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Abstract—Mining frequent itemsets from transactional
datasets is a well known problem with good algorithmic so-
lutions. Most of these algorithms assume that the input data is
free from errors. Real data, however, is often affected by noise.
Such noise can be represented by uncertain datasets in which
each item has an existence probability. Recently, Bernecker
et al. (2009) proposed the frequentness probability; i.e., the
probability that a given itemset is frequent, to select itemsets
in an uncertain database. A dynamic programming approach
to evaluate this measure was given as well. We argue, however,
that for the setting of Bernecker et al. (2009), that assumes
independence between the items, already well-known statistical
tools exist. We show how the frequentness probability can be
approximated extremely accurately using a form of the central
limit theorem. We experimentally evaluated our approximation
and compared it to the dynamic programming approach. The
evaluation shows that our approximation method is extremely
accurate even for very small databases while at the same time
it has much lower memory overhead and computation time.

I. INTRODUCTION

In frequent itemset mining, the considered transaction
dataset is typically represented as a binary matrix M where
each line represents a transaction and every column corre-
sponds to an item. An element Mij represents the presence
or the absence of the item j in transaction i by the value 1 or
0 respectively as in Table I (left). This is the basic traditional
model, where we are certain that an item is present or absent
in a transaction. For this type of data many algorithms have
been proposed for mining frequent itemsets; i.e., sets of
columns of M that have all ones in at least a given number
of transactions (see e.g. [6] for an overview on frequent
itemset mining).
In several applications, however, an item is not present or

absent in a transaction, but rather the probability of it being
in the transaction is given. This is the case for data collected
from experimental measurements susceptible to noise. For
example, in satellite picture data the presence of an object
or feature can be expressed more faithfully by a probability
score when it is obtained by subjective human interpretation
or an image segmentation tool.
Such data is called uncertain data and Table I (right)

presents a popular type of uncertain database. This example
dataset consists of 4 transactions and 3 items. For every
transaction, a score between 0 and 1 is given to reflect
the probability that the item is present in the transaction.

TID a b c

t1 1 1 0
t2 0 0 1
t3 1 1 0
t4 1 1 0

TID a b c

t1 0.9 0.8 0.2
t2 0.1 0.1 0.9
t3 0.6 0.8 0.3
t4 0.9 0.9 0.2

Table I
CERTAIN DATASET (LEFT) AND UNCERTAIN DATASET (RIGHT)

For example, the existence probability of 0.9 associated
to item a in the first transaction represents that there is
a 90% probability that a is present in transaction t1 and
10% probability that it is absent. Table I (left) actually
represents an instantiation of the uncertain dataset depicted
in Table I (right). Such instantiations are called possible
worlds. There are 2|T |∗|I| possible worlds, where |T | is the
total number of transactions and |I| the total number of
items in the dataset. Under the assumption that presence
and absence of the different items is statistical independent,
the probability of a possible world is obtained by simply
multiplying the individual item probabilities. We will call
this model the independent uncertain database model. For
example, the probability of the world in Table I (left) is
0.9 × 0.8 × 0.8 × 0.9 × . . . × 0.8 = 0.0914. A far less
probable world is obtained if we take the complement of
Table I (left); i.e., we switch the ones to zeroes and the
zeroes to ones. The probability of this world is 1.92∗10−10.
The probabilities of all possible worlds sum up to 1.
Mining frequent patterns from this kind of datasets

is more difficult than mining from traditional transaction
datasets. After all, computing the support of an itemset
now has to take the existence probabilities of the items into
consideration. To provide information about the frequency
of an itemset, two approaches exist. One is based on the
expected support as introduced by Chui et al. [5]. For
every itemset, its expected support is computed and those
for which it exceeds a minimum threshold are reported as
frequent. The second one is called frequentness probability
and it was introduced in [2]. For a particular itemset, it takes
into consideration the probability distribution of the support
and it gives its probability of being frequent at a given
minimum support threshold. The existing methods have the
drawback of being computationally costly and being exposed
to rounding errors when dealing with low probability values.



For example, the dynamic programming approach proposed
in [2] to compute the frequentness probability requires
O(minsup|D|) computation steps, where minsup is the
minimal support threshold and |D| the size of the dataset.
This paper is similar in spirit as [3]. In [3] we showed

that for the independent uncertain database model a simple
sampling technique gives very good results when computing
the expected frequency of an itemset. In this paper we show
that also for estimating the itemset frequency distribution
there are good statistical tools available. This time, however,
we do not rely on sampling and Hoeffding’s inequality to
bound the error on the mean, but instead we use a Normal
approximation. Concretely, we show that the frequentness
probability of itemsets can be approximated by a normal
distribution function using a weak version of the Central
Limit Theorem. Even for small datasets this approximation
turns out to be surprisingly accurate. In contrast to the
exact computation, the approximation scales linearly in the
number of transactions and is independent of any minimal
support or minimal frequentness thresholds.
We would like to stress that the main core of this paper

is about how the frequentness probability computation for
a single itemset can be optimized using standard statistical
techniques. As such, the conclusions of this paper extend
to every data mining method that is based on frequentness
properties of itemsets. The main message of this paper there-
fore is: In the probabilistic database model that assumes
independence between items in a transaction database, stan-
dard statistical tools such as the Central Limit Theorem can
and should be used to characterize the frequency distribution
of the itemsets.

II. FREQUENTNESS PROBABILITY
In this section we formally define the notion of the un-

certain database, frequency distribution, expected frequency,
and frequentness probability. The definitions given here are
equivalent to those in [5], [2].
Definition 1 (Uncertain database): Let T be a set of

transaction identifiers, and I a set of items.
An uncertain database D over T × I is a total function

from T × I to the interval [0, 1].
A possible world W of D is a subset of T × I . The

probability of the possible world W given the uncertain
database D, denoted PD(W ), is defined as

PD(W ) :=

⎛
⎝ ∏

(t,i)∈W

D(t, i)

⎞
⎠

⎛
⎝ ∏

(t,i)∈(T×I)\W

(1 − D(t, i))

⎞
⎠

Let WD denote the set of all possible worlds of D.
The support of an itemset X ⊆ I in a possible world W

is defined as the number of transactions in W that contain
X ; i.e.: sup(X, W ) := |{t ∈ T | ∀x ∈ X : (t, x) ∈ W}|.
It is easy to see that PD describes a probability distribution
over the possible worlds of the uncertain dataset. Computing

the frequency of an itemset in uncertain datasets is based
on this distribution. Among all possible worlds, we don’t
now which one is the true world; rather, PD assigns the
probability of being the true world. Given this, the expected
support of an itemset X ⊆ I is:

expSup(X) :=
∑

W∈WD

PD(W )sup(X, W ) ,

which is equivalent to the definition in Chui et al. [5]:∑
t∈T

∏
x∈X

PD(t, x) .

That is, because all item occurrences are independent, we
can rewrite the expression with the possible worlds into one
that only involves for every transaction in T , the probability
that it contains the itemset X .
The distribution of the support of an itemset X ⊆ I can

now be computed as follows:

PD(sup(X) = i) =
∑

W∈WD

sup(X,W )=i

PD(W ) ,

which is equivalent to [2]:

∑
S⊆T

|S|=i

(∏
t∈S

PD(X ⊆ t)

) ⎛
⎝ ∏

t∈T\S

(1 − PD(X ⊆ t))

⎞
⎠ ,

where PD(X ⊆ t) denotes
∏

x∈X PD(t, x). The probability
of X having a support of i can thus be computed by
summing over all subsets S ⊆ T of size i, the probability
that the transactions in S contain X , and all others do not.

A. The Frequentness Probability Problem
For given minimal support minsup, the frequentness

probability of itemset X [2] is now defined as:

PD(sup(X) ≥ minsup) ,

which equals

∑
S⊆T

|S|≥i

(∏
t∈S

PD(X ⊆ t)

) ⎛
⎝ ∏

t∈T\S

(1 − PD(X ⊆ t))

⎞
⎠ ,

In [2], the following Probabilistic Frequent Itemset Min-
ing (PFIM) problem was proposed: given an uncertain
database D, a minimal support threshold minsup and a
minimal frequentness probability τ , find all itemsets X with
a frequentness probability of at least τ ; i.e., PD(sup(X) ≥
minsup) ≥ τ .
For solving the PFIM problem, in [2] a dynamic pro-

gramming approach is proposed based on the following
observation: let T = {t1, . . . , tn}, and let Dj denote
the restriction of the uncertain database D to its first j



transactions t1, . . . , tj . Following the notations of [2], we
denote PDj

(sup(X) ≥ i) by P≥i,j . Then,

P≥i,j = PD(X ⊆ tj) · P≥i−1,j−1

+ (1 − PD(X ⊆ tj)) · P≥i,j−1 .

By incremental computation of the values P≥i,j ,
the frequentness probability PD(sup(X) ≥
minsup) = P≥minsup,|T | can be computed in
O(minsup|T |). Different optimizations are possible,
such as 0 − 1 optimization and early pruning for itemsets
not meeting the frequentness probability. For details we
refer to the paper [2]. The main take-away message we
want to stress here is that the algorithm of [2] is exact,
computes the frequentness probability for one itemset X ,
and has complexity O(minsup|T |). For computing all
itemsets that satisfy the frequentness probability threshold,
the monotonicity of frequentness is used: the frequentness
probability of an itemset is at most as high as the
frequentness probability of its subsets. This follows trivially
from the fact that in every possible world where an itemset
is frequent, also all its subsets are frequent.

III. APRIORIAPPROX: A METHOD FOR APPROXIMATING
THE FREQUENTNESS PROBABILITY

In this section we propose an alternative method for
approximating the frequentness probability, by approximat-
ing the frequency distribution of an itemset with a normal
distribution using a weak version of the Central Limit
Theorem. Every transaction can be considered as a single
coin toss; either the transaction contains the itemset X ,
or it doesn’t. The final support of the itemset X is the
sum of the outcomes of these coin tosses. We can now
use a weak form of the central limit theorem, known as
the Lyapunov’s Central Limit Theorem: Let X1, X2, . . . be
an infinite sequence of stochastic variables, and let, for all
numbers N , s2

N denote
∑n

k=1 σ2
k (σ2

k denotes the variance
of variable Xk). The theorem states that if for some δ > 0
the following two conditions hold:
1) E[|Xk|2+δ] is finite for all k, and
2) limN→∞

1

s
2+δ
N

∑N
i=1 E[|Xi − μi|2+δ] = 0

then the Central Limit Theorem still holds; i.e.,

Zn =

∑n
i=1(Xi − μi)

sn

converges in distribution to a standard normal random vari-
able as n goes to infinity.
In our case, Xk is a stochastic variable denoting if trans-

action tk contains itemset X . Xk follows a Bernoulli distri-
bution; PD(Xk = 0) = 1 − ∏

x∈X D(tk, x), and PD(Xk =
1) =

∏
x∈X D(tk, x). Therefore, σ2

k = PD(Xk = 1)(1 −
PD(Xk = 1)), and s2

N =
∑n

k=1 PD(Xk = 1)(1−PD(Xk =
1)). The support can be expressed by the probabilistic
variable S =

∑|T |
i=1 Xi, and the expected support equals

E[S] = expSup(X ).

Algorithm 1 Apriori Framework
Require: D, σ, minfreqprob
Ensure: F (D, σ, freqprob)
1: C1 := {i|i ∈ I}
2: k := 1
3: while Ck is not empty do
4: for all transactions t in D do
5: for Candidates in Ck do
6: if X ⊂ t then
7: update(X)
8: end if
9: end for
10: end for
11: Fk := {X ∈ Ck|X.freqprob ≥ minfreqprob}
12: Ck+1 := generateCandidates(Fk)
13: k + +
14: end while

We will show that the two conditions hold for δ = 1.
Clearly, for all k, E[|Xk|3] ≤ 1, as Xk is either 0 or 1,

and it also holds that:

lim
N→∞

1

s2+δ
N

N∑
i=1

E[|Xi − μi|2+δ] = 0

Therefore,
∑N

i=1
(Xi−μi)

sN
converges to a normal distribution

for increasing N . For N = |T |, we get:∑N
i=1(Xi − μi)

sN

=
S − expSup(X)√

s2
N

Hence, for sufficiently large databases T , S−expSup(X)√
s2

N

converges in probability to the standard normal distribution,
and thus:

P (S ≥ minsupp)

= Φ

(
minsupp − 0.5 − expSup(X)√

s2
N

)

A. Computing All Itemsets
Computing the frequentness probability can be done in a

systematic manner thanks to its anti-monotonic property. For
enumerating the candidates we use an Apriori-like breadth-
first strategy depicted in the Algorithm 1. This approach
consists in iteratively generating, counting and pruning the
candidates. The differences from the traditional Apriori
are in the counting step (line 7) and in pruning criterium
(line 11). For the counting step, instead of incrementing
the support, we have to update two variables: one for the
expected support and the second one for

s2
n =

n∑
k=1

PD(Xk = 1)(1 − PD(Xk = 1))



# trans. Avg.
length

# items density

KOSARAK 990980 8.1 119 0.02%
CONNECT4 67557 43.0 129 33,3%
T40I10D100K 100000 39.6 942 4.2%
T25I15D320K 320000 26.28 994 0.02%

Figure 1. Datasets Summary

The approximation of frequentness probability will be com-
puted after the dataset is scanned using the cumulative
distribution function Φ:

freqprob(X) = Φ

(
minsupp − 0.5 − expSup(X)

sn

)
The pruning step relies on the frequentness probability
counted as above. The pruning criterium is based on the
condition that the frequentness probability is lower than the
minimal frequentness threshold.

IV. EXPERIMENTS
The experiments were conducted on a GNU/Linux

machine with a 2.1GHz CPU Dual Core and 3.5 Gb
of main memory. We use the datasets from [1]. Con-
nect4 and Kosarak are available on the FIMI repository1.
T40I10D100K and T25I15D320K were generated using
the IBM synthetic data generator2. A brief description of
these datasets is available in 1. The original datasets were
transformed by Aggarwal et al. [1] into uncertain datasets
by assigning to every item in every transaction existential
probabilities according to the normal distribution N(μ, σ2),
where μ and σ were randomly and independently generated
with values ranging between [0.87, 0.99] and [1/21, 1/12]
respectively.
For producing the results, we implemented the AprioriAp-

prox method described in Section III. In order to evaluate
our method in terms of execution time and accuracy of the
results, we have implemented the PFIM method based on the
Probabilistic Frequent Itemset Mining approach proposed in
[2] and discussed in Section II-A. The same Apriori frame-
work has been used with the difference that, for every item-
set, a vector containing the non-zero existence probabilities
of the itemset was stored. This is the 0-1 optimization since,
for large sparse datasets, it is important not to carry vectors
of the size of the dataset consisting mainly of null values.
Based on this vector, the exact frequentness probability is
computed according to the dynamic programming scheme.
We consider this implementation as base-line method for
validating the accuracy of our approximation.
In Figure 2 we compare the execution times of the two

approaches. The X-axis represents the varying minsup, in

1http://fimi.cs.helsinki.fi/
2http://www.almaden.ibm.com/cs/projects/iis/hdb/Projects/data mining/

datasets/syndata.html
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Figure 3. Number of patterns for varying support

percentage of the dataset size, and the Y-axis the execution
time. The minimum frequentness probability is set to 0.8.
We also used, for the Kosarak and datasets the early pruning
optimization which speeds up the base-line method as it can
be seen in Figure 2(b) and 2(c), but is still few orders of
magnitude slower than AprioriApprox. As expected, in terms
of execution time, AprioriApprox always outperforms PFIM.
The reason is that our method does not overload the memory
by constructing the vectors as PFIM. Moreover, PFIM
requires O(minsup|D|) computation steps, where |D| is the
size of the dataset and minsup is the minimum support. So,
for higher minsup, more computations are needed, which is
not the case of AprioriApprox. For the cases where PFIM
overloaded the memory, we used a technique to avoid this,
by splitting the set of candidates into batches such that by
one traversal of the dataset only the candidates in the active
batch were counted and then pruned, without overloading
the memory. However, executions exceeding 2 hours were
stopped.
Figure 3 shows the number of patterns for different values

of minsup. Both X and Y axes are on log scale. We report
the number of itemsets obtained with the approximation and,
for the cases where the FPIM gave results, we compare the
error introduced and the number of False Positives and False
negatives which are depicted in Table II.
The error in approximation is depicted in Figures 5 and 6.

The average error and the maximum error for every collec-
tion of patterns are represented. These errors were calculated
only for the runs where PFIM succeeded since this gives the
exact value of the frequentness probability. Almost exactly
the same collections of patterns were generated, the average
error in support being less than 0.0005 and never exceeding
0.0035. Very few false positives and false negatives were
generated as can be seen in Table II. This was the case only
for itemsets for which the frequentness probability was very
close to the minimum probability threshold.
The next experiment investigates the impact of the number

of tuples in the dataset on the accuracy of the approximation.
We took the Kosarak dataset and we randomly sampled



0

500

1000

1500

2000

2500

20 25 30 35 40 45 50 55 60 65

tim
e 

(s
)

minsup (%)

AprioriApprox

(a) Connect4

0

500

1000

1500

2000

2500

3000

3500

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

tim
e 

(s
)

minsup (%)

PFIM
PFIM+P

AprioriApprox

(b) T40I10D100K

0

500

1000

1500

2000

2500

3000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

tim
e 

(s
)

minsup (%)

PFIM
PFIM+P

AprioriApprox

(c) Kosarak

Figure 2. Execution Time

minsup T40I10D100K
0.01% FP -

FN -
TP -

0.02% FP 47
FN 4
TP 276438

0.04% FP 1
FN 1
TP 45155

0.06% FP 0
FN 0
TP 16072

1% FP 0
FN 0
TP 4238

3% FP 0
FN 0
TP 410

5% FP 0
FN 0
TP 216

minsup Kosarak
0.03% FP -

FN -
TP -

0.05% FP 10
FN 4
TP 116973

0.1% FP 0
FN 0
TP 16672

0.2% FP 0
FN 0
TP 3535

0.3% FP 0
FN 0
TP 1626

0.5% FP -
FN -
TP -

0.8% FP -
FN -
TP -

Table II
CONFUSION MATRICES

it in order to obtain datasets with different number of
transactions. From each of this newly generated datasets we
extract the itemsets that satisfy the frequentness probability
threshold set to 0.8 as in the previous experiments, given a
minimum support of 0.2%. The results are presented in Table
IV. As it can be seen, the approximation remains accurate,
even for a very low number of transactions.

V. RELATED WORK

Recent work on frequent itemset mining in uncertain data
focuses on methods for efficiently computing the expected
support. This methods inherit the breadth-first and depth-
first approaches from traditional frequent itemset mining
and adapt the data structures to the probabilistic model.
U-Apriori [5] represents a baseline algorithm for mining
frequent itemsets from uncertain datasets. Because of its
generate and test strategy, level by level, the method does
not scale well. UCP-Apriori [4] is based on the decremental
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#sample tuples False Positives False Negatives True Positives
Kosarak 990980 0 0 3535
Kosarak0.1 98869 0 0 3459
Kosarak0.01 9896 0 0 3223
Kosarak0.001 948 4 0 420
Kosarak0.0001 95 5 0 82
Kosarak0.00001 11 0 0 4

Table III
THE IMPACT OF THE DATASET SIZE ON THE APPROXIMATION FOR KOSARAK

pruning technique which consists in maintaining an upper
bound of the support and decrementing it while scanning
the dataset. The itemset is pruned as soon as its most
optimistic value falls below the threshold. This approach
represents the state of the art for mining frequent patterns
from uncertain data with a generate-and-prune strategy. UF-
growth [8] extends the FP-Growth algorithm [7]. Aggarwal
et al. [1] extend several existing classical frequent itemset
mining algorithms for deterministic data sets, and compare
their relative performance in terms of efficiency and memory
usage. The UH-mine algorithm, proposed in their paper,
provides the best trade-offs. The algorithm is based on the
pattern growth paradigm. The main difference with UF-
growth is the data structure used which is an hyperlinked
array. The limitations of these existing methods are the ones
inherited from the original methods. The size of the data
for the level-wise generate-and-test techniques affects their
scalability and the pattern-growth techniques require a lot
of memory for accommodating the dataset in the data struc-
tures, such as the FP-tree, especially when the transactions
do not share many items. In the case of uncertain data, not
only the items have to be shared for a better compression but
also the existence probabilities, which is often not the case.
Another approach for the independent uncertain database
model is proposed in [3]. It is shown here that a simple
sampling technique gives very good results when computing
the expected frequency of an itemset.

VI. CONCLUSION
The focus of this work is approximating the frequentness

probability of itemsets in uncertain datasets based on a
special form of the Central Limit Theorem. Using this
technique, the frequentness probability can be computed
with minimal computational efforts and the results are
highly accurate, actually invalidating the use of complicated
algorithms for computing the exact solution. Similarly as in
the paper [3], again we show that in the independent model
one can easily apply simple statistical tools to reach excellent
results. Basically, one could argue that for those independent
cases statisticians solved the problems already a long time
ago. A logical next step is now to see if these results can
be extended to more complicated probability models. Clearly
the statistical analysis of such cases will become much more
challenging.
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