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ABSTRACT

Dimensionality reduction is a significant task whagaling with
high-dimensional data, this reduction can be dowpefdature
selection, which means to select the most apprepféatures for
data analysis. It is a recent addressed challengdeature
selection research when handling small-labeled wihge-
unlabeled data sampled from
supervision information may be used in the formpairwise
constraints; these constraints have practicallygmdo have very
positive effects on the learning performance. Ninsess,
selected constraints sets may have significanttse§uositive or
negative) on learning performance. In this papez, present a
novel feature selection approach based on anefficelection of
pairwise constraints. This aims to grasp the masherent
constraints extracted from labeled party of data. thén evaluate
the relevance of a feature according to its 'afiti locality
preserving and 'chosen' constraints preservingtyabiFinally,

experimental results will be provided for validatiour proposal
in comparison with other known feature selectiorihods.

Categories and Subject Descriptors
I.5.2 [Pattern Recognitior]: Design Methodology — Feature
evaluation and selection

General Terms
Algorithms, Theory

Keywords
Dimensionality reduction, constraint selection,tfea selection,
pairwise constraints

1. INTRODUCTION

The rapid development of data acquisition toolsihaseased the
accumulation of high-dimensional data, such astaligmages,
financial time series and gene expression micrgsarrét was
proved that the high-dimensionality can deterioratiee
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performance of data mining and machine learningcgss.
Moreover, a too high sample-size to the numberiofedsions
ratio may result in the infeasibility of learningelto the “curse of
dimensionality” [8]. Hence, the dimensionality retion has
become a fundamental tool for many data miningstaGke of the
existing methods to overcome this problem is tla¢ufie selection
and extraction techniques [25]. Feature extraati@thods can be
categorized according to the viewpoint of labelomfation
availability into supervised and unsupervised omfésher Linear
Discriminant (FLD) [10], is an example of supenrdséature
extraction methods, which can extract the optimatriminant
vectors when class labels are available. For unsigeel feature
extraction methods, Principal Component AnalysiSAP[16] is
an example that tries to preserve the global caxas structure of
data when class labels are not available.

Similar to feature extraction, feature selectionoise of the
effective means to identify relevant features famehsionality
reduction [15]. Feature selection is a well addrdsgroblem in
machine learning and data mining communities. lbrig of the
effective means to identify relevant features fdamehsion
reduction [13]. In fact, this task became very ssaey with the
accumulation of data having a huge number of feafuthat could
have ill effect over learning algorithms. Moreovdeature
selection has been well addressed in supervisedirsupervised
paradigms with several works [9][13].

In the supervised feature selection context, tHevamce of a
feature can be evaluated by its correlation with ¢lass label. In
this context, the most known feature selection wetls Fisher
score[8], which seeks features with best discriminarititgbwith
full class labels on the whole training data. Otlpewerful
supervised feature selection methods, called HReligind
RReliefF, were proposed by Robnik-Sikonja and20]. The key
idea behind these methods is to estimate the gignife of
features according to how well their values diglisg between
the instances of the same and different classdsatieanear to
each other. However, ReliefF and RReliefF do ndp heith
removing redundant features. [BR2], the authors proposed a new
concept, predominant correlation, and proposed st fidter
method (FCBF) which can identify relevant featuasswell as
redundancy among relevant features without painecseelation
analysis. Hence, the authors in [27] proposed SREGeneral
framework of feature selection, and demonstratat ReliefF is a
special case of their proposal.

The unsupervised feature selection is considerednasch harder
problem, due to the absence of class labels thatdaguide the



search for relevant information. In this way, tleatfire relevance
can be evaluated by their capability of keepingaierproperties
of the data, such as the variance or the sepdyabVariance

score [3] might be the simplest unsupervised evaoeof the

features. It uses the variance along a dimensiomefiect its

representative power and those features with theinnomm

variance are selected. Another unsupervised feasetection

method, Laplacian Score [14], makes a further stepyariance.
It not only favors those features with larger vacies which have
more representative power, but also tends to sefpdeatures
with stronger locality preserving ability. This rhetl is also
generalized by the SPEC method in the unsupervisedext.

Laplacian score belongs to spectral feature seledamily and

will be more discussed in the next section.

The problem becomes more challenging when the datéains
labeled and unlabeled examples sampled from thee sam
population. It is more adapted with real-world apgtions where
labeled data are costly to obtain. In this contthe, effectiveness

of semi-supervised learning has been demonstradéd The
authors in [26] introduced a semi-supervised featselection
algorithm (sSelect) based on spectral analysis.erLathey
exploited intrinsic properties underlying superdiseand
unsupervised feature selection algorithms, andqsep a unified
framework for feature selection based on spectraply theory

[5].

Furthermore, since domain knowledge became an taupivissue
in many data mining taski2][21]; Several recent works have
attempted to exploit pairwise constraints or othprior
information in dimensionality reduction. Bar-Hilleind al. [1]
proposed the constrained FLD (cFLD) for dimensidpal
reduction from equivalence constraints, as an imtstep for
Relevant Component Analysis (RCA). However, cFLD caly
deal with the must-link constraints. Zhang and[24] proposed
an efficient algorithm, called SSDR (with differemariants:
SSDR-M, SSDR-CM, SSDR-CMU), which can simultanepusl
preserve the structure of original high-dimensiodala and the
pairwise constraints specified by users. The medblpm of these
methods is that the proposed objective functicimdependent of
the variance, which is very important for the lagapreserving
for the features. In addition, the similarity mattised in the
objective function uses the same value for allairdata which
are not related by constraints. The same authospoped a
constraint score based method [23] which evaluhieselevance
of features according to constraints only. The wetbarries out
with little supervision information in labeled datgnoring the
unlabeled data party even if is very large. Thehaugt in [17]
proposed to solve the problem of semi-supervisedtufe
selection by a simple combination of scores compote labeled
data and unlabeled data respectively. The methaite@cC) tries
to find a consensus between an unsupervised stapatian)
and a supervised score (Constraint). The combimasicsimple,
but can dramatically bias the selection for théuess having best
scores for labeled party of data and bad scorethéounlabeled
party and vice-versa.

Supervision information is not limited to class é&b only.

Actually, the background information could be exgsed by class
labels, pairwise constraints, or any other pridorimation. In this

paper we focus on the pairwise constraints, whiehaa instance
level constraints, that specify that two instanicage to be at the
same class (Must-link constraints) or differentssks (Cannot-
link constraints). These constraints may be edsiebtain than

class labels in some domains where it is hard i@ len early
decision on class label. In addition, these comgacan be
generated from labeled data directly.

The importance of pairwise is practically provemyvertheless,
and unlikely to what might be expected; some caistrsets
actually can decrease the learning performance Héhce, the
exploitation of constraint selection can resultnore “useful”
constraint sets to be presented to data.

In this paper, we present a general framework damissupervised
dimensionality reduction. This framework is based afficient

selection of pairwise constraints (CSFS). This peas uses a
new developed score by efficiently combining theveo of the

local geometric structure offered by unlabeled datéh the

constraint preserving ability offered by labeledada

The rest of this paper is structured as followsséation 2 we
illustrate the related works through two powerfabies that we
used to inspire our score function; in additiondeenonstrate the
constraint selection measure that we deploy in tcaims

selection. In section 3 we present a full desaiptf our CSFS
framework. We introduce in section 4 a spectrahigation of

our score function with the technique we use toucedthe

complexity caused by high-dimension data. The sach shows
the results of our framework on real data sets witle

comparisons of well known dimension reduction téghes. We
then conclude our work in section 6 with the pectipes and
possible forward research avenues.

2. RELATED WORKS

In this section we will discuss two scores on whieh based to
inspire the score function of our framework, welwilstrate in

details the Laplacian score [14], and the constrsdore [23] in
addition to their limitations, but firstly we woulgtesent a formal
definition of feature selection in semi-superviseaining.

In semi-supervised learning, a data set Wfdata points
X = {X,..., X} consists of two subsets depending on the label
availability: X = (Xl’ XZ,...,)g)for which the labely| = (yl,
YyresY, ) are provided, anX = (va LS. o Jwhich are
non labeled. A data poink, is a vector withm dimension
(features), while labely, T {,2,...,C} (Cis the number of
different labels), andl + u = N (N is the total number of
instances). LetFl, FZ,...,Fm denote them features ofX and
fl, fz, ...,fm be the corresponding feature vectors that redued t
feature value on each instance.

Semi-supervised feature selection is to use MotandX to
identify the set of most relevant featukes, F. ..,ij of the

SANPIE
target concept, wherek£ m and j | J{2:L2,...,m}for
rl{4,2,..k}.

2.1 Laplacian Score

This score is used for unsupervised feature selecti prefers
those features with larger variances which have emor
representative power. In addition, it tends to ctefeatures with
stronger locality preserving ability. A key assuiopt in
Laplacian Score is that data from the same classlase to each
other. The Laplacian score of thd" feature, which should be
minimized, is computed as follows [14]:



a (fri - frj )ZSu

L= 1
r é (fri - m)zDii &

Where D is a diagonal matrix witbii =4;sj, and Sij is
defined by the neighborhood relationship betweempées
(Xi = 1,..,N) as follows:

el
S = [e ! ifx and>l( are neighbors  (2)
#O otherwise

Wherel is a constant to be set, amg, X are neighbors means

that x, is among the Kk nearest neighbors mjf,

m o= g f
' i

2.2 Constraint Score

The constraint score guides the feature select@mording to

pairwise instance level constraints which can lasdified on two

sets: W, (a set of Must-Link constraints) and/, (a set of

Cannot-Link constraints):

ri

* Must-Link constraint (ML):  involvingX, andxj,
specifies that they have the same label.

¢ Cannot-Link constraint (CL): involvingX, andxj,
specifies that they have different labels.

Constraint score of the™ feature, which should be minimized,
is computed as follows [23]:

é (fri - frj )2
(X% T W,
Cc = . ®3)
' é- (fri h frjl )2
(%% MW,

3. CONSTRAINT SELECTION FOR
FEATURE SELECTION

The aforementioned scores recorded important ssultertain
application scenarios; nevertheless, they have $iomtations:

- Laplacian score: this score investigates the veeaof the
data in addition to the locality preserving abildf the features.
Hence, a “good” feature for this score is the ohevlaich two
neighboring examples record close values. Howethés, score
does not profit from the background information e(ticL
constraints in particular), which are provided todg the learning
process. In addition, the neighborhood choice i$ clearly
defined, that is, the variety df)(choices has significant effects on
results. We will discuss this problem in (sectioh)4

— Constraint score: Utilizing few labels of data, sthcore
recorded better results than Fisher score whicH@mthe whole
labeled in feature selection process [23]. Nevézti® this score
has several drawbacks :

1. It just exercises the labeled data in the featatection;
such vital restriction may mislead the learninggess,

issue, which could derogate the performance of the
feature selection process.

In order to overcome the listed restrictions, wepmse an
approach that will:

- Deploy a constraint selection in order to seleet ¢bherent
subset of pairwise constraints extracted from thigelled
data.

— Utilize the data structure in the definition of the
neighborhood between examples.

3.1 Constraint Selection

While it was expected that different constraintgs seould

contribute more or less in improving clustering wecy, it was
found that some constraints sets actually decrehsgtering

performance. It was observed that constraints eae fil effects

even when they are generated from the data lahaisate used to
evaluate accuracy, so this behavior is not causechdise or

errors in the constraints. Instead, it is a reefilthe interaction
between a given set of constraints and the alguorliking used.
So it is more important to know why do some coristraets

increase clustering accuracy while others haveffezteor even

decrease accuracy. For that, the authors in [7¢ ltefined two
important measures, informativeness and coherehae capture
relevant properties of constraint sets. These umeasprovide
insight into the effect a given constraint set fasa specific

constrained clustering algorithm. In this paper, avdy use the
coherence measure, which is independent of anynitesr
algorithm.

The coherence represents the amount of agreememédre the
constraints themselves, given a mettithat specifies the distance
between points. It does not require knowledge @ ¢iptimal
partition P*and can be computed directly. The coherence of a
constraint set is independent of the algorithm usegerform
constrained clustering. One view of aiL(x,y) (or CL(x.y)
constraint is that it imposes an attractive (orutsipe) force
within the feature space along the direction ofne lformed by
(x,y), within the vicinity ofx andy. Two constraints, one aviL
constraint fn) and the other &L constraint €), are incoherent if
they exert contradictory forces in the same viginiTwo
constraints are perfectly coherent if they are agtinal to each
other and incoherent if they are parallel to eatheno To
determine the coherence of two constraintgndc, we compute
the projected overlap of each constraint on thesro#s follows
(see Fig. 1 for examples).

over,

cm

Figure 1. Projected overlap between two constraintdML(m)
over CL(c). The coherence of the subset is null.

Let M andC be vectors connecting the points constrainechby
andc respectively. The coherence of a given constraiet¥V is

especially in a semi-supervised context, where the gefined as a fraction of constraints pairs thatehzero projected

labeled party is normally larger than the labeled.o

2. As this score depends merely on the chosen comistrai

subset. The choice of constraints is still a pnolalic

overlap:



dloverm= 0U over c= 0)

W, |

a
Cohd(V\) - miW, d W

(4)

Where OVEerm represents the distance between the two
projected points linked byn overc. J is the number of the
overlapped projections. More details can be founfd].

From the equation(4), we can easily define a speifasure for
each constraint as follows:

é doverm= 0)

Coh,(m) = =% ™ (5)
é_ dover c= 0)
Coh,(9 = ™« (6)
W |

We show now how to select the relevant constrantording to
their coherence. To be selected, a constrajpedust be “fully”
coherent, i.e. it must not overlap with any othensIralnb

(a; T W if a; T W,_ and vice versa). This hard fashion to
select constraints can be described in algorithm @&).

Input:  Constraints sew = {aj}

Initializeva:;E.
fori = 1 to Wdo
if { Coty (a;)=1}
W W+{a|}
end |f
end for

Output: Selected constrainta,

Figure 2. Constraint Selection Algorithm

From this algorithm we obtaW/, which is a set of coherent
constraints oML (X, X, ), and CL(XI,X)m two subsetsW,,
and W¢, respectlvely

3.2 Score Function

The advantage of Laplacian score is its surveyhefrespect of
data structure, which is expressed by the variarz locality
preserving ability. However, several studies prowvbdt the
exploitation of background information improves fheformance
of the learning process. Furthermore, for constragore, the
principle is mainly based on the constraint preserability. This
little supervision information is certainly necessdor feature
selection, but not sufficient when ignoring the abdled data
party especially if it is very large.

For that, we propose a Constraint Selection fotufeaSelection
Score ¢) which constraints the Laplacian score by the @airg
score for an efficient semi-supervised featurecsiele. Thus, we
define @) score, which should be minimized, as follows:

é (fri B frj )Z(Sij + Nij)
i

bt é- (f; - arij )ZDii

i

=

sij = ifx and>J( are neighbor (8)
#O otherwise
And:
ko . .
-€ if x andx are neighbors ang, ,x))t W,
if d hbo W,
. g‘k 6 if x, an xarenelg rs ang, x)><| )
NIJ =
B if x, andx arenot neighbors an(, x)><| W,
0 otherwie
C_ X)) T W
ot P x) (10)

a'
i * m otherW|se

Since the labeled and unlabeled data are sampbed the same
population generated by target concept, the bdsis behind our
score is to generalize the Laplacian and the cainstscores for
semi-supervised feature selection. Note that ifettae no labels
(I=0X =X,)thenj =L andwhen(=0X=X),
¢ represents an adjus@d, where theML andCL information
would be weighted b)‘Bij andD, respectively in the formula.

With ¢ score, on the one hand, a relevant feature shueilthe
one on which those two samples (neighbors or rlbyeanML
constraint) are close to each other. On the othedhthe relevant
feature should be the one with a larger varianagnowhich those
two samples (related byGL constraint) are well separated.

To assess the previous concept, we use a wdight The
motivation of addlngN to our score (over the Laplaaan score)
is not the integration of pairwise constraints ithe score only,
but it also adds a sensibility dimension to featscere in the
following cases:

When we have two samples joint byML constraint but not

2
neighboriS”. + Nij) = (e'lk |‘"Z), or when two neighboring

samples are joints by a CL constraint

il

e[ B
(s+N)—§ B+e !

In both cases, the

weightcf ) is used in order to more differentiate the features
in the both “bad cases”.

4. SPECTRAL GRAPH BASED
FORMULATION

In this section, we give a spectral graph basedaeation for our
proposed CSFS scorg)( A reasonable criterion for choosing a
relevant feature is to minimize the objective fiumetrepresented
by ¢. The principle consists thus to minimize the fitetm

é ij(fri - §,)X(S + N)and maximize the second

onelT, = § . (f, - a )20, .

1)

By resolving these two



optimization problems, we prefer those featurepeesng their
pre-defined graphs, respectively. Thus, we constrack -

neighborhood grapi,, from X (data set) andV,, (ML

constraint set) and a second graf, from W, (CL

constraint set).

Given a data set , let G(V, E) be the complete undirected
graph constructed frodk , with V
edge set. Thé" nodev, of G corresponds t& 1 X and there

is its node set arfd is its

is an edge between each node @&irv; ), the weight of this edge
is the dissimilarity betweex andxj :

2
- 5

Wij =e |

G, (V, E,,)is a subgraph which could be constructed from G

where E,, is the edge sefg ;} fromE such thatg T E, if

(X% )T Wy, or X, is one of thek -neighbors ofX; .

GeL (Veo, Ec)is a subgraph constructed fro@ with V¢, its

and{g ;}
(Xiyxj)i We,

node set its edge set such thag ] E. ff

Once the grapks,, andG. are constructed, their weight
matrices, denoted b{S*" + N*') and SC. respectively, can be
defined as:

y w. ifx andx are neighbor
n — ij i ]

= . 11
I fO otherwise (1)
-w, ifx andx areneighborand( , x, XI W,
ifx, andxJ are neighborand( , x j))i W,
ifx; andx; arenot neighborand( x j>9T W,
0 otherwise
oL _ 1 if(x, X )W, w3
i fO otherwise
Then, we can define:
. _ N
- For each feature , its vectorfr = (frl""’er )
- Diagonal matrices D"=§ s" . D=3 S* and
i i
kn_ 2 kn
DNii =a Nij
i
- Laplacian  matrices L*"=(D*+DN *)- (S*+ N*) and

LCt=pCt. gct

Following some simple algebraic steps, we see that:

T= é (fri -1 )2(S|jkn+ '\Jkn): é- (rif2+rjf2' 2rifrjf )(ijsm"' iij)

Tj

& o i
=24 THE7+ N & F($™+ N, 1)

1, J
:z(frT (Dkn+DN kn)f _ frT(Skn+ N kr) rf)

= 2f TLAf

Note that the respecting of different graph-streeguis done
according tca;j in the equation(13). In fact, wh&id_ = A, we
should G, A maximize the variance of this would be estimated
as:

var(f)= @ (f, - m)’D" (14)
The optimiza}tionk of (14) is' well detailed in [14h this case,
T n
Otherwise, we develop as above the second térm) énd obtain
2fTL°'D*'f . Subsequently, _ _ f'L*f,
r r J r fT LCLD knf
seeks those features that resg8gt andG .

The whole algorithm of the proposed scgrés summarized in
(Fig. 3).

Note. The step 6 of the algorithm (Fig. 3) is computed i
timeO(MN?) .

Notice that the “small-labeled” problem becomesadmantage in
our case, because it supposes that the number tedced
constraints is smaller since it depends on the murnblabels .

Thus, the cost of the algorithm depends considgrabl, the
size of unlabeled dadg; .

To reduce this complexity, we propose to apply wstelring on
Xy - The idea aims to substitute this huge party dbdgy a
smaller one X#= (p,,...,pc ) by preserving the geometrical
structure oK, , whereK is the number of clusters. We propose
to use Self-Organizing Map (SOM) based clusterib] [which
can be considered as doing vector quantizationoaraidstering
while preserving the spatial ordering of the ingata rejected by
implementing an ordering of the codebook vectotso(aalled
prototype vectors, cluster centroids or referereetors) in a one
or two dimensional output space.

Input:  Data setX

1: Construct the constraint saff, andW, ) fromY

2: Select the coherent seW{, and W_ ) from (W, and
W)

3: Construct graph&,  and G, from (X,W ) and W _
respectively.

4: Calculate the weight matric8&", S and their Laplacians
L*", L°" respectively.

5: Construct a clustering to Calculate for all examples
forr = 1 to mdo

6: Calculatej |

end for

7: Rank the features according to theif . in ascending order.
Output: Ranked features

Figure 3. CSFS Feature Selection Algorithm



Lemma 1. By clustering X, the complexity of step 6 in
algorithm (Fig. 3) is reduced @(mu) .

Proof. The size of labeled data is very smaller thandhe of
unlabeled datal << u < N and the clustering oX, provides

at most K = “u clusters. Therefore, step 6 of the algorithm

(Fig. 3) is applied over a data set with size equal
to/u + | Ju. This allows decreasing the complexity
toO(mu) . W

Subsequently, SOM will be applied on the unsupediigarty of
data (X ) for obtaining X ¢with a size equal to the number of
SOM' nodes K ). Therefore,g will be performed on the new
obtained data set{, + X¢).

4.1 Adaptive k-Neighborhood determination
The key assumption of Laplacian score is the assds of
locality preserving ability by features. Meanwhillee principle of
fixed k-nearest-neighbors for all instances may affectldality
preserving, because it is not guaranteed that kimearest-
neighbors of an instance are "close" to it (Fig)44n this case,
some "far" neighbors would be enrolled in the ldaggbreserving
measurement for the example at the hand.

Hence, we advise using a similarity based clusgeaipproach on
the whole instances, which allows revealing thedcality
structures. Then, thk-nearest-neighborhood relationship among
them will depend on their membership to the samestets.
Hence, the adaptiviewould be related to data structure and could
be defined as follows: Two instances are neighbahey belong

to the same cluster. Consequently, each clusterittagwn k
which is the number of its elements (less one).

In (Fig. 4-b), calculating the score of; does not need to look
far, but it is calculated on the base of the instanbelonging to
its cluster. Accordingly, the score is less biaard the locality is
more preserved.

" all =) b
- . h‘ - LI
~al Sy
h_____\_k ¥
bt = XL X
" ]
& 2 k=2
Fixed k=3 =

Figure 4. (a) Fixed k-nearest-neighborhood. (b) Adative k-
nearest-neighborhood.

Finally, the feature selection framework is repnged in (Fig. 5).

5. RESULTS
5.1 Data Sets

In this section, we present an empirical study dmoad range of
data sets including four data sets downloaded fthen UCI
repository [11], i.e. “Iris” , “lonosphere”, “Sonar” and
“Soybean”. In addition we present the results treukemia”,
and “colon cancer” data sets, which can be found in [12][1]
respectively. Moreover, for validating our framewasn high-
dimensional data, we present our results ‘Gel0P” and
“Pix10P” which are face image data sets containing 10 perisp
each. The whole data sets information is detailg@able 3).

Clustering (SOM

X'y(K x m)
7

\

Constraints(i(1- 1)/ 2)= W

Constraint Selection |

/

Selected Constraints ‘w ‘< M
S

XutX{(K+L) x m)}

Clustering

Adaptive
k-nearest-
neighborhood

® Score

Ranked Featur

Figure 5. CSFS framework
For the construction of the SOM maps in the phdsentabeled
data clustering, we use a Principal Component AialyPCA)
based heuristic proposed by Kohonen [18] for autmaldy
providing the initial number of neurons and the eirsions of the
maps (Table 1). The reference vectors are inigdlimearly along
the greatest eigenvectors of the associated da¥q;seThen, in
order to determine the adaptikenearest-neighborhood constant,
each SOM map is merged with the labeled data partyThe
resulting data (X, + X;) is clustered by an Ascendant
Hierarchical Clustering (AHC) for optimizing the mber of
clusters (by grouping neurons) [6]. In general,ir@ernal index,
like Davies Bouldin or Generalized Dunn [19], ieddor cutting
the dendrogram. Here, we used Davies Bouldin irtdesbtain
the number of classes corresponding to the copadition (#)
for each data set. Note that we obtain severalegatifk for each
data set. These values are not manually determibed
automatically settled based on the structure oh elta set. For
example, on Soybean data set, we obtained 4 culsie(AHC).
The numbers of instances belonging to clusters ®efe, 9 and
10 corresponding to 4 various values lof8, 15, 8 and 9
respectively.

In order to compare our feature selection framewaith other
ones, the nearest neighborhood (1-NN) classifi¢h \Eiuclidean
distance is employed for classification. After faat selection
phase, and for each data set, the classifier rmdéain the first
half of samples from each class and tested oneimaining data.
In addition, the constant of our score function is set to 0.1 in all
our experiments.

The empirical study that we would present is apghed in four
scenarios: Firstly, we would compare the perforreaot CSFS
framework with Laplacian score; Constraint scorel dfisher
score, this comparison would be held on UCI dats send
concerns the accuracy of the classification vs. rihenber of
selected features.

Secondly, we assess the relative performance ofSG&#€r other
dimensionality reduction methods. We choose the RGAthe



baseline. We also compare the performance of CI¥SS8DR-

CMU and cFLD under different level of constraint$his

comparison would be held also on UCI data setsitbetincerns
the classification accuracy vs. the number of seteconstraints
(while fixing the number of selected features).

The third scenario would be presented on higheedsional
data, i.e. Leukemia and Colon Cancer. We evaludte t
performance of CSFS framework on these data setsmparison
with Laplacian, Fisher, €and CS scores. This comparison will
concern the classification accuracy vs. both setb&eatures and
selected co-

Table 1 : Data sets

Data set N m #Class Map’ dimensions
Iris 150 4 3 11x5
lonosphere 351 34 2 12x7
Sonar 208 60 2 9x7
Soybean 47 35 4 8x4
Leukemia 72 7129 2 7x5
Colon cancer 62 2000 2 6x6
Piel0P 210 2400 10 8x5
Pix10P 100 10000 10 ox7

nstraints (Laplacian score — fully unsupervisednas applicable
in accuracy vs. selected constraints case).

Finally, we would validate our CSFS framework ornghar
dimensional images data sets, i.e. PielOP and PixTis
validation is presented in comparison with Laplaci®eliefF,
F2+# and F3+r scores.

In our experiments, we simulated the generationpairwise
constraints as follows:

We randomly selected samples of 25% from the labelata
belonging to each class, and then we created tha-lnk and
cannot-link constraints depending on the underlytigsses.
Finally, we deployed our constraint selection framoek in order
to choose the most coherent subset of these citstra

5.2 Results on UCI Data Sets

In this section we assess the relative performafic@SFS over
other dimensionality reduction methods for clasaifion. We

choose the fully unsupervised Laplacian score ab#seline. We
also test the performance of supervised Fisheresabich uses
the class labels of all the training data. We camzSFS results
with constraint score ones too. As mentioned befafer

dimensionality reduction, nearest neighborhood [)-Nlassifier

is employed for classification. In addition, the hegent

constraints exploited on data sets are: (8 for, I8 for

lonosphere,11 for Sonar and 7 for Soybean.

(Fig. 6) shows that CSFS always achieves the higteesiracy on
all data sets. It can also be shown that in mosesahe
performance of Laplacian score is the worst. Wéebelthat this
is because Laplacian score does not use supeniigimmation,
i.e. labels (the constraints as a result).

In particular, CSFS outperforms constraint and &eign score
significantly, while it outperforms or achieves #an accuracy to
Fisher score in all cases.
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Figure 6. Accuracy vs different numbers of
selected features

Note that Fisher uses the full labels of the datawgile CSFS
uses a subset of coherent constraints generatgidaly from a
small-labeled data party (25%). It is remarkable tbat CSFS
scores good accuracy even with few number of ssdefgatures,
these results verify that merging “useful” consttsi extracted
from supervision information with geometrical stwe of
unlabeled data is very useful in learning featomres.

Then, we compare the performance of CSFS with dfid@@CA,

cFLD and SSDR-CMU (Fig. 7). This comparison consethe
Accuracy vs. different number of constraints (wedi$0% of
selected features). Note that authors in [24] psedothe SDDR
score with different variants (SSDR-M, SSDR-CM a88DR-

CMU), we compared our results with SSDR-CMU becatisse

the two types of pairwise constraints in additiorthe unlabeled
data, which means that it uses the same speadifiatihat we
consider in our score function. In addition, SSDRAC recorded
better results than the other SSDR variants. Thepeoison of
our framework with the listed scores is presentedeun different
levels of selected constraints.

Note also that CSFS deploys just the coherent @int from the
whole constraints set generated from the labeled. déhis can
explain that the maximum number of selected comggran the
figure is far less than the maximum number of puesi
constraints.
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Figure 7. Accuracy vs. different numbers of
selected constraints (“coherent” constraints for CES)



a Leukemia b .
1
j,;___\ 0.91 Leukemia
0,9 0,89
0,87
= N :
E 0,8 go,gs =t Fisher
3 07 ——Laplacian 5 0,83 —=—Cs
e ——Fisher £ o081 —e—C
— g —8—CSFS
" o o7 —e— T ——
——CsFs. 0,77
0,5 0,75
0 1000 2000 3000 4000 5000 0 5 10 15 20 25 30 35 40
selected Features Constraints
Colon ¢ ——Fisher
olon
0,85 d 0,86 —mCS
0,8 0,84 ——C
" :; —8—C5FS
075 ao,sz -/./._./-—-\_.
£ 07 g
2o ——Taplacian z 08
g ——Fisher < 0,78
0,6 —< M
0,55 —S:FS 0,76
05 0,74
o 500 1000 1500 2000 0 4 8 12 16 20 24 28 32 36 40 44
Selected Features Constraints

Figure 8. (a,c) Accuracy vs. different numbers of
selected features, (b,d) Accuracy vs. different nubers of
selectecconstraints

(Fig. 7) shows that CSFS outperforms the PCA arid>cgcores
significantly, and it is comparable to SSDR-CMU B8pnybean,
outperforms it in Sonar and lonosphere, but infetit on Iris
when SSDR-CMU exploits the full constraints set.téNdhat
CSFS achieves a high accuracy even when few “cotiere
constraints are deployed. Another important nofioen (Fig. 7)
is that CSFS accuracy on Sonar and lonospheresdtstas higher
of the other scores accuracy even when they deftleyfull
constraints set, this validates the practicallyvprofact that the
use of more “incoherent” constraints would haveeitfects on
learning performance (or it would have no effentbést cases).

5.3 Results on Leukemia and Colon Cancer
Data Sets

“Leukemia” and “Colon Cancer” are gene expressiatablases
with huge number of features. The microarray Leukedata is
constituted of a set of 72 samples, correspondingvd types of
Leukemia called ALL (Acute Lymphocytic Leukemia)chAML
(Acute Myelogenous Leukemia), with 47 ALL and 25 AMrhe
data set contains expressions for 7129 genes. Whioéon
Cancer” is a data set of 2000 genes measured disgs (40
tumors and 22 "normal”).

We present our results on these data sets on cmwpanith

Laplacian, Fisher, Tand CS scores, and that in both cases:

Accuracy vs. Selected features (The coherent ainttrused for
this case are: 7 for colon cancer and 8 for Leu&gmand

Accuracy vs. the selected constraints (50% of éhected features
were deployed). The results of accuracy vs. Saldeatures (fig.

8-a,c) show that CSFS records a comparable perfarenavith

other scores when the number of features is infedd500 for

Leukemia data set, and 500 for Colon Cancer datatlsen the

performance of CSFS is superior to other scorefoeance

when increasing the number of features.

While the results of accuracy vs. number of Setbcnstraints
(fig. 8-b,d) show that CSFS outperforms other ssavhen using
the full “coherent” constraint sets, and as on W@ta sets, the
accuracy achieved by CSFS on Leukemia data saitisesached
by other scores even when using the whole possimstraints
set.

5.4 Results on face images data sets

As mentioned above, Piel0P & Pix10P are face imdgés sets

containing 10 persons in each. The validation @s¢hdata sets is
presented in comparison with Laplacian, Relief esoon both

data sets. In addition, results were compared (f2+r*) score on

Pix10P data set and with (F3 + r) score on Pielffa det. We

chose to compare our results with (F3+ r) and (fj2because

they achieved best results over the other variemtes proposed
by authors in [27].

Note that the coherent constraints used are (BifdtOP and 9 for
Piel0P), Experimentation results in (Fig. 9) shdhat CSFS
outperforms significantly the other scores whateter exploited
number of features. Meanwhile, on PielOP data G&FS is
higher than Laplacian and (F3 + r) scores and imféo ReliefF.
Nevertheless, it could be shown that CSFS has aellert
accuracy on Pix10P
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Figure 9. Accuracy vs. different numbers of
selectecfeatures

data set and very good one on PielOP data setlditicn, (Fig.
9) illustrates the stability of CSFS in compariseith other
scores.

Finally, Table (2) shows that regarding the averageuracy,
CSFS has an excellent average accuracy, whichperisu to all
other scores except to Relief score on PielOPsddta

Table 2. Averaged accuracy of different algorithms
on “Piel0P” & “Pix10P” data sets

Data set Laplacian ReliefF F24r  F3+r CSFS
Piel0P 0.74 0.97 0.78 0.87 0.91
Pix10P 0.88 0.97 0.94 0.93 0.98
CONCLUSION

In this paper, we proposed a framework for feaselection based
on constraint selection for semi-supervised din@raity

reduction. A new score function was developed talwate the
relevance of features based on both, the locallgmggrical

structure of unlabeled data and the constraintsepving ability

of labeled data. The framework which we proposetheese major
advantages:

— It incorporates the labeled and unlabeled exampies
competent and flexible manner, so it could be zedi
regardless of the percentage of the labeled data.

It exploits a pairwise constraint selection, whrelsults in a
coherent constraint subset extracted from the déabéhta.

— It surveys the structural neighborhood of data elem
which highlights the efficient locality preservirgoperties
of the selected features.



Future work may include the amelioration of the ichoof
labels set from which constraints are generatedheiOt
perspectives may be the choice of clustering algoribetween
the constraints. In addition, we used a “hard” ¢aists selection
which means to select only the constraints thatcareerent with
the full constraints set. This results in a litlenstraints number.
Possible choice may be to adopt a “soft” constsagelection, in
which the constraints coherence is calculated gdaduand the
constraint is rejected if it is incoherent with the far selected
constraints, this may results in a higher constsaimmber, then it
would be interested to judge if the learning qyalibuld be more
efficient with a great number of constraints sofilglected than
with a few number of constraints hardly selected.
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