|Sm|m).

The parameter p must be chosen such that p = C/ε, where C > 1 is a parameter
that determines the false negative probability. The expected number of times that we
sample a trace with frequency ε′ is Cε′/ε, and since the samples are independent, the
number of samples follows a binomial distribution. By Chernoff bounds, this means
that if ε′ ≥ ε then the number of samples is at least C/2 with probability 1− 2−Ω(C).
Examples of concrete error probabilities are given in our experimental section. We
have the following theoretical result:

7

Theorem 1 We can generate a random sample of Sm in expected timeO(|V |+|E|m+
log(1/δ)/ε) such that any trace with frequency ε or more has frequency at least ε/2 in
the random sample with probability 1− δ. ◦

Observe that the running time is independent of the total number of traces in Sm.

2.4 Putting things together
It remains to assess how to choose, among the samples, the ones that are actually
interesting. In particular, we are interested in those traces appearing in the sample at
least C/2 times.

This problem can be efficiently faced using a frequent items algorithm. Such al-
gorithms are widely used in data streaming contexts, and guarantee very small space
usage. A comprehensive treatment and an experimental comparison between various
techniques can be found in [2].

Definition 2 Given a stream S of n elements, a frequency threshold η, and let fi be
the the frequency of i in S. The frequent items problem consists in returning a set F of
size at most 1/η such that for all i with fi > η, i ∈ F . ◦

Observe that false positives, with fi < η, can appear in the output. To eliminate
these, we simply make another pass (i.e., generate the same sample again) to compute
exact frequencies.

Theorem 3 Given a stream of elements representing the set of samples of traces pro-
duced by SAMPLETRACES, the space needed in order to output the traces with fre-
quency at least ε/2, without producing any trace with frequency less than ε/2, is
O(1/ε) words. ◦

3 From event sequence to a DAG
An event sequence is a set S of tuples of the form (t, i, `), where t ∈ R is a time
stamp, i is a tag identifier, and ` is a label (in our application case of RFID readings
from baggage trolleys, i identifies the RFID on a trolley and ` is a location identifier
that indicates an approximate location, namely vicinity of an antenna, of i at time t).
In this work we do not consider the physical locations of antenna as part of the input.

Formally we may define the problem as follows: For a given number ∆, the input
set specifies a directed acyclic graph G∆ = (V,E∆), where each observation is a
vertex, and there is an edge from v1 to v2 if and only if the vertices are observations of
the same tag, at different locations, separated by at most ∆ time units (we use minutes
as the time unit from now on).

To produce the DAG we sort the data by tag ID and timestamp. Note that this
makes it easy to find all the edges from a particular vertex v in G∆: Simply scan the
sorted list forward until either the timestamp differs by more than ∆ from that of v, or
we reach a node corresponding to another tag.

8

Example. If ∆ = 20 and we observe locations 1, 2, 3, 6, 7 at time 10, 20, 30, 60,
70, the following subsequences are considered to reflect a movement: 1-2, 2-3, 1-2-3,
1-3, 6-7. Notice the inclusion of 1-3, where one observation is skipped, since there is
at most ∆ minutes between the observation of 1 and 3. ◦

4 Experiments
We have worked with a data set consisting of readings of RFID (Radio-Frequency ID)
tags by fixed-position antenna. RFID chips can be identified only when they are in
the proximity of an antenna, which means that readings give approximate information
about the location of an RFID tag. Such data sets, as well as similar data sets based on
other technologies, are becoming increasingly available as more and more items, from
parcels to items in shops, are being tagged with RFID chips.

In order to construct the DAG, we have cleaned some of the noise present in the
data. One source of noise was due to the presence of sequences of readings regarding
trolleys remaining in zones where the range of two antennas is overlapping. This se-
quences of alternating readings had the form (x+y+)(x+y+)+. In order to clean up
this interferences, we replaced the elements of such a kind of sequences, using a new
zone label that represents the zone of overlap of the range of antennas. In particular we
have used, for a sequence (x+y+)(x+y+)+, the label min{x, y} ∗ 100 + max{x, y}.

Notice that this can be thought as an increase in the resolution of the readings,
making the granularity of the information finer. In some sense this modification allows
for a cleaner sight on the movement of some trolleys.

Another source of noise, sometimes connected with the one just described, is the
presence of sequences of readings regardings the same zone for a given trolley. In order
to avoid having traces of the form t = (V yy+W), where V and W are sequences of
readings, we considered only one occurrence of y, properly managing the timestamps
of the readings. In particular this means that, assuming the difference in time between
any two consecutive y is within the threshold ∆, in the DAG we put a directed edge
(v, y), v ∈ V iff the first occurrence of y after V occurred within time ∆ from v.
Moreover we put a directed edge (y, w), w ∈ W iff w happened within time ∆ from
the last reading of y in t.

It is necessary to point out that our method differs from the previous approaches
in the way we look for frequent patterns. This means that our results are not directly
comparable with the ones that can be found in literature, so we do not compare to
existing algorithms.

4.1 Results
We ran a set of experiments on the airport data, in order to understand how many
patterns would have been generated for a given ∆ and a size m. Figure 6 shows the
size of the graph for different sizes of ∆. We compare the obtained results with the
expected performance of our algorithm.

Figure 6 reports some interesting characteristics of the data when fixing ∆ and m.
In particular the table contains the number of traces generated, the frequency of the

9

Figure 4: RFID antenna in Copenhagen Airport.

∆ —V— —E—
20 2206302 4059250
10 2206302 2657931
5 2206302 1721448
3 2206302 1228759

Figure 5: Size of the airport DAG for different values of ∆. As can be seen all graphs
are quite sparse, and in fact many nodes have no outgoing edges. This is due to a
relatively low resolution in the data set.

10

∆ m Tot. traces Dis. traces top 100th ratio
20 5 365818472 4311942 168000 990
10 5 106678064 1712646 52951 425
10 3 6196850 50085 9458 38.2
5 5 66947355 631300 42008 198
3 5 23152990 280454 15363 93

Figure 6: Characteristics of the data for several combinations of ∆ and m. The third
column, Tot. traces, represents the total number of traces that would be generated by
the naı̈ve approach; the Dis. traces column represents the number of distinc traces; the
top 100th column contains the frequency of the 100th most frequent trace; the column
ratio represents the saving we would achive using a frequency threshold equal to the
one represented in the top 100th column.

100th most frequent trace and the ratio between the space needed in case of an exact
computation and the space required when our algorithm is used. Note that the space
to represent the DAG and the counts is not counted in this ratio. The rationale for this
is that as we consider longer event sequences the space for the DAG representation
is expected to become negligible compared to the space needed for finding the most
common traces.

From the results of the test it is clear that great savings can be achieved when the
frequencies we are interested in are not too low. In a case, nearly 3 orders of magnitude
of space can be saved using our approach. As a matter of fact, when we are interested
in very frequent traces, and this is often the case in many practical applications, the
sampling outputs a large number of samples for each interesting trace, so that a low
sampling ratio can be used.

Figure 7 shows the number of samples we would take in expectation when C = 10
is used. The table gives the flavor of the saving in time that could be achieved with
respect to generating all the possible traces. Here we notice that the total number of
traces is already 1–2 orders of magnitude larger than the size of the DAG, so we ex-
pect an improvement in running time of at least 1 order of magnitude. Larger values
of C will increase the running time proportionally, but decrease the error probabili-
ties. Table 8 shows false negative probabilities, as well as probabilities that traces with
frequency below ε/4 are reported.

11

∆ m Tot. traces # samples ratio
20 5 365818472 22774 16800
10 5 106678064 20147 5295
10 3 6196850 6552 946
5 5 66947355 15937 4200
3 5 23152990 15070 1536

Figure 7: The ratio between the total number of traces and the number of samples we
would take using C = 10.

C
False negative

probability
Significantly false

positive probability
3 0.199 0.173
5 0.125 0.127

10 0.0671 0.0420
15 0.0180 0.0376
20 0.0108 0.0318
30 0.00195 0.0103

Figure 8: Probability that a trace with frequency ε or more is not reported (false nega-
tive), and probability that a trace with frequency less than ε/4 is reported (significantly
false positive), for different values of parameter C. The values are computed using the
Poisson approximation to the binomial distribution, which is accurate unless the set
Sm from which we sample is small.

12

References
[1] Yen-Liang Chen and Ya-Han Hu. Constraint-based sequential pattern mining:

The consideration of recency and compactness. Decision Support Systems,
42(2):1203 – 1215, 2006.

[2] Graham Cormode and Marios Hadjieleftheriou. Finding frequent items in data
streams. PVLDB, 1(2):1530–1541, 2008.

[3] Fosca Giannotti, Mirco Nanni, Dino Pedreschi, and Fabio Pinelli. Mining se-
quences with temporal annotations. In SAC ’06: Proceedings of the 2006 ACM
symposium on Applied computing, pages 593–597, New York, NY, USA, 2006.
ACM.

[4] Sherri K. Harms, Jitender S. Deogun, and Tsegaye Tadesse. Discovering sequen-
tial association rules with constraints and time lags in multiple sequences. In
ISMIS ’02: Proceedings of the 13th International Symposium on Foundations of
Intelligent Systems, pages 432–441, London, UK, 2002. Springer-Verlag.

[5] Mahesh V. Joshi, , George Karypis, and Vipin Kumar. A universal formulation
of sequential patterns. In Proceedings of the KDD’2001 workshop on Temporal
Data Mining, San Fransisco, August 2001.

[6] R. M. Karp and M. O. Rabin. Efficient randomized pattern–matching algorithms.
IBM Journal of Research and Development, 32:249–260, 1987.

[7] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovery of frequent
episodes in event sequences. Data Min. Knowl. Discov, 1(3):259–289, 1997.

[8] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umesh-
war Dayal, and Mei-Chun Hsu. Prefixspan: Mining sequential patterns efficiently
by prefix-projected pattern growth. In ICDE ’01: Proceedings of the 17th Interna-
tional Conference on Data Engineering, page 215, Washington, DC, USA, 2001.
IEEE Computer Society.

[9] Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns: Gener-
alizations and performance improvements. In Advances in Database Technology -
EDBT’96, 5th International Conference on Extending Database Technology, Avi-
gnon, France, March 25-29, 1996, Proceedings, volume 1057 of Lecture Notes in
Computer Science, pages 3–17. Springer, 1996.

[10] H. Toivonen. Sampling large databases for association rules. In Proceedings of
the Twenty-Second International Conference on Very Large Data Bases (VLDB
’96), pages 134–145, San Francisco, Ca., USA, September 1996. Morgan Kauf-
mann.

[11] Q. Zhao and S.S. Bhowmick. Sequential pattern mining: a survey. Technical re-
port, School of Computer Engineering, Nanyang Technological University, Sin-
gapore, 2003.

13

	1 Introduction
	1.1 Approach
	1.2 Problem definition
	1.3 Related work

	2 Our solution
	2.1 Generation of all traces
	2.2 Generation of a random sample
	2.3 Time and error analysis
	2.4 Putting things together

	3 From event sequence to a DAG
	4 Experiments
	4.1 Results

