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ABSTRACT  
Dimensionality reduction is a significant task when dealing with 
high-dimensional data, this reduction can be done by feature 
selection, which means to select the most appropriate features for 
data analysis. It is a recent addressed challenge in feature 
selection research when handling small-labeled with large-
unlabeled data sampled from the same population. The 
supervision information may be used in the form of pairwise 
constraints; these constraints have practically proven to have very 
positive effects on the learning performance. Nevertheless, 
selected constraints sets may have significant results (positive or 
negative) on learning performance. In this paper, we present a 
novel feature selection approach based on an efficient selection of 
pairwise constraints. This aims to grasp the most coherent 
constraints extracted from labeled party of data. We then evaluate 
the relevance of a feature according to its 'efficient' locality 
preserving and 'chosen' constraints preserving ability. Finally, 
experimental results will be provided for validating our proposal 
in comparison with other known feature selection methods.  

Categories and Subject Descriptors 
I.5.2 [Pattern Recognition]: Design Methodology – Feature 
evaluation and selection 

General Terms 
Algorithms, Theory 

Keywords 
Dimensionality reduction, constraint selection, feature selection, 
pairwise constraints 

1. INTRODUCTION 
The rapid development of data acquisition tools has increased the 
accumulation of high-dimensional data, such as digital images, 
financial time series and gene expression microarrays. It was 
proved that the high-dimensionality can deteriorate the 

performance of data mining and machine learning process. 
Moreover, a too high sample-size to the number-of-dimensions 
ratio may result in the infeasibility of learning due to the “curse of 
dimensionality” [8]. Hence, the dimensionality reduction has 
become a fundamental tool for many data mining tasks. One of the 
existing methods to overcome this problem is the feature selection 
and extraction techniques [25]. Feature extraction methods can be 
categorized according to the viewpoint of label information 
availability into supervised and unsupervised ones. Fisher Linear 
Discriminant (FLD) [10], is an example of supervised feature 
extraction methods, which can extract the optimal discriminant 
vectors when class labels are available. For unsupervised feature 
extraction methods, Principal Component Analysis (PCA) [16] is 
an example that tries to preserve the global covariance structure of 
data when class labels are not available. 

Similar to feature extraction, feature selection is one of the 
effective means to identify relevant features for dimensionality 
reduction [15]. Feature selection is a well addressed problem in 
machine learning and data mining communities. It is one of the 
effective means to identify relevant features for dimension 
reduction [13]. In fact, this task became very necessary with the 
accumulation of data having a huge number of features, that could 
have ill effect over learning algorithms. Moreover, feature 
selection has been well addressed in supervised and unsupervised 
paradigms with several works [9][13].   

In the supervised feature selection context, the relevance of a 
feature can be evaluated by its correlation with the class label. In 
this context, the most known feature selection method is Fisher 
score [8], which seeks features with best discriminant ability with 
full class labels on the whole training data. Other powerful 
supervised feature selection methods, called ReliefF and 
RReliefF, were proposed by Robnik-Šikonja and al. [20]. The key 
idea behind these methods is to estimate the significance of 
features according to how well their values distinguish between 
the instances of the same and different classes that are near to 
each other. However, ReliefF and RReliefF do not help with 
removing redundant features. In [22], the authors proposed a new 
concept, predominant correlation, and proposed a fast filter 
method (FCBF) which can identify relevant features as well as 
redundancy among relevant features without pairwise correlation 
analysis. Hence, the authors in [27] proposed SPEC, a general 
framework of feature selection, and demonstrated that ReliefF is a 
special case of their proposal. 

The unsupervised feature selection is considered as a much harder 
problem, due to the absence of class labels that would guide the 
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search for relevant information. In this way, the feature relevance 
can be evaluated by their capability of keeping certain properties 
of the data, such as the variance or the separability. Variance 
score [3] might be the simplest unsupervised evaluation of the 
features. It uses the variance along a dimension to reflect its 
representative power and those features with the maximum 
variance are selected. Another unsupervised feature selection 
method, Laplacian Score [14], makes a further step on Variance. 
It not only favors those features with larger variances which have 
more representative power, but also tends to selecting features 
with stronger locality preserving ability. This method is also 
generalized by the SPEC method in the unsupervised context. 
Laplacian score belongs to spectral feature selection family and 
will be more discussed in the next section. 

The problem becomes more challenging when the data contains 
labeled and unlabeled examples sampled from the same 
population. It is more adapted with real-world applications where 
labeled data are costly to obtain. In this context, the effectiveness 
of semi-supervised learning has been demonstrated [4]. The 
authors in [26] introduced a semi-supervised feature selection 
algorithm (sSelect) based on spectral analysis. Later, they 
exploited intrinsic properties underlying supervised and 
unsupervised feature selection algorithms, and proposed a unified 
framework for feature selection based on spectral graph theory 
[5].  

Furthermore, since domain knowledge became an important issue 
in many data mining tasks [2][21]; Several recent works have 
attempted to exploit pairwise constraints or other prior 
information in dimensionality reduction. Bar-Hillel and al. [1] 
proposed the constrained FLD (cFLD) for dimensionality 
reduction from equivalence constraints, as an interim-step for 
Relevant Component Analysis (RCA). However, cFLD can only 
deal with the must-link constraints. Zhang and al. [24] proposed 
an efficient algorithm, called SSDR (with different variants: 
SSDR-M, SSDR-CM, SSDR-CMU), which can simultaneously 
preserve the structure of original high-dimensional data and the 
pairwise constraints specified by users. The main problem of these 
methods is that the proposed objective function is independent of 
the variance, which is very important for the locality preserving 
for the features. In addition, the similarity matrix used in the 
objective function uses the same value for all pairs of data which 
are not related by constraints. The same authors proposed a 
constraint score based method [23] which evaluates the relevance 
of features according to constraints only. The method carries out 
with little supervision information in labeled data ignoring the 
unlabeled data party even if is very large. The authors in [17] 
proposed to solve the problem of semi-supervised feature 
selection by a simple combination of scores computed on labeled 
data and unlabeled data respectively. The method (called C4) tries 
to find a consensus between an unsupervised score (Laplacian) 
and a supervised score (Constraint). The combination is simple, 
but can dramatically bias the selection for the features having best 
scores for labeled party of data and bad scores for the unlabeled 
party and vice-versa. 

Supervision information is not limited to class labels only. 
Actually, the background information could be expressed by class 
labels, pairwise constraints, or any other prior information. In this 
paper we focus on the pairwise constraints, which are an instance 
level constraints, that specify that two instances have to be at the 
same class (Must-link constraints) or different classes (Cannot-
link constraints). These constraints may be easier to obtain than 

class labels in some domains where it is hard to have an early 
decision on class label. In addition, these constraints can be 
generated from labeled data directly.  

The importance of pairwise is practically proven, nevertheless, 
and unlikely to what might be expected; some constraint sets 
actually can decrease the learning performance [7]. Hence, the 
exploitation of constraint selection can result in more “useful” 
constraint sets to be presented to data. 

In this paper, we present a general framework for semi-supervised 
dimensionality reduction. This framework is based on efficient 
selection of pairwise constraints (CSFS). This proposal uses a 
new developed score by efficiently combining the power of the 
local geometric structure offered by unlabeled data, with the 
constraint preserving ability offered by labeled data. 

The rest of this paper is structured as follows: In section 2 we 
illustrate the related works through two powerful scores that we 
used to inspire our score function; in addition we demonstrate the 
constraint selection measure that we deploy in constraint 
selection. In section 3 we present a full description of our CSFS 
framework. We introduce in section 4 a spectral formulation of 
our score function with the technique we use to reduce the 
complexity caused by high-dimension data. The section 5 shows 
the results of our framework on real data sets with the 
comparisons of well known dimension reduction techniques. We 
then conclude our work in section 6 with the perspectives and 
possible forward research avenues. 

2. RELATED WORKS 
In this section we will discuss two scores on which we based to 
inspire the score function of our framework, we will illustrate in 
details the Laplacian score [14], and the constraint score [23] in 
addition to their limitations, but firstly we would present a formal 
definition of feature selection in semi-supervised learning. 

In semi-supervised learning, a data set of N data points 

1 N
X = { ,..., }x x  consists of two subsets depending on the label 
availability:
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2.1 Laplacian Score 
This score is used for unsupervised feature selection. It prefers 
those features with larger variances which have more 
representative power. In addition, it tends to select features with 
stronger locality preserving ability. A key assumption in 
Laplacian Score is that data from the same class are close to each 
other. The Laplacian score of the thr  feature, which should be 
minimized, is computed as follows [14]: 
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Where l  is a constant to be set, and ,
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x x  are neighbors means 
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2.2 Constraint Score 
The constraint score guides the feature selection according to 
pairwise instance level constraints which can be classified on two 
sets: 

ML
W  (a set of Must-Link constraints) and 

CL
W (a set of 

Cannot-Link constraints): 

•  Must-Link constraint (ML):  involving
i

x and
j

x , 
specifies that they have the same label.  

•  Cannot-Link constraint (CL):  involving
i

x and
j

x , 
specifies that they have different labels. 

Constraint score of the thr  feature, which should be minimized, 
is computed as follows [23]: 
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3. CONSTRAINT SELECTION FOR 
FEATURE SELECTION 
The aforementioned scores recorded important results in certain 
application scenarios; nevertheless, they have some limitations: 

− Laplacian score: this score investigates the variance of the 
data in addition to the locality preserving ability of the features. 
Hence, a “good” feature for this score is the one at which two 
neighboring examples record close values. However, this score 
does not profit from the background information (the CL 
constraints in particular), which are provided to guide the learning 
process. In addition, the neighborhood choice is not clearly 
defined, that is, the variety of (k) choices has significant effects on 
results. We will discuss this problem in (section 4.1). 

− Constraint score: Utilizing few labels of data, this score 
recorded better results than Fisher score which employs the whole 
labeled in feature selection process [23]. Nevertheless, this score 
has several drawbacks : 

1. It just exercises the labeled data in the feature selection; 
such vital restriction may mislead the learning process, 
especially in a semi-supervised context, where the 
labeled party is normally larger than the labeled one.  

2. As this score depends merely on the chosen constraint 
subset. The choice of constraints is still a problematic 

issue, which could derogate the performance of the 
feature selection process. 

In order to overcome the listed restrictions, we propose an 
approach that will: 

− Deploy a constraint selection in order to select the coherent 
subset of pairwise constraints extracted from the labeled 
data. 

− Utilize the data structure in the definition of the 
neighborhood between examples. 

3.1 Constraint Selection 
While it was expected that different constraints sets would 
contribute more or less in improving clustering accuracy, it was 
found that some constraints sets actually decrease clustering 
performance. It was observed that constraints can have ill effects 
even when they are generated from the data labels that are used to 
evaluate accuracy, so this behavior is not caused by noise or 
errors in the constraints. Instead, it is a result of the interaction 
between a given set of constraints and the algorithm being used. 
So it is more important to know why do some constraint sets 
increase clustering accuracy while others have no effect or even 
decrease accuracy. For that, the authors in [7] have defined two 
important measures, informativeness and coherence, that capture 
relevant properties of constraint sets.  These measures provide 
insight into the effect a given constraint set has for a specific 
constrained clustering algorithm. In this paper, we only use the 
coherence measure, which is independent of any learning 
algorithm. 

The coherence represents the amount of agreement between the 
constraints themselves, given a metric d that specifies the distance 
between points. It does not require knowledge of the optimal 
partition *P and can be computed directly. The coherence of a 
constraint set is independent of the algorithm used to perform 
constrained clustering. One view of an ML(x,y) (or CL(x,y)) 
constraint is that it imposes an attractive (or repulsive) force 
within the feature space along the direction of a line formed by 
(x,y), within the vicinity of x and y. Two constraints, one an ML 
constraint (m) and the other a CL constraint (c), are incoherent if 
they exert contradictory forces in the same vicinity. Two 
constraints are perfectly coherent if they are orthogonal to each 
other and incoherent if they are parallel to each other. To 
determine the coherence of two constraints, m and c, we compute 
the projected overlap of each constraint on the other as follows 
(see Fig. 1 for examples). 

 

Let m
�

 and c
�

 be vectors connecting the points constrained by m 
and c respectively. The coherence of a given constraints set W is 
defined as a fraction of constraints pairs that have zero projected 
overlap: 

Figure 1. Projected overlap between two constraints: ML(m) 
over CL(c). The coherence of the subset is null. 
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Where 
c

over m represents the distance between the two 
projected points linked by m over c. δ  is the number of the 
overlapped projections. More details can be found in [7]. 
 

From the equation(4), we can easily define a specific measure for 
each constraint as follows: 
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We show now how to select the relevant constraints according to 
their coherence.  To be selected, a constrained 

iα must be “fully” 
coherent, i.e. it must not overlap with any other constraint

jα  
( j CLa Î W if i MLa Î W  and vice versa). This hard fashion to 
select constraints can be described in algorithm (Fig. 2). 

Input: Constraints set { }iaW =  
Initialize

s
W = Æ.  

for 1i =  to Wdo 
     if { ( ) 1Cohd iα = }  
          { }

s s i
aW = W +  

     end if 
 end for 
Output: Selected constraints sW  

Figure 2. Constraint Selection Algorithm 

From this algorithm we obtainsW , which is a set of coherent 
constraints of ( , )

i j
ML x x , and ( , )

i j
CL x x in two subsets 'MLW  

and 'CLW  respectively. 

3.2 Score Function 
The advantage of Laplacian score is its survey of the respect of 
data structure, which is expressed by the variance and locality 
preserving ability. However, several studies proved that the 
exploitation of background information improves the performance 
of the learning process. Furthermore, for constraint score, the 
principle is mainly based on the constraint preserving ability. This 
little supervision information is certainly necessary for feature 
selection, but not sufficient when ignoring the unlabeled data 
party especially if it is very large.  

For that, we propose a Constraint Selection for Feature Selection 
Score (ϕ) which constraints the Laplacian score by the Constraint 
score for an efficient semi-supervised feature selection. Thus, we 
define (ϕ) score, which should be minimized, as follows: 
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Since the labeled and unlabeled data are sampled from the same 
population generated by target concept, the basis idea behind our 
score is to generalize the Laplacian and the constraint scores for 
semi-supervised feature selection. Note that if there are no labels 
( 0,

U
l X X= = ) then 

r r
Lj =  and when ( 0,

l
u X X= = ), 

ϕ represents an adjusted
r

C , where the ML and CL information 
would be weighted by 

ij
S  and 

ii
D  respectively in the formula. 

With ϕ score, on the one hand, a relevant feature should be the 
one on which those two samples (neighbors or related by an ML 
constraint) are close to each other. On the other hand, the relevant 
feature should be the one with a larger variance or on which those 
two samples (related by a CL constraint) are well separated. 

To assess the previous concept, we use a weight
ij

N . The 
motivation of adding 

ij
N to our score (over the Laplacian score) 

is not the integration of pairwise constraints into the score only, 
but it also adds a sensibility dimension to feature score in the 
following cases: 
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4. SPECTRAL GRAPH BASED 
FORMULATION 
In this section, we give a spectral graph based explanation for our 
proposed CSFS score (ϕ). A reasonable criterion for choosing a 
relevant feature is to minimize the objective function represented 
by ϕ. The principle consists thus to minimize the first term 
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one 2
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optimization problems, we prefer those features respecting their 
pre-defined graphs, respectively. Thus, we construct a k -

neighborhood graph knG  from X  (data set) and 'MLW  (ML  

constraint set) and a second graph CLG  from 'CLW  (CL  
constraint set). 

Given a data setX , let ( , )G V E  be the complete undirected 

graph constructed fromX , with V  is its node set andE  is its 

edge set. The thi  node iv  of G  corresponds toix XÎ  and there 

is an edge between each node pair( , )i jv v , the weight of this edge 

is the dissimilarity between
i

x and
j

x : 
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matrices, denoted by )( kkn nS N+  and CLS  respectively, can be 
defined as: 
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Then, we can define: 

− For each feature r , its vector 
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The optimization of (14) is well detailed in [14]. In this case, 
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The whole algorithm of the proposed score ϕ is summarized in 
(Fig. 3). 

Note. The step 6 of the algorithm (Fig. 3) is computed in 
time 2( )O mN . 

Notice that the “small-labeled” problem becomes an advantage in 
our case, because it supposes that the number of extracted 
constraints is smaller since it depends on the number of labelsl . 
Thus, the cost of the algorithm depends considerably onu , the 
size of unlabeled dataUX . 

To reduce this complexity, we propose to apply a clustering on 

UX . The idea aims to substitute this huge party of data by a 
smaller one 1( , ..., )U KX p p¢ =  by preserving the geometrical 
structure of UX , where K  is the number of clusters. We propose 
to use Self-Organizing Map (SOM) based clustering [18] which 
can be considered as doing vector quantization and/or clustering 
while preserving the spatial ordering of the input data rejected by 
implementing an ordering of the codebook vectors (also called 
prototype vectors, cluster centroids or reference vectors) in a one 
or two dimensional output space. 

Input: Data set X  
1: Construct the constraint set (

ML
W  and 

CL
W ) from 

L
Y  

2: Select the coherent set ('
ML

W  and '
CL

W ) from (
ML

W  and 

CL
W ) 
3: Construct graphs 

kn
G  and 

CL
G  from ( , ' )

ML
X W  and '

CL
W  

respectively. 
4: Calculate the weight matricesknS , CLS  and their Laplacians 

knL , CLL  respectively. 
5: Construct a clustering to Calculate 

i
k  for all examples 
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Figure 3. CSFS Feature Selection Algorithm 



Lemma 1. By clustering UX  the complexity of step 6 in 
algorithm (Fig. 3) is reduced to( )O mu . 

Proof. The size of labeled data is very smaller than the one of 
unlabeled data, l u N< < < and the clustering of UX  provides 
at most K u= clusters. Therefore, step 6 of the algorithm 
(Fig. 3) is applied over a data set with size equal 
to u l u+ ; . This allows decreasing the complexity 
to ( )O mu . W 

Subsequently, SOM will be applied on the unsupervised party of 
data ( UX ) for obtaining UX ¢with a size equal to the number of 
SOM' nodes (K ). Therefore, ϕ will be performed on the new 
obtained data set (L UX X ¢+ ).  

4.1 Adaptive k-Neighborhood determination 
The key assumption of Laplacian score is the assessment of 
locality preserving ability by features. Meanwhile, the principle of 
fixed k-nearest-neighbors for all instances may affect the locality 
preserving, because it is not guaranteed that the k-nearest-
neighbors of an instance are "close" to it (Fig. 4-a). In this case, 
some "far" neighbors would be enrolled in the locality preserving 
measurement for the example at the hand. 

Hence, we advise using a similarity based clustering approach on 
the whole instances, which allows revealing their locality 
structures. Then, the k-nearest-neighborhood relationship among 
them will depend on their membership to the same clusters.  
Hence, the adaptive k would be related to data structure and could 
be defined as follows: Two instances are neighbors if they belong 
to the same cluster. Consequently, each cluster has its own k 
which is the number of its elements (less one). 

In (Fig. 4-b), calculating the score of 1x does not need to look 
far, but it is calculated on the base of the instances belonging to 
its cluster. Accordingly, the score is less biased and the locality is 
more preserved. 

 
 
 
 
 
 
 
 
 

 
Finally, the feature selection framework is represented in (Fig. 5). 

5. RESULTS 
5.1 Data Sets 
In this section, we present an empirical study on a broad range of 
data sets including four data sets downloaded from the UCI 
repository [11], i.e. “Iris” , “Ionosphere”, “Sonar” and 
“Soybean”. In addition we present the results on “Leukemia”, 
and “colon cancer” data sets, which can be found in [12][1] 
respectively. Moreover, for validating our framework on high-
dimensional data, we present our results on “Pie10P”  and 
“Pix10P”  which are face image data sets containing 10 persons in 
each. The whole data sets information is detailed in (Table 3). 

  

For the construction of the SOM maps in the phase of unlabeled 
data clustering, we use a Principal Component Analysis (PCA) 
based heuristic proposed by Kohonen [18] for automatically 
providing the initial number of neurons and the dimensions of the 
maps (Table 1). The reference vectors are initialized linearly along 
the greatest eigenvectors of the associated data set UX . Then, in 
order to determine the adaptive k-nearest-neighborhood constant, 
each SOM map is merged with the labeled data partylX . The 
resulting data '( )lUX X+  is clustered by an Ascendant 
Hierarchical Clustering (AHC) for optimizing the number of 
clusters (by grouping neurons) [6]. In general, an internal index, 
like Davies Bouldin or Generalized Dunn [19], is used for cutting 
the dendrogram. Here, we used Davies Bouldin index to obtain 
the number of classes corresponding to the correct partition (#l) 
for each data set. Note that we obtain several values of k for each 
data set. These values are not manually determined but 
automatically settled based on the structure of each data set. For 
example, on Soybean data set, we obtained 4 clusters by (AHC). 
The numbers of instances belonging to clusters were 9, 16, 9 and 
10 corresponding to 4 various values of k 8, 15, 8 and 9 
respectively. 

In order to compare our feature selection framework with other 
ones, the nearest neighborhood (1-NN) classifier with Euclidean 
distance is employed for classification. After feature selection 
phase, and for each data set, the classifier is learned in the first 
half of samples from each class and tested on the remaining data. 
In addition, the constant λ of our score function is set to 0.1 in all 
our experiments. 

The empirical study that we would present is approached in four 
scenarios: Firstly, we would compare the performance of CSFS 
framework with Laplacian score; Constraint score and Fisher 
score, this comparison would be held on UCI data sets and 
concerns the accuracy of the classification vs. the number of 
selected features. 

Secondly, we assess the relative performance of CSFS over other 
dimensionality reduction methods. We choose the PCA as the 

Figure 4. (a) Fixed k-nearest-neighborhood. (b) Adaptive k-
nearest-neighborhood. 
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Figure 5. CSFS framework 



baseline. We also compare the performance of CSFS with SSDR-
CMU and cFLD under different level of constraints. This 
comparison would be held also on UCI data sets but it concerns 
the classification accuracy vs. the number of selected constraints 
(while fixing the number of selected features). 

The third scenario would be presented on higher-dimensional 
data, i.e. Leukemia and Colon Cancer. We evaluate the 
performance of CSFS framework on these data sets in comparison 
with Laplacian, Fisher, C4 and CS scores. This comparison will 
concern the classification accuracy vs. both selected features and 
selected co- 

Table 1 : Data sets 

nstraints (Laplacian score – fully unsupervised- is not applicable 
in accuracy vs. selected constraints case). 

Finally, we would validate our CSFS framework on higher 
dimensional images data sets, i.e. Pie10P and Pix10P. This 
validation is presented in comparison with Laplacian, ReliefF, 
F2+r4 and F3+r scores. 

In our experiments, we simulated the generation of pairwise 
constraints as follows: 

We randomly selected samples of 25% from the labeled data 
belonging to each class, and then we created the must-link and 
cannot-link constraints depending on the underlying classes. 
Finally, we deployed our constraint selection framework in order 
to choose the most coherent subset of these constraints.  

5.2 Results on UCI Data Sets 
In this section we assess the relative performance of CSFS over 
other dimensionality reduction methods for classification. We 
choose the fully unsupervised Laplacian score as the baseline. We 
also test the performance of supervised Fisher score which uses 
the class labels of all the training data. We compare CSFS results 
with constraint score ones too. As mentioned before, after 
dimensionality reduction, nearest neighborhood (1-NN) classifier 
is employed for classification. In addition, the coherent 
constraints exploited on data sets are: (8 for Iris, 13 for 
Ionosphere,11 for Sonar and 7 for Soybean. 

(Fig. 6) shows that CSFS always achieves the highest accuracy on 
all data sets. It can also be shown that in most cases the 
performance of Laplacian score is the worst. We believe that this 
is because Laplacian score does not use supervision information, 
i.e. labels (the constraints as a result).  

In particular, CSFS outperforms constraint and Laplacian score 
significantly, while it outperforms or achieves similar accuracy to 
Fisher score in all cases. 

 

 

Note that Fisher uses the full labels of the data set while CSFS 
uses a subset of coherent constraints generated originally from a 
small-labeled data party (25%). It is remarkable too that CSFS 
scores good accuracy even with few number of selected features,  
these results verify that merging “useful” constraints extracted 
from supervision information with geometrical structure of 
unlabeled data is very useful in learning feature scores. 

Then, we compare the performance of CSFS with that of PCA, 
cFLD and SSDR-CMU (Fig. 7). This comparison concerns the 
Accuracy vs. different number of constraints (we used 50% of 
selected features). Note that authors in [24] proposed the SDDR 
score with different variants (SSDR-M, SSDR-CM and SSDR-
CMU), we compared our results with SSDR-CMU because it use 
the two types of pairwise constraints in addition to the unlabeled 
data, which means that it uses the same specifications that we 
consider in our score function. In addition, SSDR-CMU recorded 
better results than the other SSDR variants. The comparison of 
our framework with the listed scores is presented under different 
levels of selected constraints.  

Note also that CSFS deploys just the coherent constraints from the 
whole constraints set generated from the labeled data. This can 
explain that the maximum number of selected constraints in the 
figure is far less than the maximum number of possible 
constraints.  

 
 

Data set N m #Class Map’ dimensions 
Iris 150 4 3 11×5 

Ionosphere 351 34 2 12×7 
Sonar 208 60 2 9×7 

Soybean 47 35 4 8×4 
Leukemia 72 7129 2 7×5 

Colon cancer 62 2000 2 6×6 
Pie10P 210 2400 10 8×5 
Pix10P 100 10000 10 9×7 

Figure 6. Accuracy vs different numbers of  
selected features 

Figure 7. Accuracy vs. different numbers of  
selected constraints (“coherent” constraints for CSFS) 



 
(Fig. 7) shows that CSFS outperforms the PCA and cFLD scores 
significantly, and it is comparable to SSDR-CMU on Soybean, 
outperforms it in Sonar and Ionosphere, but inferior to it on Iris 
when SSDR-CMU exploits the full constraints set. Note that 
CSFS achieves a high accuracy even when few “coherent” 
constraints are deployed. Another important notice from (Fig. 7) 
is that CSFS accuracy on Sonar and Ionosphere data sets is higher 
of the other scores accuracy even when they deploy the full 
constraints set, this validates the practically proven fact that the 
use of more “incoherent” constraints would have ill effects on 
learning performance (or it would have no effects in best cases). 

5.3 Results on Leukemia and Colon Cancer 
Data Sets 
“Leukemia” and “Colon Cancer” are gene expression databases 
with huge number of features. The microarray Leukemia data is 
constituted of a set of 72 samples, corresponding to two types of 
Leukemia called ALL (Acute Lymphocytic Leukemia) and AML 
(Acute Myelogenous Leukemia), with 47 ALL and 25 AML. The 
data set contains expressions for 7129 genes. While “colon 
Cancer” is a data set of 2000 genes measured on 62 tissues (40 
tumors and 22 "normal"). 

We present our results on these data sets on comparison with 
Laplacian, Fisher, C4 and CS scores, and that in both cases:  
Accuracy vs. Selected features (The coherent constraints used for 
this case are: 7 for colon cancer and 8 for Leukemia), and 
Accuracy vs. the selected constraints (50% of the selected features 
were deployed). The results of accuracy vs. Selected features (fig. 
8-a,c) show that CSFS records a comparable performance with 
other scores when the number of features is inferior to 2500 for 
Leukemia data set, and 500 for Colon Cancer data set, then the 
performance of CSFS is superior to other scores performance 
when increasing the number of features. 

While the results of accuracy vs. number of Selected constraints 
(fig. 8-b,d) show that CSFS outperforms other scores when using 
the full “coherent” constraint sets, and as on UCI data sets, the 
accuracy achieved by CSFS on Leukemia data set is not reached 
by other scores even when using the whole possible constraints 
set. 

 

5.4 Results on face images data sets 
As mentioned above, Pie10P & Pix10P are face images data sets 
containing 10 persons in each. The validation on these data sets is 
presented in comparison with Laplacian, Relief scores on both 
data sets. In addition, results were compared with (F2+r4) score on 
Pix10P data set and with (F3 + r) score on Pie10P data set. We 
chose to compare our results with (F3+ r) and (F2+r4) because 
they achieved best results over the other variant scores proposed 
by authors in [27]. 

Note that the coherent constraints used are (6 for Pix10P and 9 for 
Pie10P), Experimentation results in (Fig. 9) shows that CSFS 
outperforms significantly the other scores whatever the exploited 
number of features. Meanwhile, on Pie10P data set, CSFS is 
higher than Laplacian and (F3 + r) scores and inferior to ReliefF. 
Nevertheless, it could be shown that CSFS has an excellent 
accuracy on Pix10P  

 

 
 
data set and very good one on Pie10P data set. In addition, (Fig. 
9) illustrates the stability of CSFS in comparison with other 
scores. 
Finally, Table (2) shows that regarding the average accuracy, 
CSFS has an excellent average accuracy, which is superior to all 
other scores except to Relief score on Pie10P data set. 

 
Table 2. Averaged accuracy of different algorithms  

on “Pie10P” & “Pix10P” data sets 
Data set Laplacian ReliefF F2+r4 F3+r CSFS 

Pie10P 0.74 0.97 0.78 0.87 0.91 

Pix10P 0.88 0.97 0.94 0.93 0.98 

CONCLUSION 
In this paper, we proposed a framework for feature selection based 
on constraint selection for semi-supervised dimensionality 
reduction. A new score function was developed to evaluate the 
relevance of features based on both, the locally geometrical 
structure of unlabeled data and the constraints preserving ability 
of labeled data. The framework which we propose has three major 
advantages: 

− It incorporates the labeled and unlabeled examples in a 
competent and flexible manner, so it could be utilized 
regardless of the percentage of the labeled data. 

− It exploits a pairwise constraint selection, which results in a 
coherent constraint subset extracted from the labeled data. 

− It surveys the structural neighborhood of data examples, 
which highlights the efficient locality preserving properties 
of the selected features. 

Figure 9. Accuracy vs. different numbers of  
selected features 

Figure 8. (a,c) Accuracy vs. different numbers of  
selected features, (b,d) Accuracy vs. different numbers of 

selected constraints 



Future work may include the amelioration of the choice of 
labels set from which constraints are generated. Other 
perspectives may be the choice of clustering algorithm between 
the constraints. In addition, we used a “hard” constraints selection 
which means to select only the constraints that are coherent with 
the full constraints set. This results in a little constraints number. 
Possible choice may be to adopt a “soft” constraints selection, in 
which the constraints coherence is calculated gradually, and the 
constraint is rejected if it is incoherent with the so far selected 
constraints, this may results in a higher constraints number, then it 
would be interested to judge if the learning quality would be more 
efficient with a great number of constraints softly selected than 
with a few number of constraints hardly selected. 
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