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Abstract—In this paper, we address an interesting data
mining problem of finding semantically associated itemsets,
i.e., items connected via indirect links. We propose a novel
method for discovering semantically associated itemsets based
on a hypergraph representation of the database. We describe
two similarity measures to compute the strength of associations
between items. Specifically, we introduce the average commute
time similarity, sCT, based on the random walk model on
hypergraph, and the inner-product similarity, sL+, based on
the Moore-Penrose pseudoinverse of the hypergraph Laplacian
matrix. Given semantically associated 2-itemsets generated by
these measures, we design a hypergraph expansion method
with two search strategies, namely, the clique and connected
component search, to generate k-itemsets (k > 2). We show
the proposed method is indeed capable of capturing seman-
tically associated itemsets through experiments performed on
three datasets ranging from low to high dimensionality. The
semantically associated itemsets discovered in our experiment
is promising to provide valuable insights on interrelationship
between medical concepts and other domain specific concepts.

Keywords-Semantically associated itemset, hypergraph, ran-
dom walk

I. INTRODUCTION

There has been a surge of interest in tackling the problem
of mining linked collection of interrelated objects. A single
transaction table can be characterized as a set of items linked
by the co-occurrence relationship. The problem of frequent
itemset mining can be then formalized as to identify sets
of items that often occur together, or, in other words, items
that heavily connected by co-occurrence links. An itemset
is deemed frequent if its support, i.e., the percentage of
transactions which contain that itemset, is above a threshold.
The support of an itemset can be viewed as a measure of
endorsement among items to each other in the set. However,
it only takes into account the number of direct links between
items while ignoring the number of indirect links (going
through intermediaries) between items. For example, given
a relation table of annotated medical publications in a “bag-
of-word” representation where each row corresponds to one

publication and each column a boolean variable indicating
if some term is appeared. Using traditional frequent itemset
generation algorithms, if the number of times the item pair
fish oil and Raynaud’s syndrome occurring together falls
below some threshold, then ⟨fish oil, Raynaud’s syndrome⟩
would not be picked up as a frequent itemset. However fish
oil and Raynaud’s syndrome may actually be meaningfully
related and the latent association can be revealed through
indirect links. For instance, if ⟨blood changes, fish oil⟩ and
⟨blood changes, Raynaud’s syndrome⟩ are both frequent, the
presence of blood changes provides a connection through
which fish oil and Raynaud’s syndrome can be related (this
relationship is discovered in Swanson’s land mark paper
published in 1987 [1] before the age of Web-scale computa-
tion). We call the intermediary item such as blood changes
in this case a linking item, and the latent association between
items through the connection via one or more linking items
the semantically associated relationship. We present in this
paper an algorithm to find semantically associated itemsets.

An object set endowed with pairwise relationships can
be naturally illustrated as a graph in which vertices rep-
resent objects, and any two vertices that have some kind
of relationship are joined together by an edge. In the case
of frequent itemset mining, a set of objects with the co-
occurrence relationship can be represented as directed or
undirected graphs. For illustrating this point of view, let us
consider a relational table depicted in Figure 1(a). One can
construct an undirected graph where the set of vertices is the
set of relational attributes (column items) and an edge joins
two vertices if the they co-occur in a tuple (as illustrated
in Figure 1(b)). This graph is called Gaifman graph [2] of
a relational structure. The undirected graph can be further
enriched by assigning to each edge a weight equal to the
support of the 2-itemset consisting of vertices incident to the
edge. Cliques (complete subgraphs) in the Gaifman graph, or
Gaifman cliques for short, are of particular interest because
every tuple (ground atom) in data corresponds to a Gaifman
clique. However, ambiguity arises as not all Gaifman cliques



Figure 1. (a) an example transaction table; (b) the Gaifman graph representation of the table; (c) The hypergraph representation of the table

have matching tuple in the data. There exists cases where
cliques are incidental in the sense that several relational
ground atoms play together to induce a clique configuration
in the Gaifman graph, but no ground atom covers the entire
clique (e.g., the clique of {A,B,C,D} in Figure 1(b) does
not correspond to any tuple in the relational table).

A natural way to remedy the ambiguity is to represent
the relational data as a hypergraph [3]. A hypergraph
is a generalization of traditional graph. An edge in the
hypergraph, called hyperedge, can connect more than two
vertices. In other words, every hyperedge is an arbitrary
nonempty subset of vertices. It is obvious that a simple
graph is a special kind of hypergraph with each hyperedge
containing only two vertices. In this paper, we propose to
employ hypergraphs to model relational structure for finding
semantically associated itemsets. Specifically, we propose
to construct a hyperedge for each tuple. The relational at-
tributes constitute the universe of vertices in the hypergraph.
In this representation, each hyperedge has an exact one-to-
one correspondent tuple (see Figure 1(c), for example).

With the hypergraph model, finding semantically associ-
ated items amounts to developing a meaningful similarity
measure between the items which takes into account the ef-
fect of linking items. Such similarity measure should satisfy
the intuition that the more “short” connections between two
given items (through linking items), the more similar those
items are. To this end, we propose to employ the following
quantities as the candidate similarity measure since both
of them have the desired property. They are, namely, the
commute time distance based similarity measure from the
random walk model on hypergraph, and the inner product
similarity based on the pseudoinverse of the hypergraph
Laplacian. If the similarity of a pair of items measured
by these quantities exceeds some threshold, then this pair
of items can be deemed as a semantically associated 2-
itemset. Given 2-itemsets, we propose a hypergraph expan-
sion methods based on pruning of its primal graph together
with two search strategies in the resulting graph to discover

semantically associated k-itemsets (k > 2).
The rest of this paper is organized as follows. We intro-

duce the basics of hypergraph and random walk model in
Section II. We review related work in Section III. We present
our method for discovering semantically associated itemsets
based on hypergraphs in Section IV. We report experimental
results in Section V and conclude the paper in Section VI.

II. PRELIMINARIES AND BACKGROUND

A. Hypergraph

A hypergraph [3] is a generalization of a traditional graph
where edges, called hyperedges, can connect any number
of vertices. In other words, hyperedges can be viewed as
non-empty subsets of the vertices. Formally, a hypergraph
G = (V,E), is a pair in which V is the vertex set and E
is the hyperedge set where each e ∈ E is a subset of V .
A weighted hypergraph is a hypergraph that has a positive
number w(e) associated with each hyperedge e; called the
weight of hyperedge e: Denote a weighted hypergraph by
G = (V,E,w). The degree of a vertex v ∈ V , d(v), is
defined as

d(v) =
∑

v∈V,e∈E

w(e),

The degree of a hyperedge e, denoted as δ(e), is the number
of vertices in e, i.e. δ(e) = |e|. A hyperedge e is said to
be incident with a vertex v when v ∈ e. The hypergraph
incidence matrix H ∈ R|V |×|E| is defined as

h(v, e) =

{
1, v ∈ e
0, otherwise

(1)

Throughout the rest of the paper, the diagonal matrix forms
for δ(e), w(e), d(v) are denoted as De, W ∈ R|E|, and
Dv ∈ Z|V |, respectively.

B. Random Walk

1) Random Walk on Simple Graph: Given a graph and
a starting point we select a neighbor of it at random and
move to this neighbor then we select a neighbor of this



point at random and move to it etc. The random sequence
of points selected this way is a random walk on the graph.
In other words, a random walker can jump from vertex to
vertex and each vertex therefore represents a state of the
Markov chain. The average first-passage time m(k|i) [4] is
the average number of steps needed by a random walker for
reaching state k for the first time, when starting from state i.
The symmetrized quantity n(i, j) = m(j|i) +m(i|j) called
the average commute time [4], provides a distance measure
between any pair of states. The fact that this quantity is
indeed a distance on a graph was proved independently by
Klein and Randic [5] and Gobel and Jagers [6].

The Laplacian matrix L of a graph is widely used for
finding many properties of the graphs in spectral graph
theory. Given node degree matrix D and graph adjacency
matrix A, the Laplacian matrix of the graph is defined
as L = D − A. The normalized Laplacian is given by
LN = I − D−1/2AD−1/2, where I is the identity matrix.
The average commute time n(i, j) can be computed in
closed form from the Moore-Penrose pseudoinverse [7] of
L, denoted by L+ as shown in Section IV.

2) Random Walk on Hypergraph: We can associate each
hypergraph with a natural random walk which has the
transition rule as described in [8]. Given the current position
u ∈ V , first choose a hyperedge e over all hyperedges
incident with u with the probability proportional to w(e),
and then choose a vertex v ∈ e uniformly at random.
Obviously, it generalizes the natural random walk defined
on simple graphs. Let P denote the transition probability
matrix of this hypergraph random walk. Then each entry of
P is

p(u, v) =
∑
e∈E

w(e)
h(u, e)

d(u)

h(v, e)

δ(e)
.

In matrix notation, P = D−1
v HWD−1

e HT .
Zhou et al. [8] define the following normalized hypergraph

Laplacian L based on the random walk model:

L = I−Θ, (2)

where
Θ = D

− 1
2

v HWD−1
e HTD

− 1
2

v .

III. RELATED WORK

A. Semantic Association and Connection Subgraph

Sheth et al. [9] proposed a formalism for semantic associ-
ation between entities in an RDF graph. Specifically, the se-
mantic association is defined based on semantic connectivity
which indicates if there exists a sequence of interconnected
links between two given entities. In our study of semantically
associated itemsets in transaction data, the link between
entities is essentially the ‘co-occurrence’ relationship. The
semantic association according to Sheth et al’s definition
between transaction items i0 and in can be established by
identifying a link of the form i0, Pc, i1, Pc, . . . , in−1, Pc, in,

in which Pc denotes the co-occurrence property. The ran-
dom walk model on hypergraph described in Section II-B2
formalizes this point of view. Our method for measuring
the strength of semantic association is hence based on
constructing a hypergraph representation and studying its
property with both graph theoretical and spectral analysis
techniques.

Faloutsos et al. [10] defined a connection subgraph as a
small subgraph of a large graph (such as social networks
graphs) that best captures the relationship between two
nodes. Since finding all paths connecting two nodes is
impractical and finding a single most “critical” path under
some criteria is unfair, the connection subgraph addresses
these problems by extracting a subset of all paths between
two nodes that contains only the most significant ones to
characterize their relationship under certain constraints. The
paths in the connection subgraphs are essentially “impor-
tant” semantic associations. Faloutsos et al. described an
efficient algorithm to produce approximate, but high-quality
connection subgraphs in real time on very large graphs. In
comparison, our proposed method in the present paper does
not explicitly keep track of paths (in hypergraphs). Instead,
paths are implicitly utilized in the random walk model to
measure the similarity between nodes and our algorithms
to calculate the similarity are exact since the graphs that
we deal with are much smaller (approx. 10k nodes) than
Faloutsos et al’s (approx 15m nodes).

B. Indirect Associations

Tan et al. [11] introduced the concept of indirect asso-
ciation: Consider a pair of items (a, b) with low support
value. If there is an itemset Y (called the mediator set)
such that the presence of a and b are highly dependent on
items in Y , then (a, b) are said to be indirectly associated
via Y . This definition of indirect association bears a similar
motivation to the semantically associated itemset proposed
in the present paper, as both problems aim at identifying
itemsets that do not have sufficiently high support but are
likely to provide useful insight into the data. The importance
of indirect association has also been recognized by several
other authors [12][13]. Tan et al. were the first to propose
an algorithm to derive the indirect associations by iteratively
finding mediator set for candidate itemsets. Later Wan et
al. [14] proposed a more efficient algorithm, called HI-Mine,
which improved the performance by avoiding the standard
frequent itemset generation process.

The difference between the indirect and semantic associ-
ation is that items in the indirect association are connected
via a mediator set while items in the semantic association
are connected via a path. It is worth noting that in our
graph-based formalism for finding semantically associated
itemsets, the paths connecting two items are not explicitly
required to be identified, while in both Tan et al’s and Wan



et al’s algorithms the mediator set Y has to be identified
along the process of discovering indirect associations.

C. Random Walk-based Similarity Analysis

Various quantities derived from random walk on graph has
been used in a number of applications. Fouss et al. [15] com-
prehensively compared twelve scoring algorithms based on
graph representation of the database to perform collaborative
movie recommendation. Pan et al. [16] developed a similar-
ity measure based on random walk steady state probability to
discover correlation between multimedia objects containing
data of various modalities. Yen et al. [17] introduced a
new k-means clustering algorithm utilizing the random walk
average commute time distance. Zhou et al. [18] presented
a unified framework based on neighborhood random walk
to integrate structural and attribute similarities for graph
clustering.

Palmer et al. [19] exploited a rich duality between random
walks on graphs and electrical circuits to develop an external
similarity function called REP to measure the similarity
between categorical attributes. In their work, they identified
a subtle flaw of commute time distance where it degenerates
on realistic data when the degree distribution follows a
Zipf or power-low relationship. In other words, distances
are skewed toward the high degree nodes. Our experiment
results based on commute time similarity confirmed this
finding (see Table IV for illustration of this phenomena and
discussion in Section V). We also discover that the inner-
product based similarity does not suffer from this flaw.

IV. METHOD

In this section, we present our method for discovering
semantically associated itemsets based on hypergraph. Our
method starts by generating 2-itemsets. A 2-itemset ⟨i, j⟩ is
considered semantically associated if the hypergraph-based
similarity measure s(i, j) exceeds some threshold. In the
following subsections, we propose two similarity measures
sCT and sL+ based on, respectively, the average commute
time distance on hypergraph and the inner-product-based
representation of the pseudoinverse of Hypergraph Lapla-
cian. Given discovered semantically associated 2-itemsets,
we propose a hypergraph expansion method along with two
search strategies, namely, the clique and connected compo-
nent search, in the resulting graph for finding semantically
associated k-itemsets (k > 2).

A. Methods for Generating 2-itemsets

In the following we describe two similarity measures that
define the strength of bond between a pair of semantically
associated items.

1) Average Commute Time Similarity sCT : As already
mentioned, the commute-time distance n(i, j) between two
nodes i and j has the desirable property of decreasing when
the number of paths connecting the two nodes increases

and when the length of paths decreases. This is indeed an
intuitively satisfying property of the effective resistance of
the equivalent electrical network [20]. The usual shortest-
path distance (also called geodesic distance) does not have
this property: the shortest-path distance does not capture the
fact that strongly connected nodes are closer than weakly
connected nodes.

To compute commute-time distance between vertices in a
hypergraph, we need to first define the combinatory hyper-
graph Laplacian L. It follows from Zhou et al’s formalism
of normalized hypergraph Laplacian in Equation 2 that:

L = D1/2LD1/2 = Dv −HWD−1
e HT (3)

The average commute time n(i, j) on simple graph can be
computed in closed form from the Moore-Penrose pseudoin-
verse of L [7], denoted by L+ with elements l+ij = [L+]ij .
It can be shown that n(i, j) on hypergraph can be calculated
in the same manner. The pseudoinverse L+ is given by the
following equation:

L+ = (L− eeT /n)−1 + eeT /n, (4)

where e is a column vector made of 1s (i.e., e =
[1, 1, . . . , 1]T ). The formula for the computation of n(i, j)
takes the form of the following equation:

n(i, j) = VG(l
+
ii + l+jj − 2l+ij), (5)

where VG = tr(Dv) is the volume of the hypergraph. If we
define ei as the ith column of I (i.e., ei = [0

1
, . . . , 0

i−1
, 1
i
,

0
i+1

, . . . , 0
n
]T ), Equation 5 can be transformed to:

n(i, j) = VG(ei − ej)
TL+(ei − ej), (6)

Since n(i, j) is a distance, it is straightforward to convert
it to a similarity measure sCT (i, j) by normalize it to unit
range and subtract from 1.

2) Pseudoinverse-based Inner-Product Similarity sL+:
Equation 6 can be mapped into a new Euclidean space that
preserves the commute time distance:

n(i, j) = VG(ei − ej)
TL+(ei − ej)

= VG(x
′
i − x′

j)
T (x′

i − x′
j)

= VG∥x′
i − x′

j∥2, (7)

where x′
i = Λ1/2UTei, U is an orthonormal matrix made

of eigenvectors of L+ (ordered in decreasing order of cor-
responding eigenvalue λk) and Λ = Diag(λk). In this way,
the transformed node vectors x′

i are exactly separated in the
new n-dimensional Euclidean space. From this definition, it
follows that L+ is the matrix containing inner products of
the transformed vectors x′

i as shown below:

x′T
i x′

j = (Λ
1/2
i xi)

TΛ
1/2
j xj = xT

i Λxj

= eTi UΛUTej = eTi L
+ej = l+ij . (8)



Therefore, L+ can be considered as a similarity matrix for
the nodes—that is

sL+(i, j) = l+ij . (9)

The inner-product-based similarity measures are well-
studied for the vector-space model of information retrieval.
It has been shown that when computing proximities be-
tween documents, inner-product-based measures outperform
Euclidean distances [21].

B. Methods for Generating k-itemset (k > 2)

Now, we consider finding semantically associated k-
itemset (k > 2) from given 2-itemsets. As is common in
hypergraph theory, we can associate an induced graph G(H)
with every hypergraph H by expanding every hyperedge e
in H to a clique in G(H). Edges in the induced graph G(H)
can be called subedges to avoid unnecessary confusion. We
can further construct a pruned graph G′(H) from G(H) by
applying the following inclusion rule on each subedge: the
similarity between the incident nodes of a subedge has to be
greater than a user-specified threshold θ. In formal definition,
given a hypergraph H = (V,E), the pruned subgraph is
G′(H) = {V,E′} where

E′ = {(u, v) ∈ V 2 : u ̸= v and

u, v ∈ e for some e ∈ E and

s(u, v) > θ}.

Given G′(H), finding semantically associated k-itemset
(k > 2) can be formulated into two ways: finding cliques or
connected components in G′(H).

1) Cliques of G′(H): Finding cliques in G′(H) cor-
responds to searching and testing in the powerset of V .
Given the fact that every subset of a clique is also a clique,
this downward-closure property can make efficient clique
discovery algorithm possible in a way similar to the Apriori
algorithm for finding frequent itemsets — with a “bottom
up” manner, the candidate generation step extends valid
k − 1 length itemsets one item at a time, and groups of
candidates are tested against G′(H) to determine if they
form cliques. The algorithm terminates when no further
successful extensions are found.

2) Connected Components of G′(H): Complete subgraph
(i.e., clique) is a very strong requirement that can limit
the approach to restricted cases of semantically associated
itemsets. One way to relax this requirement is to find
connected components of G′(H), which can be viewed
as a closure under semantic association. The number of
connected components equals the multiplicity of 0 as an
eigenvalue of the Laplacian matrix of G′(H). Although the
set of connected components is not downward closed, there
is efficient way to find all connected components of a graph
in linear time using either breadth-first search or depth-first
search. In either case, a search that begins at some particular

vertex will find the entire connected component containing
the vertex. When the search returns, loop through other
vertices and start a new search whenever the loop reaches
a vertex that has not already been included in a previously
found connected component.

3) Ranking of Itemsets: Once the semantically associated
2-itemsets and k-itemsets are generated, they can be ranked
by a quantity indicating the strength of association among
items in the set. We tentatively compute this quantity by
averaging the total pairwise similarities over the number of
subedges of the itemset’s corresponding clique or connected
component in G′(H).

C. Effective Computation

In high dimensional data sets, the computations of the
Hypergraph Laplacian and the pseudoinverse become in-
tractable. We discuss two approaches to mitigate this scala-
bility problem.

To compute Hypergraph Laplacian L in Equation 3 re-
quires multiplication of hypergraph incidence matrices H
and its transpose HT . Since H grows in proportion to the
size of underlying transaction data (each node corresponds
to a column and each hyperedge corresponds to a row),
it eventually becomes unable to fit in memory when the
size exceeds a certain amount. In this case the computation
can still be carried out using a block partitioned matrix
product by performing operations only on the submatrices
of tractable sizes. Owing to the fact that, in most cases, |V |
is much smaller than |E|, H can then be partitioned into
s vertical stripes and the square matrix De into s diagonal
blocks. The multiplication in Equation 3 can be calculated
by HD−1

e HT =
∑s

γ=1 HγD
−1
eγ H

T
γ . Note that H is sparse

in many applications. This property can be exploited to gain
high performance and due to its importance much effort has
been devoted to the study resulting a number of libraries and
routines from which we can leverage.

As the number of nodes grows, to compute pseudoinverse
in closed form using Equation 4 also becomes intractable. A
procedure based on Cholesky factorization to compute L+

for large sparse matrices [22] is proved useful. It allows to
compute L+ in a column-by-column manner. In particular,
the procedure involves the following steps for computing the
ith column of L+:

1) Compute the projection yi of base vector ei on the
column space of L.

2) Find a solution l∗+i of the linear system Ll = yi.
3) Project l∗+i on the row space of L to get l+i .

Since L is symmetric, its row space is the same as column
space. The projection in step 1 and 2 can be represented
by the matrix (I− eeT /n). The equation in step 2 can be
solved by first solving a reduced linear system: L̂̂l = ŷi,
where L̂, l̂, and ŷ are obtained respectively by removing
the last row from l, y, and last row and column from
L. We observe that L̂ is full rank and positive definite



and hence is able to be decomposed using the Cholesky
factorization, L̂ = RR

T
. Since R is lower-triangular, one

solution of L̂̂l = RRT l̂ = ŷi can be efficiently obtained
by two back-substitutions. After solving the reduced linear
system, the solution to the original equation in step 2 is
therefore (l∗+i ) = [̂l∗+i , 0]T . With the help of this technique,
we are able to analyze datasets of a million rows and 10
thousand columns.

V. EXPERIMENTAL EVALUATION

Because we are interested in understanding the differences
between the sCT and sL+ similarity measures for generating
semantically associated itemsets, we conducted a series of
experiments to highlight their differences. First, to illustrate
the power of hypergraphs in finding associations via linking
items, we synthesized a dataset for the fish oil example.
Next, to illustrate the differences between the two methods,
we evaluated both methods against a commonly used shop-
ping cart dataset. Finally, encouraged by these results, we
applied these methods to actual electronic health records to
highlight their scalability and applicability to the medical
domain.

A. Fish Oil

1) Dataset: As mentioned in Section I, fish oil and
Raynaud’s syndrome have been shown by Swanson [1] to
be linked together indirectly via various blood changes.
He found these associations from examining biomedical
texts. As a proof of concept, we replicated this situation
by synthesizing a table of 50 rows, which is about the same
scale as in Swanson’s experiment. Each row represents a set
of terms generated to represent biomedical text. Each set
of terms was specifically generated so that fish oil and Ray-
naud’s syndrome never appear together. The column headers
include fish oil, blood changes, Raynaud’s syndrome. Six
other random variables acted as noise. We then applied the
sCT , sL+ to the dataset. Specifically, we set a threshold
for first generating top-15 2-itemsets using either similarity
measure. Based on the generated 2-itemsets we used clique
search to generate (k > 2)-itemsets.

2) Results: The hypergraph approach finds significant
links between fish oil and Raynaud’s syndrome, as demon-
strated particularly well by the sCT method as shown in
Table I. Even the triplet was discovered by the clique search
technique. Most notably, because their co-occurrence is zero,
the association would never be discovered by traditional fre-
quent itemset techniques such as the Apriori algorithm [23].

The sL+ method also picks-up the association, but it was
fairly weak: the association is ranked 23rd among all 2-
itemsets (column 3 in Table I lists the ranking of the sCT

results given by the sL+). However, as our next evaluations
suggest, the sL+ demonstrates other favorable qualities.

sCT sL+ rank Freq Itemset
0.83 2 25 ⟨ blood change, fish oil ⟩
0.83 1 25 ⟨ blood change, Raynaud synd ⟩
0.79 – 0 ⟨ blood change, fish oil, Raynaud synd ⟩
0.76 – 10 ⟨ blood change, fish oil, f ⟩
0.76 7 16 ⟨ blood change, f ⟩
0.76 6 16 ⟨ blood change, d ⟩
0.76 3 16 ⟨ blood change, b ⟩
0.75 9 15 ⟨ blood change, a ⟩
0.75 4 15 ⟨ blood change, e ⟩
0.73 10 14 ⟨ blood change, c ⟩
0.72 23 0 ⟨ fish oil, Raynaud synd ⟩
0.70 10 10 ⟨ fish oil, f ⟩
0.70 – 10 ⟨ fish oil, d ⟩
0.70 9 9 ⟨ fish oil, b ⟩
0.68 20 6 ⟨ Raynaud synd, f ⟩

Table I
TOP SEMANTICALLY ASSOCIATED ITEMSETS GENERATED BY sCT

FROM THE SYNTHETIC FISH OIL DATASET.

B. Shopping Cart

1) Dataset: To better understand how the sCT method
compares against the sL+ method, we tested them on a busi-
ness shopping cart dataset. This dataset contains purchase
information on 100 grocery items (represented by boolean
column headers) for 2,127 shopping orders (corresponding
to tuples). We applied sL+ and sCT and set a threshold to
include top-100 2-itemsets, based on which we subsequently
used clique search to generate (k > 2) itemsets. The top-
10 2-itemset results and (k > 2)-itemsets corresponding to
maximum cliques generated by sCT and s+ are reported in
Table II and III respectively.

2) Results: Unlike the experiment on the fish oil dataset,
We do not have specific hypothesis to validate in this test.
After examining the results from both measures, we can only
conclude they make intuitive sense. However, we observe
that the difference between the sCT and sL+ becomes more
significant in this experiment. The sCT tends to include
itemsets with high support and the effect of indirect links
is less pronounced. On the other hand, sL+ promotes items
with support values towards the lower end. We also observe
one drawback of the sCT that the result is centered around
items with large frequencies (i.e., many direct links to other
nodes) and hence in a sense limiting the information (most
itemsets are about cheese, soup and cookie). By contrast, the
sL+ produces more diversified itemsets. This phenomenon
is illustrated in Table IV by comparing the rankings under
sCT , sL+ and the ranking under support using Kendall-τ
score. The degeneration of sCT towards support is more
pronounced in larger datasets as will be seen in the next
experiment.

Finally we tested our methods on the dataset of electronic
health records of real patients. This dataset is different from
the above two datasets not only in scale but also in practical
importance as described in the following.



sCT Freq Itemset

2-itemsets

0.74 39 ⟨ Cheese, Soup ⟩
0.73 32 ⟨ Cheese, Dried Fruit ⟩
0.72 36 ⟨ Dried, Fruit Soup ⟩
0.72 38 ⟨ Cookies, Soup ⟩
0.71 24 ⟨ Cheese, Cookies ⟩
0.70 30 ⟨ Cookies, Dried Fruit ⟩
0.68 31 ⟨ Cheese, Preserves ⟩
0.67 24 ⟨ Cheese, Wine ⟩
0.67 21 ⟨ Preserves, Soup ⟩
0.67 28 ⟨ Soup, Wine ⟩

(k>2)-
itemsets

0.64 0

⟨ Canned Vegetables, Cheese,
Cookies, Dried Fruit, Frozen
Vegetables, Nuts, Preserves,
Soup, Wine ⟩

Table II
TOP SEMANTICALLY ASSOCIATED ITEMSETS GENERATED BY sCT

FROM THE SHOPPING CART DATASET.

sL+ Freq Itemset

2-itemsets

10.17 3 ⟨ Sardines, Conditioner ⟩
8.17 6 ⟨ Toothbrushes, Nasal Sprays ⟩
6.70 6 ⟨ Yogurt, Anchovies ⟩
6.25 5 ⟨ Sports Magazines, Cottage Cheese ⟩
5.82 5 ⟨ Tofu, Sour Cream ⟩
5.79 3 ⟨ Toothbrushes, Acetominifen ⟩
4.77 4 ⟨ Sauces, Nasal Sprays ⟩
4.46 3 ⟨ Sports Magazines, Gum ⟩
4.43 4 ⟨ Sunglasses, Paper Dishes ⟩
4.05 5 ⟨ Tofu, Canned Fruit ⟩

(k>2)-
itemsets

4.51 2 ⟨ Canned Fruit, Sour Cream, Tofu ⟩
2.01 1 ⟨ Batteries, Cereal, Cooking Oil ⟩
1.75 5 ⟨ Canned Vegetables, Nuts, Waffles ⟩

Table III
TOP SEMANTICALLY ASSOCIATED ITEMSETS GENERATED BY sL+ FROM

THE SHOPPING CART DATASET.

C. Electronic Health Records

1) Dataset: In our third evaluation, we analyzed the elec-
tronic health records of real patients. Applying methods like
the ones we have described to this kind of data is particularly
relevant because of recent legislation aimed at increasing
the meaningful use of electronic health records. Discovering
meaningful semantically associated itemsets among the set
of drugs and diseases identified in patients’ clinical notes is a
critical step toward identifying combinations of drug classes
and co-morbidities, or risk-factors and co-morbidities that
are common in patients with a certain outcome (for example,
those suffering from myocardial infarction), toward building
predictive risk models, as well as toward providing probable
hypotheses about the possible causes of that outcome.

We obtained the set of drugs and diseases for each
patient’s clinical note by using a new tool, the Annotator
Workflow, developed at the National Center for Biomedical
Ontology (NCBO). The patient notes are from Stanford Hos-
pital’s Clinical Data Warehouse (STRIDE). These records
archive over 17-years worth of patient data comprising of

Support
Shopping cart Electronic health

sCT 0.58 0.82
sL+ 0.32 0.06

Table IV
THE KENDALL-τ SCORE BETWEEN RANKINGS OF ITEMSETS

GENERATED BY sCT , sL+ AND SUPPORT IN THE TWO EXPERIMENTS.

1.6 million patients, 15 million encounters, 25 million coded
ICD9 diagnoses, and a combination of pathology, radiology,
and transcription reports totaling over 9 million clinical notes
(i.e., unstructured text).

From this set of 1.6 million patients, we extracted a cohort
of patients that suffered from kidney failure. Out of those
records, we applied our algorithms to all previous records
in the patient’s timeline, looking at just the set of drugs.
Therefore, at a very simplistic level, the experiment result
shows that semantically associated itemsets in this context
could possibly represent sets of drugs that could lead toward
kidney failure when used in combination.

2) Results: The cohort dataset described above contains
467791 rows (corresponding to patients’ clinical notes) and
10167 columns (corresponding to annotated terms appeared
in the notes). With the help of the techniques described in
Section IV-C, we are able to compute L+ in a tractable
amount of time (Equation 3 and 4 are calculated within 4
hours on a Quad-Core AMD Opteron(tm) Processor with 8
gigabyte memory), based on which we can efficiently derive
the sL+ itemsets. However, the calculation of sCT on this
scale is intractable because an exact computation of all pair-
wise sCT requires to fill in a |V |×|V | similarity table. In or-
der to ameliorate the computational cost, we exploit domain
knowledge to identify 582 terms of particular interest and
then apply both sCT and sL+ on the reduced dataset. The
results are shown in Table V and VI respectively, where we
list top-10 2-itemsets and all (k >2)-itemsets corresponding
to the maximum clique.

It is clear that, continuing the trend shown in the shopping
cart analysis, the sCT result becomes increasingly concor-
dant with the support-based method. For illustrating this
point of view, we calculate the Kendall-τ score between
the ranking of itemsets generated by sCT , sL+, and support
as shown in Table IV. We observe from the table that as
the sCT converges to support, the sL+ becomes even more
distinct from it. The result is that the itemsets discovered by
sCT contain mostly general terms that are repeatedly found
in the patients’ notes. Although the association is reasonable
but hardly interesting. On the contrary, the sL+ result is not
affected by the dimension of data as well as the presence of
items with massive support. It identifies itemsets of relatively
low support but more closely bonded by indirect links.

To demonstrate the scalability of the method based on the
sL+, we also conducted the same analysis on the data of the



sCT Freq Itemset

2-itemsets

0.80 39204 ⟨ Calcium Chloride, Amiloride ⟩
0.77 29325 ⟨ Calcium Chloride, Aspirin ⟩
0.76 28644 ⟨ Calcium Chloride, Probenecid ⟩
0.73 24805 ⟨ Calcium Chloride, Furosemide ⟩
0.72 34271 ⟨ Calcium Chloride, Calcium ⟩
0.71 21481 ⟨ Calcium Chloride, Disulfiram ⟩
0.70 16814 ⟨ Calcium Chloride, Amphetamine ⟩
0.66 19850 ⟨ Calcium Chloride, Prednisone ⟩
0.65 12231 ⟨ Aspirin, Amiloride ⟩
0.65 12106 ⟨ Probenecid, Amiloride ⟩

(k>2)-
itemsets

0.56 0

⟨ Calcium Chloride, Disul-
firam, Amphetamine, Aceta-
minophen, Calcium, Aspirin,
Probenecid, Amiloride, Pred-
nisone, Furosemide ⟩

Table V
TOP SEMANTICALLY ASSOCIATED ITEMSETS GENERATED BY sCT FROM
THE KIDNEY FAILURE COHORT OF THE ELECTRONIC HEALTH DATASET.

sL+ Freq Itemset

2-itemsets

0.820 354 ⟨ sevoflurane, remifentanil ⟩
0.691 978 ⟨ frovatriptan, almotriptan ⟩
0.633 693 ⟨ Etomidate, Rocuronium ⟩
0.496 234 ⟨ Atazanavir, Pyrimethamine ⟩
0.420 3004 ⟨ ciclesonide, Fluorometholone ⟩
0.377 231 ⟨ naratriptan, Mefenamic Acid ⟩
0.373 1792 ⟨ ciclesonide, Vincristine ⟩
0.332 92 ⟨ Rocuronium, sevoflurane ⟩
0.325 1368 ⟨ tazarotene, halobetasol propionate ⟩
0.322 506 ⟨ Buprenorphine, alosetron ⟩

(k>2)-
itemsets

0.131 701
⟨ Ketorolac, Flurbiprofen, Ke-
torolac, Etodolac, Sulindac,
Piroxicam, Ketoprofen ⟩

Table VI
TOP SEMANTICALLY ASSOCIATED ITEMSETS GENERATED BY sL+ FROM
THE KIDNEY FAILURE COHORT OF THE ELECTRONIC HEALTH DATASET.

whole cohort after 2010. The data consisted 1 million rows
and 10 thousand columns. We were able to produce the sL+

based 2-itemsets in 6 hours. The top results are shown in
Table VII.

The discovered sL+ itemsets provide much valuable in-
sights on the possible interrelationship between drugs. Some
of them has been studied in the literature. For example,
sevoflurane/remifentanil can be used for anaesthesia; frova-
triptan and almotriptan are both oral treatment of migraine
headache; Etomidate and Rocuronium can be used for rapid
sequence intubation; etc. This area of research is still very
new and there are no good gold standards to compare our
results against. However, for single-item drugs that lead to
kidney failure, SIDER1 database lists drugs and their side-
effects. Most notably, multi-itemsets are difficult to identify,
but our methods have found not only Ketoprofen but it has
also group other drugs like it (see the (k > 2)-itemset shown
in Table VI, all of the items are anti-inflammatories). Our

1http://sideeffects.embl.de/se/C0035078/all

sL+ Itemset
0.0301 ⟨ White faced hornet venom, Yellow hornet venom ⟩
0.0195 ⟨ Trichloroacetic Acid, Trichloroacetate ⟩
0.0108 ⟨ Cloxacillin Sodium, benzathine cloxacillin ⟩
0.0101 ⟨ Methacycline, Methacycline hydrochloride ⟩
0.01 ⟨ Entamoebiasis, Hepatic, Liver Abscess, Amebic ⟩
0.0086 ⟨ butenafine, Butenafine hydrochloride ⟩
0.0085 ⟨ Acetone, Cantharidin ⟩
0.0085 ⟨ ethyl cellulose, Cantharidin ⟩
0.0085 ⟨ ethyl cellulose, Acetone ⟩
0.0085 ⟨ Poloxamer 407, Eucalyptol ⟩

Table VII
TOP SEMANTICALLY ASSOCIATED ITEMSETS GENERATED BY sL+ FROM
THE WHOLE ELECTRONIC HEALTH DATASET AFTER 2010. THE DATASET

CONTAINS 1 MILLION ROWS AND 10K COLUMNS.

results are a matter of on-going evaluation with medical
experts.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a method for dis-
covering semantically associated itemsets. It is based on
a hypergraph representation of the database where each
column corresponds to a hypergraph node and each row
corresponds to a hyperedge. We described two similarity
measures to compute the strength of association between
items which are used to generate semantically associated 2-
itemsets. Specifically, we introduced the average commute
time similarity, sCT , based on the random walk model on
hypergraph, and the inner-product similarity, sL+ , based
on the Moore-Penrose pseudoinverse of the hypergraph
Laplacian matrix. Given generated 2-itemsets, we proposed
a hypergraph expansion method with two search strategies,
namely, the clique and connected component search, to
generate k-itemsets (k > 2).

We showed the proposed method is indeed capable of
capturing semantically associated itemsets through experi-
ments performed on three datasets ranging from low to high
dimensionality. We observed that the sCT tends to generate
concordant itemsets with those generated by support-based
method as the dimensionality grows, while sL+ performs
well in consistently picking up items connected via indirect
links. The semantically associated itemsets discovered by
sL+ on the patients’ clinical note dataset provide valuable
insights on the possible interrelationship between drugs. The
draw back of this method is that the sCT measure does
not scale well for large datasets. We have to resort to “a
priori” pruning of the data in the experiment. We are going to
investigate iterative formulas and approximation algorithms
to improve the scalability.

Using hypergraph-based representation to model data has
an important benefit of enabling systematic combination of
top-down and bottom-up insight discovery methods. Domain
knowledge encoded in ontologies has a natural graphical
representation. We will study methods to put the data graph



and knowledge graph together in a principled way to achieve
a synergy between data mining and domain knowledge.
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