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Abstract— The problem of finding outliers in data has broad 
applications in areas as diverse as data cleaning, fraud 
detection, network monitoring, invasive species monitoring, 
etc. While there are dozens of techniques that have been 
proposed to solve this problem for static data collections, very 
simple distance-based outlier detection methods are known to 
be competitive or superior to more complex methods. 
However, distance-based methods have time and space 
complexities that make them impractical for streaming data 
and/or resource limited sensors. In this work, we show that 
simple data-editing techniques can make distance-based outlier 
detection practical for very fast streams and resource limited 
sensors. Our technique generalizes to produce two algorithms, 
which, relative to the original algorithm, can guarantee to 
produce no false positives, or guarantee to produce no false 
negatives. Our methods are independent of both data type and 
distance measure, and are thus broadly applicable. 
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I.  INTRODUCTION 
Finding outliers in data has broad applications in areas as 

diverse as data cleaning, fraud detection, telemedicine, 
invasive species monitoring, etc. Given the ubiquity of this 
problem, there have been a significant number of solutions 
proposed, particularly in static data collections. However, 
there is an increasing appreciation of the need to detect 
outliers in real time on data streams. For the static case, it is 
well known that very simple distance-based outlier detection 
methods can be competitive or superior to more complex 
methods [3]. For example, just in the context of time series 
data, a recent extensive empirical study compared nine 
different methods on nineteen different problems, and found 
that “[distance-based outlier detection] is the best overall 
technique among all techniques” [5]. Furthermore, distance-
based methods typically do not require careful settings of 
many parameters, a notable weakness of many of the more 
complex or domain specific solutions. Unfortunately, 
however, distance-based methods have time and space 
complexities that make them impractical for direct 
application to streaming data and/or resource limited sensors. 

In this work, we show that simple data-editing techniques 
that were introduced in the context of classification can make 
distance based outlier methods traceable, both in terms of 

time and space, for streaming and resource limited 
applications. To help the reader understand distance-based 
outlier detection and our modifications to it, consider the 
simple dataset in Figure 1. 
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Dataset D
 X Y t 

d1 2 2 0.9 

d2 2.5 2.5 0.9 

d3 6.5 4 0.9 
d4 8 6 0.9 

d5 7 7 0.9 

d6 6 8 0.9 

d7 7 8 0.9 
 

Figure 1. A small dataset D containing 7 items. Note that the ordering 
of points in the database is arbitrary. The variable t refers to the 
threshold, the radius of the circles. 

In this toy example, we have been given a database of 7 
normal objects and a single parameter, the threshold of 0.9. 
If we are asked if a new data point Q is normal or an outlier, 
then we simply scan the database to see if the new object is 
within 0.9 unit of at least one object in the dataset. Once Q 
encounters a near enough object, we say that Q has been 
dismissed. Visually, this corresponds to asking if the new 
point falls within one or more circles shown in Figure 1. 
While this algorithm is very simple, and, apart from the 
threshold value, is completely parameter free. It is 
surprisingly effective, as previous works (with minor 
differences [5][16]) and later experiments will show. 

In this work, we introduce a solution to this problem 
using a data editing technique [9]. A simple search-based 
technique uses some heuristic functions to reduce the size of 
a database, thereby guaranteeing that when elements from a 
stream are examined with this edited database, the result will 
be returned to users within a guaranteed time. The penalty 
we must pay for this guarantee is either (our choice) slightly 
increasing the false positive rate or slightly increasing the 
false negative rate. In this work, we show that a simple 
heuristic, iteratively removing one of the current nearest 



neighbor pairs, produces excellent results across a wide 
variety of domains. 

This paper is organized as follows. Related work, 
background material, and the necessary notation are 
provided in Section II. In Section III, we introduce our main 
idea, a cost-based editing algorithm, which can efficiently 
reduce the size of the database while guaranteeing either no 
false negatives or no false positives. Section IV demonstrates 
the utility of our proposed technique for various domains. 
Finally, we offer conclusions and directions for future work 
in Section V. 

II. RELATED WORK AND BACKGROUND 
Outlier detection (deviation detection, exception mining, 

novelty detection, etc.) is an important problem that has 
attracted wide interest and numerous solutions. These 
solutions can be broadly classified into several major ideas: 

• Model-Based [2]: An explicit model of the domain is 
built (i.e., a model of the heart, or of an oil refinery), 
and objects that do not fit the model are flagged. 

• Connectedness [11]: In domains where objects are 
linked (social networks, biological networks), objects 
with few links are considered potential anomalies. 

• Density-Based [4]: Objects in low-density regions of 
space are flagged. 

• Classification-Based [10]: Many classification 
algorithms can be cast as one-class classifiers, which 
return a binary decision that recognizes the object as 
either belonging to the same set as the (single-class) 
training dataset or not. 

• Distance-Based [1]: Given any distance measure, 
objects that have distances to their nearest neighbors 
that exceed a specific threshold are considered 
potential anomalies. 

Model-based methods require the building of a model, 
which is often an expensive and difficult enterprise, 
requiring the input of a domain expert. Connectedness 
approaches are only defined for datasets with linkage 
information. Density based models require the careful 
settings of several parameters, have quadratic time 
complexity, and may have difficulties in datasets that have 
localized pockets with differing densities. 

A. Background on Numerosity Reduction 
Numerosity Reduction refers to any technique that 

reduces the number of instances in a database while retaining 
some essential properties [15]. It is also called various other 
names, including prototype selection [9], instance 
pruning [13], condensing, and data editing. Virtually all 
numerosity reduction techniques have been proposed in the 
context of nearest-neighbor classification, not on anomaly 
detection. The objective functions of these two tasks are 
different, i.e., maximizing training accuracy for nearest-
neighbor classification and maximizing coverage areas for 
anomaly detection. In addition, the classification task has 
two or more defined classes, so we just need to define a 
decision boundary, whereas in anomaly detection we 
typically have just one type of data annotation, “normal 

data,” and we need to define a decision area. Unfortunately, 
the goal of maintaining the best decision area is not 
computable in polynomial time, because this problem can be 
mapped to either the minimum set cover problem or the 
maximum coverage problem; both are NP problems [8].  

B. Notations 
Table I summarizes the notation used in this paper; we 

expand on the definitions below. 

TABLE I. SYMBOL TABLE 

Symbol Explanation 
D A reference/training database consisting only of normal objects 
di The ith  data object in the training database D 
N The size of the database D, i.e., N = |D| 

S A reduced-size training database consisting of some data 
objects in the database D 

s A data object in the reduced-size database S 
q A query object from a data stream 
K The size of the database S, i.e., K = |S| 

di.t The threshold for ith  data object in the training database D 

si.t 
The threshold for ith  data object in the reduced-size training 
database S 

b A user-defined parameter for sensitivity adjustment between 
having no false negatives and no false positives 

disto1,o2 The distance between two data objects o1 and o2 
 

We begin by defining the key terms in this paper. Note 
that all outliers must be outlying with reference to some 
model or example of normal data: 

Definition 1: A Reference/Training Database D is a 
collection of N objects which are assumed to be normal. A 
threshold di.t is associated with each data object di in D. The 
initial value of the threshold di.t is defined by the user or 
learned directly from the training database. 

As noted above, D may be too large to handle streaming 
data at the required rate, so we need to reduce its size. 

Definition 2: A Reduced-Size Training Database S is a 
collection of K objects which are all assumed to be normal. 
All members of the reduced-size database are from the 
reference database. However, the thresholds di.t of data 
objects in the reduced-size database can be different. 

Our hope is that the reduced-size database S maintains 
the properties of the training database D with the greatest 
possible fidelity. The most important property to us is the 
region implicitly defined as normal. 

Definition 3: A Normal Region is a volume of space in 
which all data objects are implicitly assumed to be normal. 
The normal region contains any data objects which have 
nearest neighbor distances to objects in the training database 
less than or equal to thresholds di.t. 

Definition 4: An Anomalous Region is an area in which 
any data objects in this area are considered anomalous. An 
anomalous region contains any data objects which have 
distances to all objects in the training database greater than 
its threshold di.t. In set notation, it is the complement of the 
normal region in the Universe. 

Definition 5: Sensitivity is the measurement of 
performance in a binary test. It is the number of true 



positives, over the sum of the number of true positives and 
the number of false negatives. 

C. Problem Definition 
Recall our basic scenario: we have a training set and we 

learned or were given a threshold T. We are completely 
satisfied with our anomaly detection system, except that we 
cannot use it if the data arrives too quickly. More formally: 

Given a training database D, a computational time α 
(seconds) for calculating the distance between a pair of 
objects in our domain, and an arrival rate β (data objects per 
second) of a data stream, we find a reduced database S which 
allows us to handle this arrival rate, and: Option 1) 
guarantees no false negatives and minimizes false positives, 
or Option 2) guarantees no false positives and minimizes 
false negatives. The size K of the reduced database S can be 
determined by the following equation K = 1/(α ⋅ β). 

Having defined the problem, all we need to do is create 
an algorithm to reduce the set of objects in D to the set of 
objects in S, adjusting the thresholds when necessary. This is 
the topic of the next section. 

III. COST-BASED EDITING ALGORITHM 
We will begin by showing a simple obvious greedy 

algorithm for data reduction. This algorithm, unfortunately, 
is too slow for some of the larger datasets we wish to 
consider. This motivates us to consider a much faster 
approximation algorithm in Section III(B). As we will show 
empirically, the faster algorithm produces near identical 
results. 

A. Simple Obvious Greedy Algorithm 
Recall that our task is to take as input a dataset D, and the 

desired final size of K, and produce as output a dataset S. We 
begin by showing Option 1: guaranteeing no false negatives 
and minimizing false positives. 

As shown in Table II, we iteratively remove objects from 
D until it reaches the desired size and then relabel it S. 
Rather than deleting randomly, we delete one object, dA, 
which has the smallest nearest neighbor distance, as found in 
line 3. 

TABLE II. SIMPLE OBVIOUS GREEDY ALGORITHM 

[S] = SimpleObviousGreedyAlgorithm_Option_1 (D, K) 
1 
2 
3 
4 
5 
6 

while sizeof(D) > K 
    [dA, dB, distdA,dB] = Find_the_Smallest-NN-Dist_Pair in D; 
    Delete dA from D; 
    // dB.t = distdA,dB + dA.t; only if all regions of dA are not in dB  
end 
S = D; 

 
The Option 2 version of the algorithm is also simple; we 

just uncomment line 4 in Table II. Instead of just deleting dA, 
we expand the threshold of its nearest neighbor (dB) (line 3) 
just enough so that it completely envelopes the region 
formally enclosed by the deleted item. Therefore, a threshold 
of dB is only reassigned when all regions of dA are not in dB; 
otherwise the threshold of dB remains the same. 

The Find_the_Smallest-NN-Distance_Pair subroutine in 
line 2 is the most costly part of the algorithm, requiring in 
the worst case time quadratic in N. We can attempt to 
mitigate this by using an index of some kind to achieve 
O(NlogN), but for high-dimensional data, the constants 
hidden in this are large, and the overall algorithm is too slow 
to be practical. For example, the Robotics experiment shown 
in Section III(C) would require 16 hours to reduce the dataset 
to one-quarter of its size. In the next section, we show an 
algorithm that can give almost identical solutions, but is 
orders of magnitude faster. 

B. A Faster Greedy Algorithm 
We propose to mitigate the costs of the greedy editing 

algorithm by reducing the search space. The intuition of our 
idea is very simple to state. Instead of starting with the whole 
database D and using a search to pare it down to database S, 
we randomly take a subset of K+1 items from D to create a 
temporary version of S. This temporary version of S is too 
large, being of size K+1. So we use the Find_the_Smallest-
NN-Distance_Pair subroutine to find one object to remove. 
Note that running this quadratic subroutine is much faster on 
S than it is with D. At this point, we are not done; we 
randomly take another item from D and place it into S, once 
again making S slightly too large, and once again pruning it 
down by deleting one of the closest pairs. We continue doing 
this until we have exhausted all objects from D. 

Table III formalizes these ideas.  We move the first K+1 
data objects of the database D to the database S (line 1-3). 
For each iteration, we find the closest pair in S by running a 
subroutine Find_a_Smallest-NN-Distance_Pair, delete the 
smallest nearest-neighbor-distance object (sA), and then 
replace the deleted object with another data object from the 
database D. The algorithm will terminate when no data 
object is left in the database D. 

TABLE III. FASTER GREEDY ALGORITHM 

[S] = FasterAlgorithm_Option_1 (D, K) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10

for 1 to K+1 
    Randomly move a data object in D to S; 
end 
while true 
    [sA, sB, distsA,sB] = Find_a_Smallest-NN-Dist_Pair in S; 
    Delete sA from S; 
    // sB.t = distsA,sB + sA.t; only if all regions of sA are not in sB  
    if D is empty then break; end 
    Randomly move another data object in D to S; 
end 

 
As before, the Option 2 version of this algorithm is easy 

to extend from the Option 1 version, i.e., by just 
uncommenting line 7. 

The threshold sB.t will be updated with the distance 
between the data sA and the data sB, plus the threshold sA.t if 
all regions of the data sA are not in sB; otherwise, the 
threshold sB.t remains the same. 

Calling the subroutine Find_a_Smallest-NN-Dist_Pair 
once in the database S consumes much less time than in D, 
i.e., only O(K2) (or O(KlogK) if some indexing techniques 
can be implemented). Concretely, the algorithm shown 



in Table II requires O(N) distance calculations in the first 
iteration, O(N-1) in the next, etc. Its total time complexity is 
therefore O(N3). In contrast, the algorithm in Table III 
requires a O(K2) distance calculation to be performed N-K 
times, and its total time complexity is therefore O((N-K)K2). 
When K << N, which is the situation we are interested in, 
this difference can be on the scale of orders of magnitude. 

Obviously, this approximation algorithm is ordering 
dependent. Therefore, in the experimental evaluation, we 
will demonstrate that this faster algorithm achieves near 
identical results compared with the simple, but much slower 
algorithm. 

C. Extended Variable Sensitivity Algorithm 
Since Option 1 and Option 2 are for editing the database 

with no false negatives and with no false positives, 
respectively, in this section we propose an extension of the 
faster greedy algorithm, Option 3, which allows the user to 
trade off between false negatives and some false positives by 
using a sensitivity parameter b.  

The difference is that a threshold sB.t is adjusted 
according to a sensitivity parameter b, where b is a real 
number between 0 and 1. If b is close to 0, this means a little 
false negative is tolerated; otherwise, if b is close to 1, this 
means a little false positive is tolerated. Therefore, the 
parameter b is used to adjust how large the threshold sB.t 
should be. We demonstrate the influence of the parameter b 
in Figure 2, when different b values, 0, 0.5, and 1, are 
applied. 

B
A

 
B

 
B

 
B

(a) (b) (c) (d)
Figure 2. An object A is removed from (a) an original database, and 
an object B is object A’s nearest neighbor, where different parameters 
b, i.e., (b) 0, (c) 0.5, and (d) 1, lead the difference in false positive 
(light yellow) and false negative (dark green) areas. 

Specifically, the new threshold sB.t ranges from the 
original sB.t in Figure 2b) to the maximum threshold 
covering all regions of sA in Figure 2d), which is distsA,sB + 
sA.t. As shown in Table IV, in line 7, the parameter b is used 
to determine the new threshold. However, this new threshold 
sB.t will be updated only if all regions of sA are not in sB; 
otherwise, no change will occur in the threshold sB.t. 

TABLE IV. VARIABLE SENSITIVITY GREEDY ALGORITHM 

[S] = VariableSensitivityAlgorithm (D, K, b) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

for 1 to K+1 
    Randomly move a data object in D to S; 
end 
while true 
    [sA, sB, distsA,sB] = Find_a_Smallest-NN-Dist_Pair in S; 
    Delete sA from S; 
    sB.t=sB.t+(distsA,sB +sA.t-sB.t)*b; if all regions of sA are not in sB
    if D is empty then break; end 
    Randomly move another data object in D to S; 
end 

IV. EXPERIMENTAL EVALUATION 
We begin by stating our experimental philosophy. To 

ensure that our experiments are easily reproducible, we have 
built a website which contains all data and code [17]. In 
addition, this website contains additional experiments that 
are omitted here for brevity. Nevertheless, we note that this 
paper is self-contained. 

In this section, we will empirically demonstrate that our 
proposed ideas can significantly improve the efficiency of 
distance-based outlier detection while maintaining its high 
effectiveness. We evaluate our Option 1, which guarantees 
no false negatives by varying the reduced size (K). Naturally, 
we evaluate by calculating the increase in the false positive 
rate as we reduce the size of the dataset, and the proposed 
sensitivity parameter b for Option 3 is also evaluated. The 
false positive rate and false negative rate of each parameter b 
is reported against the reduced-database size.  

To measure the effectiveness of our editing heuristics, we 
compare our algorithm with a random-based editing 
technique. For the random-based editing technique, given a 
reduced database size K, K data objects from the database D 
are uniformly selected. Note that we do not make 
comparisons to other anomaly detection algorithms because 
distance based outliers for time series have already been 
forcefully shown to be the best for time series in extensive 
empirical tests ([5][16]). 

For each technique, the mean values of ten runs are 
reported. Our algorithm and the rival method are 
implemented using Matlab R2010a. All experiments were 
conducted on a Windows Vista Ultimate SP1 64-bit desktop 
with 2.83 GHz Intel Core 2 Quad CPU, 4 GB of RAM, and 
250 GB of Hard Disk. 

A. Threshold Initialization 
The distance-based anomaly detection method used in 

this work requires only one parameter, the initial threshold t 
of the training dataset. In some domains, this may be given 
by the domain expert, but here we use a simple approach to 
determine it for the ground truth of results. The threshold di.t 
for each data object di is set to be the nearest neighbor 
distance of di itself in the training dataset. With this simple 
threshold initialization method, our distance-based anomaly 
detection can produce very effective results. Note that this 
value t is a parameter of distance-based anomaly detection in 
general, not of our extension to it, which requires no 
additional parameters. Further note that we are explicitly 
avoiding changing parameters after seeing the test data 

B. The SmartCane System 
The SmartCane system [14] is a device developed by 

researchers at UCLA to enable training and monitoring 
usages of canes for the elderly and infirm. The goal of this 
system is to reduce falls, which are one of the leading causes 
of death in the elderly. Specifically, the SmartCane system 
records walking behavior from embedded sensors at 300 Hz, 
and sends data via Bluetooth back to a personal device such 
as a tablet PC or a PDA to record usage activities. This 
system allows physicians to review histories of cane usage 
and can suggest future customization and training which may 



reduce falls. In addition to offline analysis, this system is 
general enough to allow for the possibility of real time 
anomaly detection, which, in the best case scenario, may 
warn that the user is disorientated and at risk of an imminent 
fall. 

The device, as shown in Figure 3, is embedded with six 
sensors, two contact pressure sensors (at the handle and 
bottom), three single-axis gyros, and one 3-axis 
accelerometer; therefore, eight channels of signals are 
simultaneously collected over time. Figure 3 shows an 
example subsequence of these eight signals.  
 

Contact pressure sensor

Wireless sensor nodes including
- one 3-axis accelerometer
- three single-axis gyros

Contact pressure sensor
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Figure 3. left) SmartCane right) sample data of all eight channels. 

We divide a sequence of length 3244 into two equal 
parts, i.e., a training database and a test database. Figure 4 
shows the first 500 data points of the two databases. To 
achieve our results in this particular domain, we had to set 
exactly one free parameter, with the length of the 
subsequence to consider. For simplicity, we decided on a 
length of 50. However, it is important to note that a change 
in this value only very slightly affects results.  
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Figure 4. A time series sequence of Gyro3, where the test database 
contains six anomalies. 

In Figure 5, we show that we can throw away more than 
three-fourths of the data, and still have comparable results to 
the approach in [12]. Our cost-based editing techniques can 
significantly reduce a large portion of data, while the false 
positive rate slightly increases it. In addition, the false 
negative rate is guaranteed to not increase since Option 1 has 
been applied.  
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Figure 5. Our editing technique can significantly reduce database size 
with a slight increase in false positive rates. 

With the greater time complexity of the simple cost-
based method, training time (reducing database time) is 
much longer than the faster cost-based method. Generally, 
when the database size is reduced to 10% of its original size, 
the faster cost-based method uses only 1 second, while the 
simple cost-based method requires 42 seconds.  

The sensitivity parameter b is utilized to trade off 
between the false positive and false negative rates. 
Therefore, users can choose the parameter b according to 
their applications. We demonstrate the effect of false 
positive/negative rate when the parameter b is varied 
in Figure 6. 
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Figure 6. top) False positive rates for the faster algorithm when b is 
varied; bottom) False negative rates for the faster algorithm when b is 
varied. 

C. Robotics 
The Sony AIBO shown in Figure 7 is a small quadruped 

robot that comes equipped with a tri-axial accelerometer [7]. 
This accelerometer measures data at a rate of 125 Hz. We 
can easily obtain a large normal reference, Database D, for 
the AIBO by allowing the robot to walk unobstructed in 
normal conditions. However, this tiny robot has limited 
space1 in which to store these normal examples. Once again, 
this is exactly the scenario for which our algorithms are 
designed for. 
 

 
Figure 7. left) A Sony AIBO robot; right) An on-board sensor can 
measure X/Y/Z acceleration at 125 Hz. Here, just a snippet of the Z-
axis is shown. 

We created a training dataset consisting of unobstructed 
walking, and a carefully annotated test dataset consisting of 
unobstructed walking interspersed with occasions where the 
robot walked into a wall (labeled as anomalous). Each 
dataset consists of 6000 data points, where Figure 8 shows 
the first 3000 data points. Subsequences were extracted with 
a window length of 50 data points and, as is common 

                                                           
1 The AIBO has 64MB of memory, but this figure is for the entire system, 

so space efficient algorithms are critical.   

0 20 40 60 80 100 120

One-second of z-axis acceleration data



practice for time series, we normalized all subsequences with 
z-normalization [6][15]. 
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