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Abstract—Consider a typical recommendation problem. A
company has historical records of products sold to a large
customer base. These records may be compactly represented
as a sparse customer-times-product “who-bought-what” binay
matrix. Given this matrix, the goal is to build a model
that provides recommendations for which products should
be sold next to the existing customer base. Such problems
may naturally be formulated as collaborative filtering tasks.
However, this is a one-classsetting, that is, the only known
entries in the matrix are one-valued. If a customer has not
bought a product yet, it does not imply that the customer has
a low propensity to potentiallybe interested in that product. In
the absence of entries explicitly labeled as negative examples,
one may resort to considering unobserved customer-product
pairs as either missing data or as surrogate negative instances.
In this paper, we propose an approach to explicitly deal with
this kind of ambiguity by instead treating the unobserved
entries as optimization variables. These variables are opti-
mized in conjunction with learning a weighted, low-rank non-
negative matrix factorization (NMF) of the customer-product
matrix, similar to how Transductive SVMs implement the
low-density separation principle for semi-supervised learning.
Experimental results show that our approach gives significantly
better recommendations in comparison to various competing
alternatives on one-class collaborative filtering tasks.

Keywords-Collaborative Filtering; NMF; Implicit Feedback;
Matrix Completion

I. INTRODUCTION

e-commerce setting (e.g., Amazon) and corporate customers
of a large IT company (e.g., IBM).

The recently concluded million-dollar Netflix competi-
tion has catapulted collaborative filtering and, in patiacu
matrix factorization techniques, to the forefront of reeom
mender technologies [1]. However, these methods rely on
the availability of explicit feedback, and it is well knowmatt
their performance is bounded by the number of observed ma-
trix entries. In a Netflix-like setting, the user-movie niatr
consists of three kinds of entries: positive ratings exgings
viewing preferences, negative ratings expressing disiike
unrated movies that may be simply considered as missing
data to be estimated. On the other hand, many application
settings inherently generate one-class (i.e., positivig)on
datasets, since the knowledge required for labeling exasnpl
as negative is typically not available explicitly and ditfic
to collect. In such cases, the observed events are reliable
indicators of what the user liked. However, there is no
explicit information about what the user did not like, besau
the unobserved user-item pairs can be interpreted in many
different ways. For example, the reason why a user did not
purchase a product could be that she was simply not aware
of it.

With positive-only data, matrix factorization models may
be learnt by treating zeros (unobserved entries) as missing

Recommender systems have become increasingly impodata. This is an intuitively suboptimal strategy since it
tant tools to help users efficiently sort through a largeattempts to learn only from a very small set of positive
number of offered items and services and focus on the onesxamples. At the other extreme is the strategy of treating
that are mostly likely of interest. Broadly speaking, reeom zeros as negative. This too seems suboptimal in that a user-
mender systems are typically based on one of two alternativikem pair that may turn positive in the future is marked as a

strategies. Theontent based approaadtreates profiles that

low-affinity (negative) example. The latter methodologeso

capture the characteristic features of users and items, arthve the advantage that if most zeros are indeed negative,

uses these features to identify likely linkage/affinityvoeen

then the latent factors provide a representation where-high

a user and an item. The main difficulty with this approachaffinity user-item pairs can be better discriminated adains
is that it is often laborious and some times impossible tahe low-affinity ones, modulo labeling errors that are intro

collect the external information needed to create the pfil
In contrast, thecollaborative filteringapproach relies only

duced by markingll zeros as negative.
We formulate a new strategy that avoids either extreme

on past user activities as recorded in transaction historpy means of explicit optimization. We treat the associated
or satisfaction ratings. Besides the reduced burden on datsser-item pair as an optimization variable. The latentolisct

collection , another major appeal of collaborative filtgria

and these discrete label variables are learnt simultaheous

that it is domain agnostic. For example, the same algorithnWe propose a novel procedure to minimize the associ-
can be expected to apply equally well to consumers in amted objective function, drawing from global optimization



techniques (deterministic annealing/continuation/htmpy  factor encodes low-density linear separators with resfmect
methods) for combinatorial and non-convex problems. Theséhe point cloud induced by the other factor.
techniques have been utilized in the context of Low-density

separation in Semi-supervised SVMs [2], [3]; but here, they IIl. FORMULATION

are applied in conjunction with NMF optimization. Let X be am x n binary matrix, such as a typical
who-bought-what customer-product matrix. The set of non-
Il. BACKGROUND AND RELATED WORK zeros,L = {(i,j) : X;; = 1}, denotes customer-product

) urchasesX;; = 0 means that no purchase was made, but
A large number of techniques have been proposed foF ! b

. Lo s not strictly a negative example. We will use= {(i, j) :
collaborative filtering (see, e.g., [4], [5], [6], [7], [8]) X;; = 0} to denote these “unlabeled” examples.{( )

with some extensions to incorporate additional user-item We assume that customers and products can be rep-

resented in an unknown lower-dimensional feature space,

to collaborative filtering, a customer and a product are, here features correspond to latent variables. et —
represented as unknown feature vectors, € R* whose (w1 w ]T be anm x k matrix whoseit" rovx} w.. is
g ooy Wi ’ (2]

dimensions are considered {astatent factors. These feature the k" dimensional representation of a customer. Similarly,

vectors are learnt so.that |nn.er_produ'¢a‘z§h match the et H = [hy, ..., hy] be ak x n matrix whosej*" column,

known preference ratings. This is equivalent to the prob—h_ is thek'" dimensional representation of a product. Then

lem of building weightedapproximations of the preference vv]éighted non-negative matrix factorization (WNMF) solves:’

matrix where weights are chosen such that known ratings are

emphasized in measuring the quality of the approximation.

various models (see [11], [1]) differ in the approximation argmin A|W|5+~|H|F+ Y CiyV(Xij,w!'h;) (1)

criteria or the loss function they employ, and the kinds of V=020 (id)eL

regularization used to avoid overfitting. whereV is a loss function (i.e., squared loss or generalized
One-class matrix factorization is a relatively recent teem KL_divergence)_ For f|ex|b|||ty, we allow entry specific ass

of research, despite the ubiquity of recommendation task@ij > 0. The real-valued parameters > 0 and A\ > 0

where they could be used. [12], [13], [14] are recentiradeoff the regularizers against the data-fit terms. The

papers that propose weighting and sampling schemes tghove problem can also be solved without non-negativity

handle one-class settings with unconstrained factodzgti  constraints; however, learning non-negative factors israh

based on the squared loss. The essential idea is to tregdr non_negative data and lends “part_based” interprémbi

all non-positive user-item pairs as negative examples, bup the model [19], [20] . After learningy, H, the data matrix

appropriately control their contribution in the objective js reconstructed a& = W H. The (i, ) customer-product

function via either uniform, user-specific or item-specific pair for which Xij is |arge are then recommended.

weights. Our formulation in this paper subsumes these ideas |n a one-class setting, the loss function runs only over

as special cases. Preliminary experiments show that oyp, 5) pairs such thafX,;; = 1. Since the loss function does

proposed method outperforms the global, user and itemot include zero-valued pairs, this corresponds to trgatin

weighting schemes suggested by [12]. zeros as missing values. We refer to this approach. 43/
Several recent papers [15], [16], [17] have considered th¢zeros-as-missing) approach. An alternative approach is t

general problem oMatrix Completionfrom few observed treat zeros as negative exampl&4AN (zeros-as-negative).

entries. A surprising recent result [15], [16] states thatNote that theZ AN model is biased towards producing low-

an unknown low-rank matrix can be exactly recovered,scores for products that a customer has not bought before,

under certain conditions, by solving the convex optim@ati which may not be an accurate assumption. In this paper, we

problem of finding, among all matrices consistent with consider an alternative betwegm M and ZAN. We call it

the observed entries, the one with minimum nuclear normid N M F, which stands fotow-density non-negative matrix

(sum of singular values). Note that these results do nofactorizations given the conceptual similarity to low-density

apply to one-class settings where a rank-one matrix fitgnethods in semi-supervised earning [18]. ThEVM F

the observed matrix entries perfectly. This makes the oneproblem can be formulated as:

class matrix completion problem radically different, amto

that needs additional assumptions beyond low-rank to be

approximately recovered. We introduce the notionlaf- irilggé T (W, H, {yij}gyev) =
densityassumption (i.e., the cluster assumption in the semi- vi;€{0,1},(5,5) €U
supervised classification [18]), in addition to low-rani e W2 +~||H|% + Z Ci; V(X5 wlh;)
able to address one-class settings. Under this consteaiet, ) R
INote: by “matrix factorization” we typically mean “matrix agptima- + Z Cijv(yijv U’zT hj) (2)

tion” since exact factorization is not the goal here. (1,5)€U



where J (W, H,{y;;}jev) is the objective function _T Z H(p;;) subject to: 1 Zpij =r (3)
whose first two optimization variables are the latent fagtor (i) eU Ul ij
W, H, while the third set of variables are discrefte, 1}- S _
valued variables, i.ey;; = 1 implies positive class while ~ The third line in the equation above represents the
yi; = 0 implies negative class. expected loss under the probab|I|t|$§_]-.. The last term
We will solve the optimization problem of Eq. (2), subject H () = —p log(p) — (1 — p) log(1 — p) is the smoothing
to the constraint that a certain user-specified fractiorhef t function measuring entropy. Wheh is very high, entropy
optimization variables are positive, i.% S ijyev Vi = is m_aX|m|zed atpi; = . This corr(_asponds to e_ssentlally
2r — 1, wherer will be a user-specified parameter which we SOIVing a softer version of AN (letting the negative label
will refer to as thepositive class ratioSimilar constraints are P€ 7 instead of0). As 7" is decreased, the optimal; can
added in the formulations for Semi-supervised SVMs [18].P€ shown to progressively harden to discrete variables.
Note some special cases EVM F. If we setr = 0, then We outline an alternating optimization procedure to min-
yi; = 0,(i,7) € U, we are lead back to th& AN model.  imize Jr(s-5-). First, let us assum@' is fixed. Our block
When we setC;; = 0,(i,j) € U, the dNMF model descent procedure first optimizég and H (NMF), while

trivially reduces toZ AM. keepingp;;'s fixed. Then keepindgV, H fixed, we optimize
pi;’s under the class ratio constraint. This is a convex
IV. OPTIMIZATION ALGORITHMS problem that can be solved exactly.

We propose a simple alternating minimization algorithm.
For any fixed setting of the;,; variables, the sub-problem
of optimizing W, H is a weighted NMF and a large family  For fixedp, the optimization oveiV, H involves the first
of techniques can in principle be brought to bear here (setour terms of Eq. (3). Adding a constant tefm,; Cijpfj,
[20] for a review). the forth term of Eq. (3) can be expresse@% Cij(pij —

The other sub-problem, that of optimizing;, (i,j) € U w] h;)%. Thus, it is easy to see thal/ and H can be
keepinglW and H fixed, is a discrete optimization problem. obtained by solving,

There are two problems to addre§$;we need to addition-

ally satisfy class balance constraint, gfiyl by aggressively —argmin \|W||% + ~||H|% + |C®*® ® (X — WH) 12 (4)
committing to discrete labels early in the optimization, "-#

the_ procedure runs the risk of getting trapped in a SUbWhere we use the following notation{ = (X + P),
optimal local minima. To address the latter issue, we focus

A . . A ® B denotes elementwise product between matrides
on deterministic annealing/homotopy methods given their,

. S and B, (C®95),. = ,/C;., P is the matrix of optimization
robustness to presence of sub-optimal local minima. Thes\?ariable(s whgsje elemejnts equa) when (i, ) epU and 0
are well-known techniques for handing discrete optimaati when (i j’) € L. Thus, the sub-problem of r7n]inimizirig’ 17

variables. We point the reader to [3], [2] for an overview. for fixed p;;'s is the weighted NMF problem of Eq. (4).

Operationally speaking, they involve the following steps: The solution can be obtained by alternating between the

1) Relax discrete variablesy;; to real valued following two multiplicative update steps,
probability-like variablesp;;. Instead of optimizing

J(W, H,{yi; }ijev) With respect toy;;, optimize the

A. OptimizingW, H for fixedp;; variables

WT[C® (X + P)

expected value of it under the probabilities. g = He WT[C®(WH)| +~H ®)
2) Smooth the new objective function, such that as the [C® (X +P)HT
smoothing parameter is varied, we solve a sequence of W o= Wwe [C® (WH) HT + \W (6)

optimization problems of increasing difficulty where

the solution of an easier optimization problem is usedwhere division is elementwise. Once inside this sub-reytin

as the starting point of a harder optimization. This kindsteps in Egs. (5) and (6) are repeatedly performed until

of smoothing protects against local minima. relative improvement in the NMF objective function falls
Let p;; denote the probability that;; = 1. The modified below some user-specified tolerance, or a maximum number

optimization problem is the following, of iterations are exceeded.

arg max Jr(W, H,{pij }ijev) = B. Optimizingp;; variables for fixedV, H
W2>0,H>0,{pij}i,j)ev . L .
) ) T For fixed W, H, the optimization ovefp;; involves the
ANWIE+HIE+ Y CiyV(A,wlhy) fourth and fifth term in the objective function of Eq. (3), sub
(i.5)el ject to the balance constraint. Letbe the Lagrange multi-
+ Z Cij (pijV(l,wfhj) +(1 7pij)v(o,wfhj)) plier corresponding to the balance constraj ,Zij Dij =

(i,j)eU . By defininggij = Sij [V(l, Oij) — V(O, Oij) , forming the



Lagrangian and settings its gradient to O, the optimacan  can be carried out il®(gp) steps for the numerator. In the

be shown to be given by, denominator, we make use of the following rearrangement:
1 7) q
i = —————— T _ T
Dij 14 ol W (Ce (WH)) = E (W' Ds,W) HDy,

i=1
where v can be found by substituting the above in the _WTD& (CL ® (WH)) Dy, +wWT(Cp® (WH)) (9)
balance constraint and solving:

q
1 1 (C®(WH)H" = " Ds,W(HDy,H")
ﬁ Z s v (8) =1
ijeu 1+e™T —D;, (Cr ® (WH)) Dg, H" + (Cr ® (WH)) H" (10)

The root is computed by using a hybrid combination-l-he key observation is that sincg, is sparse,C; ©

of Newton.—Raphson |terat|ons_ .and the bisection methoc{WH) is a sparse matrix whose computation only requires
together with a carefully set initial value [3]. the productWH to be evaluated wheré', is non-zero.
Thus, this is a0 (pk) operation. The overall complexity is
O((m+n)qk? + qpk) which is much smaller than the naive
In this subsection, we first examine the complexity of aimplementation.
naive implementation. Then we show how special structure Solving the one-dimensional root finding problem in
of the cost matrixC together with sparsity ik, and choice  Eqn. 8 has negligible cost relative to the weighted NMF
of a sparse set of optimization variablPsallow us to scale updates.
to very large datasets. We use the notatiafi4] to denote In summary, the use of low-rank cost matrices, in
the number of non-zeros in the matrik conjunction with a sparse set of optimization variablesisea
Consider the update off in Eq. (5). The overall com- to large-scale implementations. In practice, we use thke-ran
plexity is O(nz[X + PJk +mnk) and is clearly prohibitive one setting wherd; gives weights for users angh gives
for large m,n requiring also the computation of a large weights for items as in [13], [14].
dense intermediate matri¥ H. This complexity calculation In Section V, we report the performance EN M F at
assumes that (a) there is no structur€ithat can exploited 3 fixed value ofT", and study the sensitivity to this choice
for more efficient computations, (b) the matrX + P is  with respect to recommendation quality. In a full annealing
dense. Now we show how to scale up by relaxing thesgmplementation (not reported in this papef),is gradually
assumptions: reduced to0. Our convergence criteria is based on relative
e We assumeP is p-sparse i.e., hap non-zero entries. difference between KL-divergence pf;j variables between
This corresponds to only optimizing a subsetygf vari-  successive iterations, as also used in [2].
ables and fixing the rest to zero values. In this paper, for
large-scale experiments, we take a random subset to be V. EMPIRICAL STUDY
optimization variables though a judicious choice for it is
an interesting technical problem.
e We assumeC is an arbitrary low-rank non-negative
matrix of the formC = Y7 6,9, wherevi :  §; is
a column vector of lengthn, Vi : ¢, is a column vector

C. Complexity & Large-Scale Implementation

Comparisons with Other One-Class ApproachesThe
first baseline method we are usinBopularity, is based
on popularity of the items among users and the number
of each user’s past purchases. We mentioned the next two

of lengthn, and ¢ < min(m,n) is the rank ofC. The (ZAM and ZAN) earlier in the paper as natgral one-.class
way we can utilize this structure is due to an easy-to-se@PProaches. We also use three types of weigliatt (i)
connection between Hadamard (elementwise) products anfZAN (unif): a weighted version of ZAN where zeros are
Rank-one matricesC' ® F = >7_, Ds FD,,, where F is treated. as negatives, but a unle)rm we|gh_t with yalue less
anym x n matrix and the notatiom,, implies is a diagonal than1 is additionally imposed, (i) wZAN (item-oriented):
matrix with diagonal elements equal to the elements of th&°lUmn weighting on the user-item matrix, (iii) WZAN (user-
vectorv. In practice, we want to apply these weights On|yor|ented): row weighting on the user-item matrix. These

to unlabeled entries and retain a weight of 1 for labeledVeighted ZAN schemes were proposed in [12], [13] and
positive entries. This can be achieved as follows, implemented with unconstrained factorizations; here, we

apply them with NMF.

Evaluation Protocol: Recommender Systems typically
show great variability with respect to choice of evaluation
measure [21]. One-Class Collaborative Filtering expenitse
where(C7, is 1 for positive entries antl otherwise. In other in [13] showed that no single technique tends to dominate
words, C, = X. When F' = (X + P), this computation with respect to all metrics. In this paper, we considered two

q
C®F =Y DsFDy, —Ds,(CL®F)Dy, + (CpL @ F)

i=1



Table |
COMPARISON OF ALL METHODS IN TERMS OFAREA UNDER ROC QURVE AND AREA UNDER PRECISIONRECALL CURVE. NOTE THAT THE
PARAMETERS OF BASELINE METHODS ARE CAREFULLY OPTIMIZEDIdAN M F' GIVES STATISTICALLY SIGNIFICANT IMPROVEMENTS IN ALL CASES

Methods AUC-ROC AUC-PrRc
rank =5 rank =10 | rank =15 rank =5 rank =10 | rank =15
Popularity 495+ 0.4 495+ 0.4 | 495+ 0.4 09+0.01| 09+ 0.01 | 0.9+ 0.01
ZAM 416+ 3.7 42,3+ 4.2 416+ 3.7 09+0.01| 009+ 0.01 | 0.9+ 0.01
ZAN 724+ 04 735+ 04 73.1+ 0.3 09+0.01| 009+ 0.01 | 0.9+ 0.01
WZAN (unif) 726+ 0.5 73.6+ 0.4 73.3+0.3 20.9+0.2 | 227+ 0.3 | 223+ 0.2
WZAN (item) 7294+ 0.5 7394+ 0.3 | 73.7+ 0.34 209+0.2 | 228+ 0.3 | 225+ 0.3
WZAN (user) 715+ 0.26 | 72.0+ 0.3 71.6+ 0.3 11.54+0.1 13.14+ 0.2 | 13.04+ 0.2
IONMF (proposed)| 74.84+ 0.3 | 7524+ 0.3 | 749+ 0.2 214+ 03| 23.3+£ 03 | 23.3+ 04

Table Il
COMPARISON OF ALL METHODS IN TERMS OF TRAINING TIME(SEC) Table Il
SENSITIVITY TO 7 AND T’
Methods| Rank — 5 10 15
Popularity 17 17 17 r 0.001| 0.01| 0.1 0.3 0.5 0.7
ZAM 330 400 375 AUC-PrRc | 23.1 | 233 | 235 | 228 | 21.0| 16.2
ZAN 687 | 1044 | 1589 AUC-ROC | 739 | 747 | 745| 71.0| 71.0 | 66.2
WZAN (unif) 747 868 | 1591 T 0.1 1 10 50 100 | 1000
WZAN (item) 1056 | 1301 | 1982 AUC-PrRc | 7.6 | 235 | 235 235 | 235 | 235
WZAN (user) 703 | 881 | 1600 AUC-ROC | 724 | 74.6 | 745 | 745 | 745 | 745
IONMF (proposed) | 1531 | 1785 | 1788

evaluation metrics: area under precision-recall curve QAU with only a small increase in overall training time.
PrRc) and area under ROC curves (AUC-ROC). We also We report performance sensitivity toin Table Il (first
carefully optimized the baselines approaches over a larg8 rows) keepindl’ fixed at10. Similarly, keepingr fixed at
set of parameters and then observed whether the proposéd, in Table Il (last 3 rows) we report performance sensitity
method could further lead to performance improvements. with respect to choice df'. We see thatld N M F' tends to be
Small Scale Experiments on MovieLensWe first con-  robust to the selection of, as the performance is stable for
ducted experiments on the MovieLens dataset publically- € [0.001,0.2]. Large values of- clearly enforce incorrect
available atnttp://ww: groupl ens. org/ . The data consists of priors and naturally lead to loss of accuracy. With regaods t
100,000 ratings on an integer scale from 1 to 5 given tosensitivity with respect to choice af, we see thatd N M F’
1642 movies by 943 users. For one-class experiments, wends to be very stable.
removed all 3 and below ratings, and relabeled ratings 4 Large-Scale Experiments on Netflix DatasetWe con-
and 5 as 1, to then pose the task of recommending movieducted large-scale experiments on the Netflix Prize dataset
given user preferences alone. We created random trainingvhere we considered the one class “who-rated-what” prob-
test splits of positive customer-movie pairs in the rati®#¢5 lem i.e., whether a user rated a movie (a KDD Cup 2007
t0-25% respectively. All results reported in this sectioe a task). The Netflix matrix represent$’0,189 users and
averaged ovet0 random splits. We also use this dataset for17770 movies with aroundl00 million ratings. We con-
a detailed study of comparison against baseline methods arsidered a sparsity setting where a random set0ofnillion
sensitivity to parameters. ratings are available in a training matrix while the remagni
In Tables | and V we report AUC-PrRc, AUC-ROC and 80 million are used for evaluation. We implemented the
the training times respectively, for each of théaselines, modified update equations developed in Section IV-C where
and compare them withd N M F' for three choices of rank. we took a massive set @) million ratings as optimization
For simplicity, for all methods, we chose = A\ = 0. All variables. Table V lists the performance obtained by variou
baseline methods were initialized from the same initial ran methods. Recall that Weighted AN treats zeros as neg-
domW, H, and the number of matrix factorization iterations atives and imposes uniform, user or item specific weights
are fixed. on them. We apply the same weights in our large-scale
As expected, since it only uses a small set of positivealgorithm to demonstrate the ability to incorporate lowka
examples,Z AM returns the worst performance. Popularity cost matrices.
also does not give good result§ AN performs substan- Table V shows the computational performance on the
tially better thanZ AM and Popularity-based schemes. Thenetflix dataset in terms of observed increasing improvement
performance of ZAN tends to improve with user-orientedin AUC-ROC as the optimizations progresses over time for
weighting, but becomes comparable with item-oriented anddNM F (with a uniform cost matrix). The experiments
uniform weightings.ldN M F' gives statistically significant were conducted on a cluster with nodes having ordinary
improvements for both precision-recall and ROC evaluationCPU/memory configurations. These results clearly show that



Table IV

PERFORMANCE ONNETFLIX Table V expected revenue and time taken to close a transaction, as
DATASET COMPUTATIONAL well as the "non-obviousness” are also important business
PERFORMANCE(SECS factors in judging the value of a recommendation.
Method AUC-ROC
N o Time | AUC-ROC REFERENCES
; ' 277 94.4 [1] R. B. Yehuda Koren and C. \Volinsky, “Matrix factorization
WZAN (uniform) 77.3 .
WZAN (item 755 1096 94.7 techniques for recommender systems,”|EEE Computer
( ) 5535 95.0
WZAN (user) 93.8 8671 958 vol. 42 (8), pp. 30-37.
[dNMF (uniform) 96.1 ) [2] V. Sindhwani, S. Keerthi, and Olivier, “Deterministic anneal-
. 11778 96.1 ) X ; oo :
IdNMF (item) 93.8 ing for semi-supervised kernel machines,” limernational
IdNMF (user) 94.2 Conference on Machine Learning006.

[3] V. Sindhwani and S. Keerthi, “Large scale semi-supervised
linear svms,” inSIGIR 2006.

IdNMF can, in practice, be run on large datasets by utiliz- [ D- Goldberg, D. Nichols, B. Oki, and D. Terry, “Using
collaborative filtering to weave an information tapestry,” in

ing efficient sparse matrix computations to optimize sdvera Comm. ACM, 351992,

millions of variables. Table V shows that a comparison to [5] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical anal-
baseline methods for various choices of cost matrices.elhes ysis of predictive algorithms for collaborative filtering,” in
results also demonstrate that optimizing a random subset of _ UAI, 1998. o _
variables as outlined in section IV-C can be sufficient for [6] D- Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite,

. - - . and C. Kadie., “Dependency networks for inference, collabo-
obtaining improvements. We see consistent improvements asive filtering, and data visualization.” fournal of Machine

in AUC-ROC. Learning Researghvol. 1, 2000, pp. 49-75.
[7] J. Rennie and N. Srebro, “Fast maximum margin matrix
VI. CONCLUDING COMMENTS factorization for collaborative prediction.” iCML, 2005.

. o [8] N. Srebro and T. Jaakkola, “Weighted low-rank approxima-
In this paper, we have presented a principled, novel ° tions,” in ICML, 2003.

optimization approach to one-class matrix completion and[9] P. Melville, R. Mooney, and R. Nagarajan, “Content-boosted
collaborative filtering problems. Knowing that the under- collaborative filtering for improved recommendations,” in

. . .. .. . AAAI 2002.
lying matrix is low-rank is insufficient for approximate [10] T. E. J-P. V. J. Abemethy, F. Bach, “A new approach

recovery in this setting, making it necessary to make ad~ "y, co|iaborative filtering: Operator estimation with spectral
ditional assumptions. We have drawn, both in terms of regularization,” inJMLR, vol. 10, 2009, pp. 803—826.
intuitions and also in terms of algorithmic frameworks, [11] T. K.-l. N. A. S. Miklo Kurucz, Andras A. Benczur and
from semi-supervised learning methodologies based on the B. Torma., “Who rated what: a combination of svd, corre-
low-density assumption. Our method jointly learns a non-,, . \ation and frequent sequence mining.”KiD, 2007.

) ) L . . [12] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz,
negative matrix factorization model for collaborativedit and Q. Yang, “One-class collaborative filtering” IEDM

ing while optimizing for unknown discrete label variables 2008.
using non-convex optimization techniques. Our approachil3] R. Pan and M. Scholz, “Mind the gaps: Weighting the
gives statistically significant improvements oerompeting l}i%kgoggog] large-scale one-class collaborative filtering.” in

alterngtlves fqr one-clgss_ collaborative filtering Wlthnn(? [14] Y. Hu, Y. Koren, and C. Wolinsky, “Collaborative filtering for
negat|ve.r.natr|x factqnzauons. We are currgntly studying implicit feedback datasets,” ifCDM, 2008.
the empirical behavior of our approach with respect to[15] E. Candes and T. Tao, “The power of convex relaxation:
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