
Improved Consistent Sampling, Weighted Minhash and L1 Sketching

Sergey Ioffe

Google Inc., 1600 Amphitheatre Pkwy, Mountain View, CA 94043, sioffe@google.com

Abstract—We propose a new Consistent Weighted Sam-
pling method, where the probability of drawing identical sam-
ples for a pair of inputs is equal to their Jaccard similarity.
Our method takes deterministic constant time per non-zero
weight, improving on the best previous approach which takes
expected constant time. The samples can be used as Weighted
Minhash for efficient retrieval and compression (sketching)
under Jaccard or L1 metric. A method is presented for using
simple data statistics to reduce the running time of hash
computation by two orders of magnitude. We compare our
method with the random projection method and show that it
has better characteristics for retrieval under L1. We present
a novel method of mapping hashes to short bit-strings,
apply it to Weighted Minhash, and achieve more accurate
distance estimates from sketches than existing methods, as
long as the inputs are sufficiently distinct. We show how to
choose the optimal number of bits per hash for sketching,
and demonstrate experimental results which agree with the
theoretical analysis.

Keywords-Sampling, Hashing, Sketching, Retrieval,
Compression, Minhash.

1. Introduction

As data sets become larger and more high-dimensional,

it becomes increasingly important to find data represen-

tations that allow compact storage and efficient distance

computation and retrieval. Among the common methods

to achieve this is Locality Sensitive Hashing (LSH) [1].

LSH is a framework for mapping vectors into Hamming

space, so that the distances in the Hamming hash space

reflect those in the input space: similar vectors map to

similar hashes. Many LSH schemes have been proposed,

divided between metric-driven [2], [3], [4], [5], with the

goal of approximating a given distance metric, and data-

driven [6], [7], where the hash functions are learned to

optimize performance on a task such as classification. In

this work, we mostly follow the metric-driven approach,

assuming that a good distance function is given (or already

learned).

By mapping the (possibly sparse) floating-point vec-

tors to a sketch in the Hamming hash space, we are

able to considerably reduce the number of bits occupied

by each data point while still being able to compute

accurate approximations to the distances among the data.

The distance computations become faster not only because

the hash representations are more compact but also because

the Hamming distances could be computed using bit oper-

ations which involve the minimal amount of floating-point

computation and can benefit from bit-counting instructions

available on modern processors. Hash representations often

allow sublinear-time retrieval of near neighbors from large

databases (e.g. [2]). In addition, the compact representa-

tions and fast distance computations can be used in kernel

learning methods such as SVM or Kernel PCA for efficient

kernel approximation.

In this work, we concentrate on two target metrics:

Weighted Jaccard and ℓ1. Our main motivation is text and

image retrieval, where histograms, either normalized or

unnormalized, are often used to represent documents (tf-

idf-weighted histograms of terms or n-grams) or image

statistics (such as histograms of color or texture).

The ℓ1 distance between two vectors S = (Sk) and

T = (Tk) is defined as ‖S − T‖1 =
∑

k |Sk − Tk|. This
distance is a natural fit for data such as histograms, and is

less sensitive to outliers than the Euclidean distance.

Weighted Jaccard distance between two vectors with

non-negative entries is defined as 1− J(S,T) where J is

the Jaccard Similarity

J(S,T) =

∑

k min(Sk, Tk)
∑

k max(Sk, Tk)
(1)

There is a simple relationship between Jaccard similarity

and ℓ1 distance. Because min(S, T) = S+T−|S−T |
2 and

max(S, T) = S+T+|S−T |
2 (as can be easily verified by

considering the cases S ≤ T and S ≥ T), we have

J(S,T) =
‖S‖1 + ‖T‖1 − ‖S−T‖1
‖S‖1 + ‖T‖1 + ‖S−T‖1

In the case where the data is ℓ1-normalized, the norms

‖S‖1 and ‖T‖1 are fixed and so the Jaccard similarity is a

monotonically decreasing function of the ℓ1 distance. If the

data is not normalized then knowing J(S,T), ‖S‖1 and

‖T‖1 allows one to compute ‖S − T‖1 – so if compact

representations of S and T allow one to approximate

J(S,T) then their ℓ1 distance can also be approximated

by augmenting the compact representation of every vector

with that vector’s ℓ1 norm.

2. Related Work

Minhash for unweighted sets or binary vectors was intro-

duced by [3]. They showed that the probability of hash

collision is given by (1), which for binary data represents

the ratio of the size of the intersection to that of the

union. Extensions have since been proposed. A method

dealing with integer weights is mentioned in [5] and was

extended in [8] to the case of Sk = Wkαk where Wk is an

integer weight and αk is an input-independent real-valued

multiplier that is fixed for each index k. For instance, Wk

can be the frequency of the term k in a document, while

αk is its inverse document frequency. The time to compute

a hash is O(
∑

k Wk).
A scheme described in [9] and reviewed in [5] sug-

gests a rejection sampling approach for handling real-

valued weights: a sequence of samples (k, y) is sampled

from an upper bound on all possible vectors, and the

first sample satisfying y ≤ Sk is output. This method is

not suitable for sparse vectors and widely varying feature

weights.

The consistent sampling algorithm of [10] runs in

expected constant time per non-zero weight, and can

be made quite fast in practice through a number of

optimizations. Here, we propose an algorithm that runs in

worst-case constant time, is simpler to implement, and has

the added advantage of requiring a fixed number of random

values (3 random numbers per index k) which means that

if the possible set of indices is known in advance then all

the random values can be generated offline.

For a common case where all the vectors to be hashed

have the same ℓ1 norm, Weighted Jaccard Similarity is a

monotonic function of ℓ1 distance, therefore our hashing

technique can be used in such cases. One of the best

known LSH methods for handling ℓ1 distances is based

on stable distributions [2]. As we will show, our method

has better performance characteristics for retrieval and

sketching under some common conditions.

In section 4.3, we show how to compress the sketches

by using a fixed number of bits per hash. This problem was

previously addressed in [11], where each Minhash value

is mapped to its lowest b bits. Compared to that work,

our approach has two advantages. One is that it is more

general and applies to any underlying hashing scheme,

not just Minhash. The other is that by mapping hashes

to b-bit representations randomly we end up with much

simpler estimators of the distances between inputs, given

the Hamming distances between their hash vectors.

3. Consistent Weighted Sampling

In this paper, we follow [10] who presented an algorithm

for consistent weighted sampling from a weighted set and

showed that consistent sampling leads to an LSH scheme

where the probability of hash collision is equal to the

Jaccard similarity.

Consistent weighted sampling is a sampling process

that generates, for any vector S = (Sk ≥ 0), a sample

(k, y) : 0 ≤ y ≤ Sk which is uniform and consistent.

Uniformity: The sample should be uniformly sampled

from ∪k{k} × [0, Sk], i.e. the probability of selecting k
is proportional to Sk, and y is uniformly distributed on

[0, Sk].
Consistency: If a vector S dominates S

′ (∀k 0 ≤
S′

k ≤ Sk), a sample (k, y) is selected for S and satisfies

y ≤ S′
k, then (k, y) would be selected for S

′ as well.

For a uniform and consistent sampling scheme, it is

easy to show that the probability of collision is the Jaccard

similarity:

Pr[sample(S) = sample(T)] =

J(S,T) =

∑

k min(Sk, Tk)
∑

k max(Sk, Tk)
(2)

To demonstrate this, consider a sample (k, y) from the

union of S and T, R = (Rk = max(Sk, Tk)). By

consistency, if y ≤ min(Sk, Tk) then (k, y) would be

selected for both S and T, resulting in a collision.

Otherwise, (k, y) would be selected for one of S or T

(the former if y ≤ Sk, the latter if y ≤ Tk), but not

the other, thus no collision. Now using the uniformity,

Pr[collision] = Pr[y ≤ min(Sk, Tk)] = J(S,T).
In this paper, we will sometimes refer to the consistent

weighted samples (or invertible functions of such samples)

as Weighted Minhash, since they generalize the min-wise

permutation hashes of [3] from binary to real weights.

In sec. 3.1, we will show how to extend the binary case

(standard minwise-hashing) to integer weights and then to

real weights. The resulting algorithm is presented in sec.

3.2. We then prove its correctness in sec. 3.3, and describe

important data-driven optimizations in sec. 3.4.

3.1. From Integer to Real Weights

Restricting our problem to integer weights, one sampling

scheme [5] works by drawing independent, identically

distributed random numbers (from some fixed distribution)

vk(j) for each (k, j) : j ∈ {1, . . . , Sk}, and returning

the pair (k⋆, j⋆) = arg mink,j≤Sk
vk(j). It is important

for consistency that vk(j) depend only on k and j and

not on S. In practice, we achieve this by using (k, j) as

the seed for the random number generator used to draw

the corresponding value. This scheme is uniform because

all vk(j) are i.i.d. and so have equal chances of being

the minimum. It is also consistent: if ∀k S′
k ≤ Sk then

mink,j≤S′

k
vk(j) ≥ mink,j≤Sk

vk(j), with the equality

achieved if and only if the element (k⋆, j⋆) achieving the

minimum for S on the right-hand side also appears on the

left-hand side, i.e. if j⋆ ≤ S′
k⋆ .

∆ 2∆ y S z

v(x)
Active indices
Minimum so far

Figure 1. The motivation for the consistent sampling algorithm is that the real weights can be discretized with granularity ∆, with random variables

v(x) sampled for each x = j∆, j = 1 . . . S/∆ (small red diamonds in the figure). We look for the minimum of v(x), and avoid the need to sample

O(1/∆) variables by observing [10] that we need to consider only the active indices where the minimum found so far is reduced (large blue diamonds).

Instead of sampling the individual values v(x), we directly sample the active indices y and z that bracket the weight S.

Integer weights can be used to approximate real

weights, by quantizing each Sk with granularity ∆. For

each index k we compute

yk = arg min
x=∆j,j=1...⌊Sk/∆⌋

vk(x)

and define ak as the corresponding minimum (achieved

for x = yk). Then the sample returned is (k⋆, y⋆) where

k⋆ = arg mink ak and y⋆ = yk⋆ . Clearly, as ∆ → 0, the
integer weights tend to infinity, which makes it impossible

to sample all the vk(x) directly. However, it is easy to see

that yk must be one of “active indices”, where vk(y) <
minx<y vk(x). Fig. 1 illustrates this. In [10], the active

indices are sampled in expected constant time per non-

zero weight. Let us study the properties of active indices

to find a sampling scheme that is worst-case constant time.

We will drop the subscript k where unambiguous, and

let ∆ → 0. It is easy to see that v(y) = minx≤S v(x) is

achieved at the largest active index y satisfying y ≤ S.
Let z be the smallest active index greater than S, so that

y and z are the active indices bracketing S (as shown in

Fig. 1).

Since y = arg minx<S v(x) and all v(x) are i.i.d.,

y is uniformly distributed on the interval [0, S]. (We often

use the closed- and open-interval notation interchangeably,

since the endpoints have measure zero.) Therefore, y =
u1S where u1 ∼ Uniform(0, 1).

To obtain the distribution P (z), let us analyze its

cumulative probability function cdf(z). For z ≥ S, we can
see that cdf(z) is the probability that the interval [S, z]
contains a value v(x) which falls below the minimum

achieved on [0, S]. In other words,

cdf(z) = Pr[min
S≤x≤z

v(x) < min
0≤x≤S

v(x)]

which is the probability that the smallest v(x) over 0 ≤
x ≤ z is achieved for x > S. Since all v(x) are i.i.d., we

have cdf(z) = z−S
z = 1− S/z (and so P (z) = cdf ′(z) =

S/z2). Therefore, we can write z = cdf−1(1− u2) = S
u2

,

where u2 ∼ Uniform(0, 1) (and so is 1 − u2). Note that

z is independent of y – knowing where the minimum v
occurred on [0, S] tells us nothing about where the first

smaller value will be obtained on (S,∞).
It follows that r = ln z − ln y = (ln S − lnu2) −

(lnS + lnu1) = −(lnu1 + lnu2), where u1, u2 ∼
Uniform(0, 1). Significantly, r does not depend on S.
To compute the distribution of r, we first note that if

t1 = − lnu1 then P (t1) = P (u1)
∣

∣

∣

du1

dt1

∣

∣

∣
= e−t1 , and

similar for t2 = − lnu2. Then, r = t1 + t2 is the sum

of independent variables with the distribution P (r) =
∫ r

0
e−t1e−(r−t1)dt1 = re−r. This is the definition of the

Gamma(2, 1) distribution:

P (ln z − ln y) = P (r) = re−r

defined for r ≥ 0. Consider a transformation of vari-

ables (y, z) → (ln y, r). The distribution P (y, z) is de-

fined for 0 ≤ y ≤ S ≤ z and, from independence,

P (y, z) = P (y)P (z) = (1/S) × (S/z2) = z−2. The

distribution P (ln y, r) is defined for r ≥ 0 and for

ln y such that ln y ≤ lnS and ln z − ln y = r for

some z ≥ S; in other words, ln y ∈ [lnS − r, ln S].
From the transformation properties of probability distri-

butions, we have P (ln y, r) = P (y, z)
∣

∣

∣
det ∂(y,z)

∂(ln y,r)

∣

∣

∣
=

z−2
∣

∣

∣
det ∂(exp(ln y), exp(ln y+r))

∂(ln y,r)

∣

∣

∣
= exp(−r). Therefore

P (ln y | r) = P (ln y,r)
P (r) = 1/r which means that, condi-

tioned on r, ln y is uniformly distributed on [lnS−r, ln S].
The way in which we sample ln y uniformly from

[lnS − r, ln S] has a critical effect on the consistency of

our sampling scheme. For example, one option is to set

ln y = lnS−rb where b ∼ Uniform(0, 1) does not depend
on S. This, however, does not produce consistent samples:

even a small change in S will cause y to change – while in

a consistent scheme we should have a non-zero probability

of producing identical samples for similar inputs. Instead,

we use a uniform β ∼ Uniform(0, 1) to specify the offset

of a regular grid with spacing r, and select, as the sample

ln y, the unique element of the grid that falls inside the

interval (ln S − r, ln S]. Specifically, we set

ln y =

(⌊

lnS

r
+ β

⌋

− β

)

r

ln z = r + ln y

The use of the piecewise-constant floor function ensures

that y and z are usually unaffected by small changes in

S, and give rise to consistent samples (as we will show

below).

Next, we turn to the random variable ak =
min0≤x≤Sk

vk(x), which we need to minimize over in-

dices k to produce the consistent sample. Notice that we

are free to choose any distribution for the vk(x). Because
the minimum of a set of exponential variables is itself

exponential, we will draw each vk(x) from the exponential

distribution with rate ∆: P (v) = ∆e−∆v , v ≥ 0. It is easy
to show that the minimum a of S/∆ such variables is

then exponential with rate S, and the product ǫ1 = aS is

exponential with rate 1: P (ǫ1) = e−ǫ1 .

The value a = min0≤x≤S v(x) is connected to the

next active index z > S, which is where v(z) drops below
a for the first time. The probability of any v falling below

a is Pr[v < a] = 1 − e−∆a ≈ 1 − (1 − ∆a) = ∆a, and
it follows that, as ∆ → 0, the waiting time z − S until

encountering a sample below a is exponential, with rate a.
Therefore, ǫ2 = (z − S)a is exponential with rate 1.

Putting it together, we have, for two independent

exponential variables ǫ1 and ǫ2, a = Sa+(z−S)a
z =

ǫ1+ǫ2
z = c/z where c = ǫ1 + ǫ2 ∼ Gamma(2, 1): P (c) =

ce−c. This means that a can be sampled conditioned on

z and independent of S. Furthermore, if z is not usually

affected by small changes in S then neither is a, giving
the promise of consistency – which we will prove in Sec.

3.3.

3.2. Consistent Weighted Sampling Algorithm

From the derivations in Sec. 3.1, we obtain a scheme for

sampling from a weighted set S = (Sk ≥ 0).

• For each k:

– Sample rk, ck ∼ Gamma(2, 1) (P (r) = re−r)

and βk ∼ Uniform(0, 1).
– Compute

tk =

⌊

lnSk

rk
+ βk

⌋

yk = exp (rk(tk − βk))

zk = yk exp(rk)

ak = ck/zk

• Find k⋆ = arg mink ak, and return the sample

(k⋆, yk⋆).

If we do not care about the actual sample but only the

collision of samples, then we output the Weighted Minhash

(k⋆, tk⋆) instead (since the mapping tk → yk does not

depend on S), which avoids the use of floating-point values

as hashes. To compute multiple hashes, we simply draw

different independent sets of variables rk, βk, ck.

We can avoid most transcendental function computa-

tions by working in the log domain. To sample a variable

r ∼ Gamma(2, 1), we can represent it as r = − ln(u1u2)
where u1, u2 ∼ Uniform(0, 1). Alternatively, we can use

the efficient Ziggurat method [12]. We can sample c in the

same way, or can instead sample ln c directly, also using

Ziggurat. Figure 2 summarizes the algorithm.

3.3. Proof of Correctness

Below, we will prove that the algorithm does in fact return

uniform and consistent samples.

1) Uniformity

We shall prove that our sampling scheme produces a

uniform sample from {(k, y) : 0 ≤ y ≤ Sk}.
Dropping k from notation, observe that the random

variable y = exp
(

r
(⌊

ln S
r + β

⌋

− β
))

, where β is uni-

form, comes from the same distribution as y = exp(lnS−
rb) for uniform b (in both cases, ln y is uniformly dis-

tributed on [lnS − r, ln S]). The distribution P (y, z, a) is

defined for y ≤ S, z ≥ S and a > 0, and can be computed

using a transformation of variables:

P (y, z, a) = P (r, b, c)

∣

∣

∣

∣

det
∂(r, b, c)

∂(y, z, a)

∣

∣

∣

∣

where r = ln z − ln y, b = ln S−ln y
ln z−ln y , c = az. From

independence of r, b and c, and computing the Jacobian,

we get

P (y, z, a) =
re−rce−c

y(ln z − ln y)
= ae−az

Input: Vector S = (Sk ≥ 0)
Output: Consistent uniform sample (k⋆, y⋆) from {(k, y) : 0 ≤ y ≤ Sk}

Sample independent random variables, independent of the input S

for all k do

Sample:

rk ∼ Gamma(2, 1) (i.e. P (rk) = rke−rk , rk ≥ 0)
ck ∼ Gamma(2, 1)
βk ∼ Uniform(0, 1)

end for

The remainder depends on the input S

for all k such that Sk > 0 do

tk ←
⌊

ln Sk

rk

+ βk

⌋

yk ← exp (rk(tk − βk))
ak ← ck/ (yk exp(rk))

end for

k⋆ ← arg mink ak

y⋆ ← yk⋆

return Consistent sample (k⋆, y⋆) or Weighted Minhash (k⋆, tk⋆)

Figure 2. Algorithm for drawing a uniform consistent sample. The resulting (k⋆, y⋆) (or, equivalently, (k⋆, tk⋆)) can be used as a Weighted Minhash,

where the probability of hash collision for inputs S and T equals the Jaccard similarity J(S,T). We sample r ∼ Gamma(2, 1) as the sum of two

independent exponential variables, or r = − ln u1 − ln u2 where u1, u2 ∼ Uniform(0, 1). In practice, we work with the logs ln yk and ln ak , and

sample rk and ln ck from their respective distributions using Ziggurat method.

Integration over z yields

P (y, a) =

∫ ∞

S

P (y, z, a)dz = e−Sa =

1

S
(Se−Sa) = P (y)P (a)

which shows that y is uniform on [0, S], a is exponential

with rate S, and y and a are independent. Now considering

all indices k, it is easy to show that, for a set of exponential

variables ak with respective rates Sk, the probability that

a particular ak⋆ is the smallest is proportional to Sk⋆ :

Pr[ak⋆ = mink ak] = Sk⋆/(
∑

k Sk). By independence

of a and y, the corresponding y⋆ = yk⋆ is uniformly

distributed on [0, Sk]. Therefore, (k⋆, y⋆) is uniformly

sampled from {(k, y) : 0 ≤ y ≤ Sk}.

2) Consistency

Let us fix all of rk, βk and ck. We will show that for two

weighted sets S, S′ such that ∀k Sk ≥ S′
k, if (k⋆, y⋆) was

sampled for S and satisfies y⋆ ≤ S′
k, then (k⋆, y⋆) will

also be sampled for S
′.

Note that tk⋆ =
⌊

ln Sk⋆

rk⋆
+ βk⋆

⌋

is the unique integer

such that ln Sk⋆

rk⋆
+βk⋆ −1 < tk⋆ ≤ ln Sk⋆

rk⋆
+βk⋆ . Since, by

assumption, y⋆ ≤ S′
k⋆ ≤ Sk⋆ , we have

lnS′
k⋆

rk⋆

+ βk⋆ − 1 ≤
lnSk⋆

rk⋆

+ βk⋆ − 1

< tk⋆ =
ln y⋆

rk⋆

+ βk⋆ ≤
lnS′

k⋆

rk⋆

+ βk⋆ .

We see that

lnS′
k⋆

rk⋆

+ βk⋆ − 1 < tk⋆ ≤
lnS′

k⋆

rk⋆

+ βk⋆

and so

tk⋆ =

⌊

lnS′
k⋆

rk⋆

+ βk⋆

⌋

= t′k⋆

Therefore yk⋆ = y⋆ = y′
k⋆ where y′

k⋆ is the value sampled

for index k⋆ for input S
′. For any given k, notice that

ak = cke−rk/yk is a monotonically decreasing function of

yk, which in turn is a non-decreasing function of Sk. Thus,

for all k, a′
k ≥ ak, while a′

k⋆ = ak⋆ (since y′
k⋆ = yk⋆).

It follows that arg mink a′
k = arg mink ak = k⋆ which

means that the sample (k⋆, y⋆ = yk⋆) is output for S
′ as

well as for S, and so our sampling scheme is consistent.

3.4. Efficient Hash Computation

We can significantly speed up the computation, by com-

puting simple data statistics. Observe that in each sample

(k⋆, y⋆) (or, equivalently, hash (k⋆, t⋆)), if we know k⋆

then y⋆ depends only on k⋆ and the corresponding weight

Sk⋆ , but not on any of the other weights. Similarly, if

we know that k⋆ ∈ K then we only need to examine

a subset of indices {k ∈ K : Sk > 0} to generate the

hash. In practice, we have observed that we can find a

rather small set K for each hash, such that most of the

hashes have k⋆ ∈ K. Different hashes may have different

candidate index sets K, with some indices belonging to

most candidate sets (if the corresponding Sk are usually

large) and some belonging to none (if their Sk are usually

zero or very small). We count how frequently each index k
is chosen by the hash, over a large data set, and for future

hash computations consider only the indices for which this

frequency is above a threshold. In our experiments, we

were able to reduce the number of considered hash/feature

pairs by a factor of 200, while affecting only 0.5% of the

hashes.

An extra advantage of our method compared to that

of [10] is that for each feature and each hash we sample 3

random variables (r, c and β), independently of the input

weight. This suggests that these random variables may be

generated ahead of time (perhaps only for those hash /

feature pairs which get selected sufficiently frequently) –

eliminating the need to sample those for every input, and

further reducing the hash computation time.

4. Weighted Minhash for Retrieval and Sketching

under ℓ1 Metric

Below, we show how Weighted Minhash can be used for

data in ℓ1 spaces. We will discuss the use of these hashes

for near neighbor retrieval and for sketching the data,

where the ℓ1 distance between pairs is approximated based

on their hashes. We will demonstrate how the hashes can

be mapped to a small number of bits to save space, and

how the theoretical properties of Weighted Minhash com-

pare with the commonly-used random projection method.

It should be pointed out that the discussion in this section

is not specific to our method, and applies to any consistent

weighted sampling scheme.

4.1. Retrieval under ℓ1 Metric

Often, we deal with ℓ1 normalized data, such as histograms

— i.e., for all S, S1 = 1. In this case, Weighted Jaccard

Similarity is a monotonic function of ℓ1 distance:

J(S,T) =
2− ‖S−T‖1
2 + ‖S−T‖1

.

This allows Weighted Minhash to be used for efficient

retrieval under ℓ1. The constraint on the norm is the only

one that we impose — the non-negativity constraint in (1)

can be relaxed by replacing each weight Sk with a pair

Sk → (Sk+, Sk−) = (max(0, Sk),max(0,−Sk)) (3)

which preserves ℓ1 distances and norms.

We compare Weighted Minhash with the stable distri-

bution method of [2], which uses a quantized dot-product

with a vector of Cauchy variates. The crucial quantity

affecting the retrieval speed in the (R, c)-approximate

nearest neighbor problem [1] is ρ = ln(1/p1)
ln(1/p2) where p1

is the probability of hash collision for points at distance

R > 0 and p2 is the probability for points at distance

Rc, with c > 1 the approximation factor. Smaller ρ
results in faster retrieval. Both [1] and [2] propose hashing

schemes that achieve ρ = 1/c. With Weighted Minhash,

ρc(R) depends on R and is defined on R ∈ (0, 2/c):

ρc(R) = ln((2+R)/(2−R))
ln((2+Rc)/(2−Rc)) . Fig. 3 shows ρc(R) for several

values of c. We can show that limR→0 ρc(R) = 1/c and

limR→2/c ρc(R) = 0. Furthermore, ρc(R) decreases on

(0, 2/c) for all values of c that we examined. We can see

that ρc(R) < 1/c and so, in the case of ℓ1-normalized

data, Weighted Minhash allows for more efficient retrieval

than the stable distribution method.

In addition to its suitability for retrieval, Weighted

Minhash can also be faster to compute. Indeed, computing

a single stable-distribution hash requires us to consider

every non-zero weight Sk 6= 0 in the input vector to

compute the dot product. On the other hand, with the

preprocessing described in Sec. 3.4, we can consider only

a small fraction of the features to compute a given hash

— which is a win compared to the dot product with a

Cauchy vector, even though our algorithm spends more

time on each weight that it actually considers.

4.2. Weighted Minhash for Sketching Under ℓ1

We often want to represent the data using as few bits

as possible, while being able to reconstruct the distances

efficiently and accurately. We now present a method for

accomplishing this with Weighted Minhash, study the

accuracy of the ℓ1 distance estimation for a given number

of bits, and compare with several existing methods.

Consider the mapping of a vector S to a sketch

containing its ℓ1 norm and H Weighted Minhash values,

where each WMHh is an independent sample from the

parameterized family H of hash functions:

sketch(S) = (‖S‖1,WMH1(S), . . . ,WMHH(S))

Recall that PrWMH∈H[WMH(S) = WMH(T)] =
J(S,T), where the probability is with respect to a random

selection of the hash function from H. Since all of WMHh

are independent random samples from H, the normalized

Hamming similarity

HashSimH(S,T) =
1

H

H
∑

h=1

δ(WMHh(S),WMHh(T))

(where δ is Kronecker’s delta) is the average of H i.i.d.

Bernoulli variables. Thus the Hamming similarity has the

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

Distance R = ‖u−v‖1

ρ
=

lo
g(

1/
p 1

)
/

lo
g(

1/
p 2

)

1

1.1

1

1.5

1

2.0

c = 1.1

c = 1.5

c = 2.0

Figure 3. The value ρ achieved by our method for different approximation factors c and ℓ1 distances R, under the condition ‖S‖1 = ‖T‖1 = 1.
p1 is the probability of hash collision for points at distance R and p2 is the probability for points at distance Rc. Smaller values of ρ result in more

efficient retrieval. Previously, ρ = 1/c has been achieved for ℓ1 distances using the stable distribution method, whereas Weighted Minhash achieves

ρ = 1/c for distances R ≈ 0 and quickly decreases after that. These graphs show that when the data is ℓ1 normalized (such as histograms), Weighted

Minhash provides a more efficient retrieval method than the method of [2].

expected value of J(S,T) and variance

σ2
H =

J(S,T)(1− J(S,T))

H

Being able to approximate J(S,T) =
P

k
min(Sk,Tk)

P

k
max(Sk,Tk)

allows us to approximate ‖S − T‖1. Indeed,
∑

k min(Sk, Tk) =
∑

k(Sk + Tk − |Sk − Tk|)/2,
and similar for

∑

k max(Sk, Tk), so

J(S,T) =
‖S‖1 + ‖T‖1 − ‖S−T‖1
‖S‖1 + ‖T‖1 + ‖S−T‖1

.

Defining N = ‖S‖1 + ‖T‖1 and d = ‖S−T‖1, we have

d = N
1− J

1 + J

Replacing J with HashSimH(S,T) yields an estimate

d̂ ≈ d.
How accurate is this estimate? Let us locally approx-

imate the relationship between J and d as being linear.

Then,

Var[d̂] = σ2
H ×

(

∂d

∂J

)2

(4)

=
J(1− J)

H
×

(

∂J

∂d

)−2

(5)

4.3. Generating b-bit hashes

In the above discussion we ignored the number of bits

required to represent each Weighted Minhash WMHh.

One possibility is to use one of the standard compression

techniques so that the average number of bits per hash is

roughly the entropy of the hash. This approach, however,

has several disadvantages. One is that the distance com-

putations between hashes become much more expensive,

as each hash needs to be decompressed on the fly. More

importantly, it may often be advantageous to reduce the

number of bits per hash at the cost of some spurious

hash collisions, with the benefit of being able to use more

hashes. The extra hash collisions, which a compression

scheme would work hard to avoid, may not be quite so

harmful in reality, since it is unlikely that the spurious

collisions of different hashes would be consistent enough to

significantly affect the distance estimates. This insight was

has been successfully used in the context of hash learning

[6]. Below, we propose a scheme to represent each hash

using a given number b of bits – where b trades off between
the number of hashes and their accuracy. This problem has

also been addressed in [11], but the method below applies

to any hashing scheme and not just Minhash, and allows

simpler analysis and much simpler estimators of distances

given the number of hash collisions.

Given a hash value WMHh(S), we will randomly

map it to a b-bit value. First, we initialize a random

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

d/N = ‖S−T‖1/(‖S‖1 + ‖T‖1)

V
a
r[
d̂
]
×

B
/d

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

2

3

4

5

6

7

8

9

10

11

12

B
it
s
 p

e
r

h
a

s
h

Weighted MinHash

Cauchy Projection

Figure 4. Comparing Weighted Minhash with Cauchy Random Projections for estimating the distance d = ‖S − T‖1. In both cases, each hash is

mapped to a b-bit code, and we minimize the variance of the distance estimate given that we are allowed B bits total. For random projections, the

minimum variance Var[d̂] ≈ 8.7d2/B is obtained for b = 1. For Weighted Minhash, we explore different values of b. We normalize out the effects

of B and d by plotting Var[d̂] × B/d2 against d/N = ‖S − T‖1/(‖S‖1 + ‖T‖1). (top) The optimal number of bits b to which each Weighted

Minhash value should be mapped to minimize Var[d̂]. For a near-duplicate scenario where d < 0.153N , it is better to use random projections, at

one bit per projection. Otherwise, Weighted Minhash performs better. (bottom) The optimal normalized variance. For Weighted Minhash, we benefit

from minimizing the vector norms, e.g. by centering each dimension at its median.

number generator using (h,WMHh(S)) as the seed. Then

sample an integer b-bit value WMH
(b)
h uniformly from

{0 . . . 2b − 1}.
Note that if the original hashes are equal then the b-

bit hashes are too. For different original hashes, on the

other hand, the b-bit hashes collide with probability 2−b.

Therefore,

Pr[WMH
(b)
h (S) = WMH

(b)
h (T)] =

J + (1− J)× 2−b = J (b)

and, denoting by HashSim
(b)
H the Hamming similarity of

H b-bit hashes, we can approximate

J =
J (b) − 2−b

1− 2−b
≈

HashSim
(b)
H − 2−b

1− 2−b

Similar to (4), we obtain that the variance of the estimate

d̂(b) of the distance d = ‖S−T‖1 depends on H and b as

follows:

Var[d̂(b)] =
J (b)(1− J (b))

H
×

(

∂J (b)

∂d

)−2

Denoting by B the total number of bits available, we have

H = B/b, and

Var[d̂(b)] =
d(N + d)2(N − d(1− 21−b)) b

2N2(1− 2−b)B
(6)

The distance estimate variance computed in (6) allows

us to reason about the optimal number of bits b to represent
each hash, assuming that the pairs of vectors we care about

have similar distances d and sums of norms N . As an

alternative, we may choose b empirically to obtain the most

accurate estimate d̂ for the vector pairs of interest.

4.4. Weighted Minhash or Random Projections?

Let us now consider another commonly used Locality

Sensitive Hashing method, based on Stable Distributions

[2]. Here, each hash is a quantized dot product between

the vector S and a vector of independent Cauchy variates.

The method has a single parameter r, the quantization

granularity. For given S, T and r, let us define u =
r

‖S−T‖1

. Then, the probability of hash collision is

p =
2 tan−1 u

π
−

ln(1 + u2)

πu
(7)

We can estimate p as the fraction of colliding hashes, and

recover d = ‖S − T‖1 by inverting p(u). For H hashes,

the variance of the estimate is

Var[d̂] =
p(1− p)

H
×

(

∂p

∂d

)−2

(8)

To represent the hash in a fixed number b of bits, we can

consider several schemes. One is the scheme described

above, where each hash is mapped to a random b-bit
sequence. Alternatively, we propose to minimize spurious

collisions by making the regions represented with the same

b bits as separated as possible, as follows:

RP(b)(S) = mod

(⌊

S · c

r
+ β

⌋

, 2b

)

(9)

where c is the vector of Cauchy variates and β is the

random offset. Numerical minimization with respect to r
and b shows that for a given distance d = ‖S −T‖1 and

available number of bits B the smallest

Var[d̂RP] ≈
8.7d2

B
(10)

is achieved by the scheme in (9) with r ≈ 4.5d and b = 1
— that is, the random projections are quantized, and the

quantization bins are alternately assigned to bits 0 and 1

(for comparison, random assignment of each bin to a single

bit yields the estimate variance of 11.6d2/B). Note that the

in this analysis we are being optimistic, assuming that for

each d we can select the corresponding r value, which of

course is not true in practice.

In addition to the hashing methods, we can consider

storing non-quantized Cauchy projections, and estimating

the ‖S − T‖1 as the maximum likelihood estimate of

the scale of a Cauchy distribution. Such a method was

proposed in [13], and yields

Var[d̂] =
2d2

k
+ O(k−2)

where k is the number of projections. However, even if

we can very aggressively compress the projections to 5

bits with no loss in distance estimation accuracy (so that

k = B/5), the resulting variance exceeds that in (10).

To compare our sketching method with that given by

Cauchy random projections with quantization and remap-

ping to bits, we observe that Var[d̂] scales inversely with

B and quadratically with d, with the caveat for our method

that N/d remains constant. Therefore, to compare the

methods as well as different values of b for Weighted

Minhash, in Fig. 4 we plot Var[d̂]/d2 against d/N .

From the plots we can make several observations.

One is that for a fixed d = ‖S − T‖1 we obtain smaller

variance Var[d̂] if d/(‖S‖1 + ‖T‖1) is larger. Therefore,

it is advantageous to make the ℓ1 norms of the inputs as

small as possible, while preserving distances. We propose

to minimize the sum of ℓ1 norms of the training data by

determining, for each dimension k, the median weight

µk = median{Sk} over the training data. Then, we

subtract the medians from the weights and replace each

weight with a pair to ensure non-negativity:

Sk → (max(0, Sk − µk),max(0, µk − Sk)) (11)

It is easy to see that this transformation preserves the ℓ1
distances, while minimizing the total ℓ1 norm of the data.

The second observation from Fig. 4 is that Weighted

Minhash achieves better variance of the distance estimate

than random projections with remapping to 1 bit, as long

as the vectors are sufficiently different, i.e. ‖S − T‖1 >
0.153 (‖S‖1 + ‖T‖1). On the other hand, in the near-

duplicate scenario, where d/N < 0.153, we are better off

using random projections. One explanation for this is that

the norms of the inputs ‖S‖1 which we store alongside

the Weighted Minhashes help us obtain better distance

estimates when these distances are of the same order of

magnitude as the norms. The norms become less useful,

however, if the distances are much smaller – at that point

they only amplify the variances.

Finally, we can see that as the distances we are

interested in become larger compared to the norms, we

benefit from using more bits per hash, and need fewer

hashes.

5. Experimental Results

In our evaluations, we have concentrated on sketching,

and analyzed how well the variances of the distance

estimate obtained from sketches agree with the theoretical

predictions.

Our inputs are image descriptors containing different

histograms of color, texture and other image properties, for

a total of about 5 × 105 dimensions. The descriptors are

somewhat sparse, with about 50000 non-zero weights per

image. Some of the constituent histograms are normalized

and some are not. We preprocessed the descriptors by

subtracting from each dimension the median value of

that dimension, computed over a separate set of images,

ensuring non-negativity as in (11).

The average norm of a descriptor is ‖S‖1 ≈ 14.2, and
the average distance ‖S−T‖1 ≈ 19.9. Looking up these

values in Fig. 4, we find that for d/N ≈ 19.9/(2 ·14.2) ≈
0.7, we should use Weighted Minhash, with 3 bits per

hash. We computed the hashes for different values of b,
with the budget of 3000 bytes per image (B = 24000),
and found that b = 3 in fact gives the best agreement

between the distances and their estimates. Turning now to

(6), we expect that Var[d̂] ≈ 0.0556. In our experiment, we

obtained almost exactly this value: averaging over many

pairs of images, we got E(d̂− d)2 = 0.0559.
The time required to compute the B/b = 8000 hashes,

with about 50000 non-zero weights per input, was approxi-

mately 7 seconds. Following Sec. 3.4, we selected for each

hash the 200 most-frequently selected input dimensions (as

evaluated on a separate set of inputs). Now each hash looks

only at the dimensions among the 200 which have non-zero

weights; the sets of dimensions considered by different

hashes may or may not overlap. With this optimization, the

variance Var[d̂] increases slightly from 0.0559 to 0.0572.
However, the running time is reduced from 7 seconds to

47 milliseconds per image, i.e. a speedup factor of almost

150.

6. Conclusion

We presented a new consistent sampling scheme, which

improves on the best existing such scheme by making it

worst-case constant-time per sample per non-zero input

weight (compared to expected constant-time). Another

advantage of our method is that all the random variates

used for hash computation can be computed offline, in-

dependently of the inputs. The time required to compute

the samples was reduced by a factor of 150 by analyzing

which samples are affected by which input dimensions.

The consistent samples can be used as generalization of

Minhash to weighted inputs, with the collision probability

given by the Jaccard similarity. We exploit the relationship

between Jaccard similarity and ℓ1 distance to present a

hash-based approximate near-neighbor retrieval scheme

with performance characteristics superior to the previously

existing ones. We discussed the use of Weighted Minhash

for sketching that allows ℓ1 distance approximation, and

studied the accuracy of this approximation for a given

sketch size. We showed how to map Weighted Minhash, or

any other hash, to a fixed number of bits, and investigated

the optimal trade-off between the number of hashes and

the number of bits per hash. Our experimental results agree

well with the theoretical predictions.

References

[1] P. Indyk and R. Motwani, “Approximate nearest neighbors:
towards removing the curse of dimensionality,” in STOC
’98: Proceedings of the thirtieth annual ACM symposium
on Theory of computing, New York, NY, USA, 1998, pp.
604–613.

[2] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni,
“Locality-sensitive hashing scheme based on p-stable distri-
butions,” in SCG ’04: Proceedings of the twentieth annual
symposium on Computational geometry, New York, NY,
USA, 2004, pp. 253–262.

[3] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzen-
macher, “Min-wise independent permutations,” J. Comput.
Syst. Sci., vol. 60, no. 3, pp. 630–659, 2000.

[4] A. Andoni and P. Indyk, “Near-optimal hashing algorithms
for approximate nearest neighbor in high dimensions,” in
FOCS ’06: Proceedings of the 47th Annual IEEE Sym-
posium on Foundations of Computer Science, Washington,
DC, USA, 2006, pp. 459–468.

[5] M. S. Charikar, “Similarity estimation techniques from
rounding algorithms,” in STOC ’02: Proceedings of the
thiry-fourth annual ACM symposium on Theory of com-
puting, New York, NY, USA, 2002, pp. 380–388.

[6] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in
Proc. Neural Information Processing Systems 2008, 2008.

[7] R. Salakhutdinov and G. Hinton, “Semantic hashing,” in
IRGM 2007 workshop at the SIGIR 2007 conference, 2007.

[8] O. Chum, J. Philbin, and A. Zisserman, “Near duplicate
image detection: min-hash and tf-idf weighting,” in Pro-
ceedings of the British Machine Vision Conference, 2008.

[9] J. Kleinberg and E. Tardos, “Approximation algorithms for
classification problems with pairwise relationships: Metric
labeling and markov random fields,” in FOCS ’99: Pro-
ceedings of the 40th Annual Symposium on Foundations of
Computer Science, Washington, DC, USA, 1999, p. 14.

[10] M. Manasse, F. McSherry, and K. Talwar, “Consistent
weighted sampling,” MSR, Tech. Rep. MSR-TR-2010-73,
2010.

[11] P. Li and C. König, “b-bit minwise hashing,” in WWW ’10,
2010.

[12] G. Marsaglia and W. W. Tsang, “The ziggurat method
for generating random variables,” Journal of Statistical
Software, vol. 5, no. 8, pp. 1–7, 2000.

[13] P. Li, T. J. Hastie, and K. W. Church, “Nonlinear estimators
and tail bounds for dimension reduction in l1 using cauchy
random projections,” J. Mach. Learn. Res., vol. 8, 2007.

