
Efficient Mining of a Concise and Lossless Representation of High Utility Itemsets

Cheng Wei Wu
1
, Philippe Fournier-Viger

1
, Philip S. Yu

2
, Vincent S. Tseng

1

1
Department of Computer Science and Information Engineering,

National Cheng Kung University, Taiwan, ROC
2
Department of Computer Science, University of Illinois at Chicago, Chicago, Illinois, USA

{silvemoonfox, philippe.fv}@gmail.com, psyu@cs.uic.edu, tsengsm@mail.ncku.edu.tw

Abstract—Mining high utility itemsets from transactional

databases is an important data mining task, which refers to the

discovery of itemsets with high utilities (e.g. high profits).

Although several studies have been carried out, current

methods may present too many high utility itemsets for users,

which degrades the performance of the mining task in terms of

execution time and memory requirement. To achieve high

efficiency for the mining task and provide a concise mining

result to users, we propose a novel framework in this paper for

mining closed+ high utility itemsets, which serves as a compact

and lossless representation of high utility itemsets. We present

an efficient algorithm called CHUD (Closed+ High utility

itemset Discovery) for mining closed+ high utility itemsets.

Further, a method called DAHU (Derive All High Utility

itemsets) is proposed to recover all high utility itemsets from

the set of closed+ high utility itemsets without accessing the

original database. Results of experiments on real and synthetic

datasets show that CHUD and DAHU are very efficient and

that our approach achieves a massive reduction in the number

of high utility itemsets (up to 800 times in our experiments). In

addition, when all high utility itemsets can be recovered by

DAHU, the combination of CHUD and DAHU outperforms the

state-of-the-art algorithms for mining high utility itemsets.

Keywords-utility mining; frequent itemset; closed+ high

utility itemset; lossless and concise representation

I. INTRODUCTION

Frequent itemset mining (abbreviated as FIM) [1, 10] is a
fundamental research topic in data mining. One of its popular
applications is market basket analysis, which refers to the
discovery of sets of items (itemsets) that are frequently
purchased together by customers. However, in this
application, the traditional model of FIM may discover a
large amount of frequent but low revenue itemsets and lose
the information on valuable itemsets having low selling
frequencies. These problems are caused by the facts that (1)
FIM treats all items as having the same importance/unit
profit/weight and (2) it assumes that every item in a
transaction appears in a binary form, i.e., an item can be
either present or absent in a transaction, which doesn’t
indicate its purchase quantity in the transaction. Hence, FIM
cannot satisfy the requirement of users who desire to
discover itemsets with high utilities such as high profits.

To address these issues, utility mining [2, 5, 6, 7, 8, 11,
13, 15, 19, 20, 24, 26] emerges as an important topic in data
mining. In utility mining, each item has a weight (e.g. unit
profit) and can appear more than once in each transaction
(e.g. purchase quantity). The utility of an itemset represents

its importance, which can be measured in terms of weight,
profit, cost, quantity or other information depending on the
user preference. An itemset is called a high utility itemset
(abbreviated as HUI) if its utility is no less than a user-
specified minimum utility threshold; otherwise, it is called a
low utility itemset. Utility mining is an important task and
has a wide range of applications such as website click stream
analysis [2, 5, 19, 24], cross-marketing in retail stores [6, 20,
26] and biomedical applications [7].

However, HUIs mining is not an easy task since the
downward closure property [1, 10] in FIM does not hold in
utility mining. In other words, the search space cannot be
directly pruned to find HUIs as it is done in FIM because a
superset of a low utility itemset can be a high utility itemset.
Many studies [2, 13, 15, 20, 21] were proposed for mining
HUIs, but they often present a large number of high utility
itemsets to users. A very large number of high utility
itemsets makes it difficult for the users to comprehend the
results. It may also cause the algorithms to become
inefficient in terms of time and memory requirement, or even
run out of memory. It is widely recognized that the more
high utility itemsets the algorithms generate, the more
processing they consume. The performance of the mining
task decreases greatly for low minimum utility thresholds or
when dealing with dense databases.

In FIM, to reduce the computational cost of the mining
task and present fewer but more important patterns to users,
many studies focused on developing concise representations,
such as free sets [3], non-derivable sets [4], maximal itemsets
[9] and closed itemsets [14, 16-18 22, 27]. These
representations successfully reduce the set of itemsets found,
but they are developed for frequent itemset mining instead of
high utility itemset mining. Therefore, an important research
question is “Is it possible to conceive a compact and lossless
representation of high utility itemsets inspired by these
representations to address the aforementioned issues in HUI
mining?”

Answering this question positively is not easy.
Developing a concise and complete representation of HUIs
poses several challenges:
1. Integrating concepts of concise representations from

FIM into HUI mining may produce a lossy
representation of all HUIs or a representation that is not
meaningful to the users.

2. The representation may not achieve a significant
reduction in the number of extracted patterns to justify
using the representation.

3. Algorithms for extracting the representation may not be
efficient. They may be slower than the best algorithms
for mining all HUIs.

4. It may be hard to develop an efficient method for
recovering all HUIs from the representation.

In this paper, we address all of these challenges by
proposing a condensed and meaningful representation of
HUIs named Closed

+
 High Utility Itemsets (Closed

+
 HUIs),

which integrates the concept of closed itemset into HUI
mining. Our contributions are four-fold and correspond to
resolving the previous four challenges:
1. The proposed representation is lossless due to a new

structure named utility unit array that allows
recovering all HUIs and their utilities efficiently.

2. The proposed representation is also compact.
Experiments show that it reduces the number of
itemsets by several orders of magnitude, especially for
datasets containing long HUIs (up to 800 times).

3. We propose an efficient algorithm, named CHUD
(Closed

+
 High Utility itemset Discovery), to find this

representation. It includes three novel strategies named
REG, RML and DCM that greatly enhance its
performance. Results show that CHUD is much faster
than the current best methods for mining all HUIs [20].

4. We propose a top-down method named DAHU (Derive
All High Utility itemsets) for efficiently recovering all
HUIs from the set of Closed

+
 HUIs. The combination

of CHUD and DAHU provides a new way to obtain all
HUIs and outperforms UPGrowth [20], the state-of-
the-art algorithm for mining HUIs.

The remainder of this paper is organized as follows. In
Section II, we introduce the background for compact
representations and utility mining. Section III defines the
representation of closed

+
 HUIs and presents our methods.

Experiments are shown in Section IV and conclusions are
given in Section V.

TABLE I. AN EXAMPLE TRANSACTIONAL DATABASE

TID Transaction TU

T1 A(1), B(1), E(1), W(1) 5

T2 A(1), B(1), E(3) 8

T3 A(1), B(1), F(2) 8

T4 E(2), G(1) 5

T5 A(1), B(1), F(3) 11

TABLE II. UNIT PROFITS FOR EVERY ITEM

Item A B E F G W

Unit Profit ($) 1 1 2 3 1 1

II. BACK GROUND

In this section, we introduce the preliminaries associated
with high utility itemset mining and compact representations.

A. High Utility itemset Mining

Let I ={a1, a2, …, aM} be a finite set of distinct items. A
transactional database D = {T1, T2,…,TN} is a set of

transactions, where each transaction TRD (1 ≤ R ≤ N) is a
subset of I and has an unique identifier R, called Tid. Each

item aiI is associated with a positive real number p(ai, D),
called its external utility. Every item ai in the transaction TR
has a real number q(ai, TR), called its internal utility. An
itemset X = {a1, a2, …, aK} is a set of K distinct items, where

ai I, 1 ≤ i ≤ K, and K is the length of X. A K-itemset is an
itemset of length K. An itemset X is said to be contained in a
transaction TR if X TR.

Definition 1. The support count of an itemset X is defined as
the number of transactions containing X in D and denoted as
SC(X). The support of X is defined as the ratio of SC(X) to
|D|. The complete set of all the itemsets in D is denoted as L
and L = {X | X I, SC(X) > 0}.

Definition 2. The utility of an item ai in a transaction TR is
denoted as u(ai, TR) and defined as p(ai, D) × q(ai, TR).

Definition 3. The utility of an itemset X in a transaction TR

is denoted as u(X, TR) and defined as u(X, TR)= ∑),(∈ Ri
i Xa Tau .

Definition 4. The utility of an itemset X in D is denoted as
u(X) and defined as u(X) = ∑ ∈ ∧ ⊆ RRR

),(DTTX TXu .

Definition 5. An itemset X is called high utility itemset if u(X)
is no less than a user-specified minimum utility threshold
min_utility. Otherwise, X is a low utility itemset.

Definition 6. Let S be a set of itemsets and a function fH(S)
= {X | XS, u(X) min_utility}. The complete set of HUIs
in D is denoted as H (H ⊆ L) and defined as fH(L).

The

problem of mining HUIs is to find the set H in D.

Example 1. Let Table I be a database containing five
transactions. Each row in Table I represents a transaction, in
which each letter represents an item and has a purchase
quantity (internal utility). The unit profit of each item is
shown in Table II (external utility). In Table I, the utility of
the item {F} in the transaction T3 is u({F}, T3) = p({F}, D) ×
q({F}, T3) = 3 × 2 = 6. The utility of {BF} in T3 is u({BF},
T3) = u({B}, T3) + u({F}, T3) = 1 + 6 = 7. The utility of {BF}
is u({BF}) = u({BF}, T3) + u({BF}, T5) = 17, since {BF} is
contained in T3 and T5. If the min_utility is set to 10, the set
of HUIs in Table I is H = {{E}:12, {F}:15, {AE}:10,
{AF}:17, {BE}:10, {BF}:17, {ABE}:12, {ABF}:19},
where the number beside each itemset is its utility.

Note that the utility constraint is neither monotone nor
anti-monotone. In other words, a superset of a low utility
itemset can be high utility and a subset of a high utility
itemset can be low utility. Hence, we cannot directly use
the anti-monotone property (also known as downward
closure property) to prune the search space. To facilitate the
mining task, Liu et al. introduced the concept of
transaction-weighted downward closure [13], which is
based on the following definitions.

Definition 7. The transaction utility of a transaction TR is
denoted as TU(TR) and defined as u(TR, TR).

Definition 8. The transaction-weighted utilization of an
itemset X is the sum of the transaction utilities of all the
transactions containing X, which is denoted as TWU(X) and
defined as TWU(X) = ∑ ∈ ∧ ⊆ RRR

)(DTTX TTU .

Definition 9. An itemset X is a high transaction-weighted
utilization itemset (HTWUI) if TWU(X)  min_utility.

Property 1. The transaction-weighted downward closure
property states that for any itemset X that is not a HTWUI,
all its supersets are low utility itemsets [2, 13, 15, 20].

For example, the transaction utilities of T1 and T3 are
TU(T1) = u({ABE}, T1) = 5 and TU(T3) = 8. When

min_utility = 10, {AB} is a HTWUI since TWU({AB}) =
TU(T1) + TU(T3) = 13 is no less than min_utility. In contrast,
the itemset {W} is not a HTWUI, and therefore all the
supersets of {W} are low utility itemsets.

Many studies have been proposed for mining HUIs,
including Two-Phase [13], IHUP [2], TWU-Mining [21],
IIDS [15] and UPGrowth [20]. Two-Phase, IHUP and TWU-
Mining utilize transaction-weighted downward closure
property to find high utility itemsets. They consist of two
phases. In phase I, they find all HTWUIs from the database.
In phase II, high utility itemsets are identified from the set
of HTWUIs by scanning the original database once.
Although these methods capture the complete set of HUIs,
they may generate too many candidates in phase I, i.e.
HTWUIs, which degrades the performance of phase II and
the overall performance (in terms of time and space). To
reduce the number of candidates in phase I, various methods
have been proposed (e.g. [15, 20]). Recently, Tseng et al.
proposed UPGrowth with four strategies DGU, DGN, DLU
and DLN, for mining HUIs. Experiments in [20] show that
the number of candidates generated by UPGrowth in phase I
can be order of magnitudes smaller than that of HTWUIs.
To the best of our knowledge, UPGrowth is the state-of-the-
art method for mining HUIs.

Although the above methods perform well in some case,
their performance degrades quickly when there are many
HUIs in the databases. A large number of HUIs and
candidates cause these methods to suffer from long
execution time and huge memory consumption. When the
system resources are limited (the memory, disk space or
processing power), it is often impractical to generate the
entire set of HUIs. Besides, a large amount of HUIs is hard
to be comprehended or analyzed by users. In FIM, to reduce
the number of patterns, many studies were conducted to
develop compact representations of frequent itemsets that
eliminate redundancy, such as free sets [3], non-derivable
sets [4], maximal itemsets [9] and closed itemsets [16-18].
Although these representations achieve a significant
reduction in the number of extracted frequent itemsets, some
of them lead to loss of information (e.g. [9]). To provide not
only compact but also complete information about frequent
itemsets to users, many studies were conducted on closed
itemset mining.

B. Closed Itemset Mining

In this subsection, we introduce definitions and
properties related to closed itemsets and mention relevant
methods. For more details about closed itemsets, readers can
refer to [14, 16-18, 22, 27].

Definition 10. The Tidset of an itemset X is denoted as g(X)
and defined as the set of Tids of transactions containing X.

The support count of an itemset X is expressed in terms of
g(X) as SC(X) = |g(X)|.

Property 2. For itemsets X, Y∈L, SC(X  Y) = |g(X)  g(Y)|.

Definition 11. The closure of an itemset X∈ L, denoted as
C(X), is the largest set Y∈ L

such that X⊆Y and SC(X) =

SC(Y). Alternatively, it is defined as C(X) = R)(∈ TXgR .

Property 3. ∀X∈L, SC(X) = SC(C(X)) ⇔ g(X) = g(C(X)).

Definition 12. An itemset X∈L is a closed itemset if there
exists no itemset Y∈L such that (1) X Y and (2) SC(X) =
SC(Y). Otherwise X is a non-closed itemset. An equivalent
definition is that X is closed if C(X) = X. For example, {B}
is non-closed since C({B}) = T1  T2  T3 T5 = {AB}.

Definition 13. Let S be a set of itemsets and a function fC(S)
={X| XS, ∃¬ YS such that X⊂Y and SC(X) = SC(Y)}.The
complete set of closed itemsets in D is denoted as C (C⊆L)
and defined as fC(L). For example, the set of closed itemsets
in Table I is C = {{E}:3, {EG}:1, {AB}:4, {ABE}:2,
{ABF}:2, {ABEW}:1}, in which the number beside each
itemset is its support count.

Property 4. ∀X∈ L, SC(X) = max{SC(Y) | Y∈ fC(L) ∧
X⊆Y}. For example, the supersets of {B} in fC(L) are
{AB}:4, {ABE}:2, {ABF}:2 and {ABEW}:1. Thus,
SC({B}) is the maximum of these support counts, i.e. 4.

Mining frequent closed itemset refers to the discovery of
all the closed itemsets whose supports are no less than a
user-specified threshold. It is widely recognized that the
number of frequent closed itemsets can be much smaller
than the set of frequent itemsets for real-life databases and
that mining frequent closed itemsets can also be much faster
and memory efficient than mining frequent itemsets [14, 22,
27]. The set of closed itemsets is lossless since all frequent
itemsets and their supports can be easily derived from it by
property 4 without scanning the original database [16-18].
Many efficient methods were proposed for mining frequent
closed itemsets, such as A-Close [16-18], CLOSET+ [22],
CHARM [27] and DCI-Closed [14]. However, these
methods do not consider the utility of itemsets. Therefore,
they may present lots of closed itemsets with low utilities to
users and omit several high utility itemsets.

C. Compact Representations of High Utility Itemsets

To present representative HUIs to users, some concise
representations of HUIs were proposed. Chan et al.
introduced the concept of utility frequent closed patterns [7].
However, it is based on a definition of high utility itemset
that is different from [2, 13, 15, 20] and our work. Shie et al.
proposed a compact representation of high utility itemsets,
called maximal high utility itemset and the GUIDE algorithm
for mining it [19]. A HUI is said to be maximal if it is not a
subset of any other HUI. For example, when min_utility = 10,
the set of maximal HUIs is {{ABE}, {ABF}}. Although this
representation reduces the number of extracted HUIs, it is
not lossless. The reason is that the utilities of the subsets of a
maximal HUI cannot be known without scanning the
database. Besides, recovering all HUIs from maximal HUIs

can be very inefficient because many subsets of a maximal
HUI can be low utility. Another problem is that the GUIDE
algorithm cannot capture the complete set of maximal HUIs.

III. CLOSED
+
 HIGH UTILITY ITEMSET MINING

In this section, we incorporate the concept of closed
itemset with high utility itemset mining to develop a
representation named closed

+
 high utility itemset. We

theoretically prove that this new representation is meaningful,
lossless and not larger than the set of all HUIs.

A. Pushing Closed Property into HUI Mining

The first point that we should discuss is how to
incorporate the closed constraint into high utility itemset
mining. There are several possibilities. First, we can define
the closure on the utility of itemsets. In this case, a high
utility itemset is said to be closed if it has no proper superset
having the same utility. However, this definition is unlikely
to achieve a high reduction of the number of extracted
itemsets since not many itemsets have exactly the same
utility as their supersets in real datasets. For example, there
are seven HUIs in Example 1 and only one itemset {E} is
non-closed, since {E}⊆{ABE} and u({E}) = u({ABE}) =
12. A second possibility is to define the closure on the
supports of itemsets. In this case, there are two possible
definitions depending on the join order between the closed
constraint and the utility constraint:

 Mine all the high utility itemsets first and then apply
closed constraint. We formally define this set as H’ =
fC(fH(L)). It follows that H’⊆H.

 Mine all the closed itemsets first and then apply the
utility constraint. We formally define this set as C’ =
fH(fC(L)). It follows that C’⊆C.

As indicated in [23], the join order between two
constraints often lead to different results. Therefore, our next
step is to analyze the result sets defined based on the above
two join orders. We show that they produce the same result
set by the following lemmas.

Lemma 1. H’⊆C’.
Proof. We prove that H’⊆C’ by proving that∀X∈H’⇒
X∈C’. Since X∈ H’, X∈ H and u(X)≥ min_utility. Then,

we prove that ∃¬ Y∈H such that X⊂Y and SC(X) = SC(Y)
yields X∈C by showing that XC contradicts Y∈H. If

XC, there must exists an itemset Y∈L such that X⊂Y and

SC(X) = SC(Y). By Definition 4, u(Y) > u(X)≥ min_utility,

and therefore Y∈H, which is a contradiction.

Lemma 2. C’⊆H’
Proof. We prove that C’⊆H’ by proving that∀X∈C’⇒ X∈
H’. Since X∈C’ and u(X) ≥ min_utility, we have X∈H.

Then, we prove that X∈C yields ∃¬ Y∈H such that X⊂Y
and SC(X) = SC(Y) by showing that∃Y∈H contradicts
XC. If YH, then Y∈L. Because X⊂Y, Y∈L and SC(X) =

SC(Y), it follows that XC.

Theorem 1. H’= C’.
Proof. This directly follows from Lemma 1 and Lemma 2.

Because the two join orders produce the same result, we
remove the join order to obtain a general definition.

Definition 14. We define the set of closed high utility
itemsets as HC = {X | X∈ L, X = C(X), u(X)≥ min_utility},

HC = H’ = C’. An itemset X is called a non-closed high
utility itemset if X∈ H and X C. For example, the set of

closed HUIs in Table I is HC = {{E}, {ABE}, {ABF}}.

Definition 14 gives an alternative solution to incorporate
the closed constraint with high utility itemset mining. The
advantage of using this definition is that the two constraints
can be applied in any order during the mining process. We
say that the representation HC is concise because its size is
guaranteed to be no larger than the set of all HUIs (because
HC⊆H).We next show that this representation is meaningful.

Property 5. For any non-closed high utility itemset X, ∃Y∈
HC such that Y= C(X) and u(Y) > u(X).
Proof. ∀X∈ L, ∃Y∈ C such that Y= C(X) and SC(X) =
SC(Y). Since X∈ H and XC, u(X)≥ min_utility and X⊂Y.

SC(X) = SC(Y) and X⊂Y yields u(Y) > u(X)≥ min_utility by

Property 3 and Definition 4.

We claim that HC is a meaningful representation of all
HUIs by Property 5. For any non-closed high utility itemset
X, X does not appear in a transaction without its closure Y.
Moreover, the utility (e.g. profit/user preference) of Y is
guaranteed to be higher than the utility of X. For these
reasons, users are more interested in finding Y than X.
Moreover, closed itemsets having high utilities are useful in
many applications. For example, in market basket analysis, Y
is the closure of X means that no customer purchase X
without its closure Y. Thus, when a customer purchase X, the
retailer can recommend Y-X to the customer, to maximize
profit.

Although HC is based on the concise representation of
closed itemsets, the set of closed HUIs is not lossless. If an
itemset is not included in this representation, there is no way
to infer its utility and to know whether it is high utility or not.
To tackle this problem, we attach to each closed HUI a
special structure named utility unit array, which is defined as
follows.

Definition 15. ∀X = {a1, a2,…,aK}∈ L, the utility unit array
of X is denoted as V(X) = [v1, v2,…, vK] and contains K utility
values. The i-th utility value vi in V(X) is denoted as V(X, ai)
and defined as ∑),(

Ri ∈ ∧)(∈ RiTaXgR Tau .

For example, consider the itemset {ABE} appearing in T1
and T2. The first utility value in V({ABE}) is V({ABE}, {A})
= u({A}, T1) + u({A}, T2) = 2. The utility unit array of {ABE}
is V({ABE}) = [2, 2, 8].

Property 6. ∀X = {a1, a2,…,aK}∈ L, u(X) = ∑ 1= i),(K
i aXV .

Proof. The utility of X is the sum of the utilities of items a1,
a2,…,aK in transactions containing X. For an item ai, the
value V(X, ai) represents the sum of the utilities of ai in
transactions containing X. Therefore u(X) can be expressed
as V(X, a1) + V(X, a2) + … + V(X, aK). For example,
u({ABE}) = V({ABE}, {A}) + V({ABE}, {B}) + V({ABE},
{E}) = 2 + 2 + 8 = 12.

Property 7. ∀X∈ L, X is low utility if C(X)HC.

Proof. If C(X)HC, u(C(X)) < min_utility. Since SC(X) =

SC(C(X)) and X⊆C(X), by Definition 4 we have u(X) ≤

u(C(X)) < min_utility.

Property 8. ∀X = {a1, a2,…, aK}∈ L, the utility of X can be
calculated as u(X) = ∑)),((∈ i

i Xa aXCV by using the utility unit

array of its closure if C(X)∈ HC.
Proof. Because X⊆C(X), there exists an entry V(C(X), ai) in
V(C(X)) for each ai∈X. Besides, g(X) = g(C(X)) since SC(X)
= SC(C(X)) and X⊆C(X) (Property 3). Therefore, V(X, ai) =
V(C(X), ai), by Definition 15. According to Property 6, u(X)
= ∑),(1= i

K
i aXV . By replacing V(X, ai) with V(C(X), ai), we

obtain Property 8.

Definition 16. An itemset X is called a closed
+
 high utility

itemset (abbreviated as CHUI) if X∈ HC and X is annotated
with V(X). The set of closed

+
 HUIs is a lossless

representation of all HUIs. For any itemset X∈H, its exact
utility can be inferred from the utility unit array of its closure
by Property 8 without scanning the original database.

Although the set of closed
+
 HUIs is meaningful, concise

and lossless, mining closed
+
 HUIs is not an easy task. There

are two naive methods. The first one is to find all HUIs and
then to remove non-closed itemsets. The main drawbacks of
this method are that it cannot be more efficient than mining
all HUIs and that in the worst case removing all non-closed
itemset requires comparing all HUIs with each other. The
second approach is to first mine all closed itemsets and then
to remove those that are low utility itemsets. The drawback
of this method is that it needs to generate all closed itemsets
and this set can be very large since no threshold can be used.

B. Efficient Discovery of Closed
+
 High Utility Itemsets

In this subsection, we present an efficient algorithm
named CHUD (Closed

+
 High Utility itemset Discovery) for

mining closed
+
 HUIs. CHUD is an extension of DCI-Closed

[14], one of the current best methods for mining closed
itemsets, and it also integrates the TWU model and effective
strategies to prune low utility itemsets. CHUD consists of
two phases. In phase I, CHUD discovers candidates for
closed

+
 HUIs. In phase II, the closed

+
 HUIs are identified

from the set of candidates found in phase I and their utility
unit arrays are computed by scanning the database once.

Similar to the DCI-Closed algorithm, CHUD adopts an
IT-Tree (Itemset-Tidset pair Tree) [14, 27] to find closed

+

HUIs. In an IT-Tree, each node N(X) consists of an itemset X,
its Tidset g(X), and two ordered sets of items named PREV-
SET(X) and POST-SET(X). The IT-Tree is recursively
explored by the CHUD algorithm until all closed itemsets
that are HTWUIs are generated. Different from the DCI-
Closed algorithm, each node N(X) of the IT-Tree is attached
with an estimated utility value EstU(X).

A data structure called TU-Table (Transaction Utility
Table) [13] is adopted for storing the transaction utilities of
transactions. It is a list of pairs <R, TU(TR)> where the first
value is a TID R and the second value is the transaction
utility of TR. Given a TID R, the value TU(TR) can be

efficiently retrieved from the TU-Table. Given a node N(X)
with its Tidset g(X) and a TU-Table TU, the estimated utility
of the itemset X can be efficiently calculated by the
procedure shown in Figure 1.

The main procedure of CHUD is named Main and is
shown in Figure 2. It takes as parameter a database D and
the min_utility threshold. CHUD first scans D once to
convert D into a vertical database. At the same time, CHUD
computes the transaction utility for each transaction TR and
calculates TWU of items. When a transaction is retrieved,
its Tid and transaction utility are loaded into a global TU-
Table named GTU. An item is called a promising item if its
estimated utility (e.g. its TWU) is no less than min_utility.
After the first scan of database, promising items are
collected into an ordered list O = <a1, a2,…,an>, sorted
according to a fixed order  such as increasing order of
support. Only promising items are kept in O since supersets
of unpromising items are low utility itemsets. According to
[22], the utilities of unpromising items can be removed from
the GTU table. This step is performed at line 2 of the Main
procedure. Then, CHUD generates candidates in a recursive
manner, starting from candidates containing a single
promising item and recursively joining items to them to
form larger candidates. To do so, CHUD takes advantage of
the fact that by using the total order  , the complete set of
itemsets can be divided into n non-overlapping subspaces,
where the k-th subspace is the set of itemsets containing the
item ak but no item ai  ak [14]. For each item ak

O, CHUD
creates a node N({ak}) and puts items a1 to ak-1 into PREV-
SET({ak}) and items ak+1 to an into POST-SET({ak}). Then
CHUD calls the CHUDPhase-I procedure for each node
N({ak}) to produce all the candidates containing the item ak
but no item ai  ak. Finally, the Main procedure performs
phase II on these candidates to obtain all closed

+
 HUIs.

CalculateEstUtility(g(X), TU)
01. EstU := 0;

02. for each TID R∈g(X) do
03. { EstU := EstU + TU.get(R) }
04. return EstU

Figure 1. CalculateEstUtility

Main(D, min_utility)
01. InitialDatabaseScan(D)
02. RemoveUtilityUnpromisingItems(O, GTU).

03. for each item ak∈O do
04. Create node N({ak})
05. CHUDPhase-I(N({ak}), GTU, min_utility)
06. //Apply Strategy 3(REG)
07. PerformPhase-II(D)

Figure 2. Main

CHUDPhase-I (NX, TU, min_utility)
01. if (SubsumeCheck(N(X), PREV-SET(X)) == false) then
02. { XC := ComputeClosure(N(X), POST-SET(X))

03. if (EstU(XC)≥ min_utility) then //Apply Strategy 5(DCM)

04. { Output XC with EstU(XC)
05. Explore(N(XC), TU, min_utility) } }

Figure 3. CHUDPhase-I

SubsumeCheck (N(X), PREV-SET(X))

01. for each item a∈ PREV-SET(X) do

02. { if (g(X)⊆ g(a)) then return true }
03. return false

Figure 4. SubsumeCheck

ComputeClosure (N(X), POST-SET(X))
01. XC := X

02. for each item a∈ POST-SET(X) do

03. { if (g(X)⊆g(a)) then
04. { POST-SET(X) := POST_SETX /{a}

05. XC := XC∪{a} } }

06. return XC

Figure 5. ComputeClosure

Explore (N(X), TUX, min_utility)

01. for each item ak∈ POST-SET(X) do
02. { POST-SET(X) := POST-SET(X) /{ak}

03. Create a node N(Y), where Y := X ∪{ak}

04. g(Y) := g(X)∩ g(ak)
05. POST-SET(Y) := POST-SET(X)
06. PREV-SET(Y) := PREV-SET(X)

07. EstU(Y) := CalculateEstUtility(g(Y), TUX)
08. if (EstU(Y), EstU(X) ≥ min_utility) then
09. { CHUDPhase-I (N(Y), TUX, min_utility)

10. PREV-SET(X) := PREV-SET(X)∪{ak} }

11. // Apply Strategy 4(RML) }

Figure 6. Explore

The CHUDPhase-I procedure shown in Figure 3 takes
as parameter a node N(X), a TU-Table TU and the
min_utility threshold. The procedure first performs
SubsumeCheck on X as presented in Figure 4. This check
verifies if there exists an item a from PREV-SET(X) such
that g(X)⊆g(a). If there exists such an item, it means that X
is included in a closed itemset that has already been found
and supersets of X do not need to be explored (see [14] for a
complete justification). Otherwise, the next step is to
compute the closure XC = C(X) of X. This is performed by
the procedure ComputeClosure(N(X), POST-SET(X))
shown in Figure 5 [14]. Then the estimated utility of XC is
calculated. If it is no less than min_utility, XC is considered
as a candidate for Phase II and it is outputted with its
estimated utility value EstU(XC). Note that CHUD does not
maintain any discovered candidate in memory. Instead,
when a candidate itemset is found, it is outputted to disk.
After this, a node N(XC) is created and the procedure
Explore is called for finding candidates that are supersets of
XC.

The Explore procedure is shown in Figure 6. It takes as
parameter a node N(X), a TU-Table and the min_utility
threshold. The Explore procedure explores the search space
of closed candidates that are superset of X by appending
items from POST-SET(X) to X. We here briefly explain this
process. For a proof that this method is a correct way of
exploring closed candidates, the reader can consult the paper
describing DCI-Closed [14]. For each item ak of POST-
SET(X), the procedure first removes ak from POST-SET(X)

to create a node N(Y) with Y = X∪{ak}. The Tidset of Y is

then calculated as g(Y) = g(X)∩g(ak) by Property 2. The set
POST-SET(Y) and PREV-SET(Y) are respectively set to
POST-SET(X) and PREV-SET(X). Then, the estimated
utility of Y is calculated by calling the CalculateEstUtility
procedure with g(Y) and TU. If EstU(Y) and EstU(X) are no
less than min_utility, the procedure CHUDPhase-I is
recursively called with N(Y) to consider the search space of
Y and ak is added to PREV-SET(X). If EstU(Y) is lower than

min_utility, the search space of Y is pruned since Y and its
supersets are low utility itemsets (Property 1).

After recursions of the Explore and CHUDPhase-I
procedures are completed, closed candidates that have been
outputted are processed by phase II. Phase II consists of
taking each candidate X and to calculate its exact utility and
utility unit array. Each candidate that is a low utility itemset
is discarded. Calculating the exact utility of a candidate X is
performed by doing the summation of u(X, TR) for each
R∈g(X). This is done very efficiently thanks to the vertical
representation of the database (only transactions containing
X are considered to calculate its utility).

We now prove that this basic version of the CHUD
algorithm generates the complete set of closed

+
 HUIs. We

consider the two phases of CHUD to prove the correctness.
The first phase produces a set of candidates P⊆ C, since it
is based on the DCI-Closed algorithm that generates all
closed itemsets C (see [14] for the proof that DCI-Closed
generates C). The second phase consists of discarding
candidates that are low utilities from P to obtain C’. The
algorithm is therefore correct if and only if C’⊆ P (the set
of candidates P produced in Phase I contains all closed

+

HUIs C’). To prove this, we need to show that the
modifications that have been made to DCI-Closed will not
discard any closed

+
 high utility itemset X ⊆ C’. We discuss

the correctness of these modifications thereafter.

Strategy 1. Considering only promising items. The first
strategy that we have incorporated in CHUD is to only
consider promising items for generating candidates and to
remove the utilities of unpromising items from the GTU
table. It is applied in line 2 and 3 of the Main procedure.
Rationale. It was shown in [14] that unpromising items
cannot be part of a HUI and that the utility of unpromising
items can be ignored in the calculation of the estimated
utility of itemsets when searching for high utility itemsets.

Strategy 2. Discarding itemsets having an estimated
utility lower than min_utility. The second strategy in
CHUD is to discard the itemset XC such that EstU(XC) ≥

min_utility. This strategy is integrated in line 3 of the
CHUDPhase-I procedure.
Rationale. It was demonstrated in Section 2 that an itemset
that is not a HWTUI is not a high utility itemset as well as
all of its supersets (see Property 1 and Definition 4, 8 and 9).
Because DCI-Closed discovers candidates recursively by
considering supersets of candidates, discarding an itemset
such that EstU(XC) < min_utility will not discard any itemset
from P that is in C’.

To enhance the performance of CHUD, we integrate
three additional strategies, which have never been used in
vertical mining of HUIs. They are described as follows.

Strategy 3. Removing the Exact utilities of items from
the Global TU-Table (REG). Strategy 3 is called REG,
which is applied after line 5 of the procedure Main. Each
time that an item ak ∈O has been processed, u(ak) is
removed from the transaction utility of each transaction
containing ak in the global TU-Table.

Rationale. CHUD explores the search space of patterns by
dividing it into non-overlapping subspaces such that each
item ai that has been processed is excluded from the
subspace of item aj  ai. Therefore, u(ai) can be removed
from the transaction utility of each transaction containing aj
in the global TU-Table. The pseudo code for this strategy is
shown as follows.

06. for each Tid R∈ g(ak) do
07. { remove u(ak) from <R, GTU(TR)> }

Definition 17. The minimum item utility of an item a is

denoted as miu(a) and defined as the value u(a, Tr) for
which ∃¬ Ts ∈ D such that u(a, Ts) < u(a, Tr).

Definition 18. Let N(X) be a node for the itemset X and a be
an item in POST-SET(X). The local TU-Table for the node
Y = X∪{a} is denoted as TUY and is initialized with the

entries from TUX corresponding to transactions from g(Y).
The local TU-Table for the root node of the IT-Tree is GTU.

Strategy 4. Removing the Mius of items from Local TU-
Tables (RML). Strategy 4 is called RML, which is applied
after line 11 of the procedure Explore. This strategy consists
of using a local TU-Table TUX for each node N(X) in the
IT-Tree. Let Y = X  {ak} and NY be the child node of NX.

Each time that an item ak from POST-SET(X) is processed,
miu(ak) is removed from the transaction utility of each
transaction containing ak in TUX. The updated local TU-
Table TUX is used for all child nodes of N(X). This process
reduces the estimated utility of N(X) and that of its children
nodes. Besides, miu(ak) × SC(Y) is removed from EstU(X).
If the updated EstU(X) is less than min_utility, the algorithm
will not process X  {ak} for each item ak∈ POST-SET(X).

Rationale. Each item ai that is processed for a node N(X)

will not be considered for any child node N(Y), where Y = X
 {aj} and aj  ai. Therefore, miu(ai) × SC(Y) and miu(ai)

can be removed from EstU(X) and the transaction utility of
each transaction containing aj from TUX. The pseudo code
for this strategy is shown as follows.

11. for each Tid R∈ g(Y) do
12. { remove miu(ak) from <R,TUX(Tc)> }
13. remove miu(ak) × SC(Y) from EstU(X)

Definition 19. The maximum item utility of an item a is

denoted as mau(a) and defined as the value u(a, Tr) for
which ∃¬ Ts ∈ D such that u(a, Ts) > u(a, Tr).

Definition 20. The maximum utility of an itemset X={a1,
a2,…, aK} is defined as MAU(X) =∑)(1= i

K
i amau × SC(X).

Lemma 4. ∀X, X is low utility if MAU(X) < min_utility.
Proof. The utility of an itemset X is the sum of the utility of
its items in transactions containing X. MAU(X) is the sum of
the maximum item utility of each item multiplied by the
number of transactions containing X. Since the maximum
item utility of each item represents the highest utility that an
item can have, MAU(X) is higher or equals to the utility of X.

Strategy 5. Discarding Candidates with a MAU that is
less than the minimum utility threshold (DCM). The last
strategy is called DCM and is applied to line 3 of the
CHUDPhase-I procedure. A candidate XC can be discarded
from phase II if its estimated utility EstU(XC) or MAU(XC) is
less than min_utility.
Rationale. Lemma 4 guarantees that an itemset X is not a
closed

+
 HUI if MAU(X) < min_utility. The pseudo code for

the strategy 5 is shown below.

03. if (min{EstU(XC), MAU(XC)}≥ min_utility) then

C. Efficient Recovery of High Utility Itemsets

In this subsection, we present a top-down method named
DAHU (Derive All High Utility itemsets) for efficiently
recovering all the HUIs. The pseudo code of DAHU is
shown in Figure 7. It takes as input a min_utility threshold, a
set of closed

+
 HUIs HC and Kmax the maximum length of

itemsets in HC. DAHU outputs the complete set of high

utility itemsets H = K
i 1= HK respecting min_utility, where HK

denotes the set of HUIs of length K. To derive all HUIs,
DAHU proceeds as follows. First, the set HKmax is initialized
to HCKmax, where the notation HCK represents the set of K-
itemsets in HC. During step 2 to step 14 in Figure 7, each
set HK is constructed from K = (Kmax – 1) to K = 1. In each
iteration, H(K–1) is recovered by using HCK. For each itemset
X = {a1, a2,…,aK} in HCK, if the utility of X is no less than
min_utility, the algorithm outputs the high utility itemset X
with its exact utility and then generates all (K–1)-subsets of
X. The latter are obtained by removing each item ai∈ X
from X one at a time to obtain subsets of the form Y = X –
{ai}. If Y is not present in HK or Y is present in HK with
SC(X) > SC(Y), Y is added to H(K–1), its support count is set
to the support count of X (Property 4), i.e., SC(Y) = SC(X),
and the utility of Y is set to the utility of X minus the i-th
value in V(X), i.e., u(Y) = u(X) – V(X, ai) (Property 6-8). In
addition, the utility unit array of V(Y) is set to V(X) with the
value V(X, ai) removed (Property 8). This process is
repeated until H has been completely recovered.

DAHU(HC, min_utility, Kmax)
01. HKmax := HCKmax
02. for (K := Kmax – 1; K > 0 ; K– –) do
03. { for each K-itemset X = {a1, a2,…,aK} in CHK do
04. { if (u(X) < min_utility) then delete X from CHK
05. else add X and its exact utility u(X) to H.

06. { for each item ai∈X do
07. { Y: = X – {ai}
08. u(Y) := u(X) – V(X, ai)

09. if(u(Y)≥min_utility) then

10. { if Y∈CH(K-1) and SC(X) > SC(Y) then
11. { SC(Y) := SC(X) }

12. else if (YHC(K-1)) then

13. { put Y into HC(K-1)
14. SC(Y) := SC(X) }}}}}}

Figure 7. DAHU

TABLE III. PARAMETER FOR SYNTHETIC DATASETS

Parameter Descriptions Default

D: Total number of transactions 200K

T: Average transaction length 12

N: Number of distinct items 1,000

I: Average size of maximal potential frequent itemsets 8

TABLE IV. CHARACTERISTICS OF DATASETS

Dataset N T D

Mushroom 119 23 8,124

Foodmart 1,559 4.4 4,141

BMSWebView1 497 2.51 59,601

T10I8D200K 1,000 10 200K

TABLE V. NUMBER OF EXTRACTED PATTERNS FOR MUSHROOM

42.396,65584,39215788910

56.0472,810692,4706343,3116

197.653,381,71915,687,2524,91119,3622

796.2220,392,06468,634,45825,61139,5221

Candidates

For HUIs

Phase I

UPGrowth

#HUIs

Phase II

#HUI

#CHUI

Reduction

Ratio

CHUD

Phase IIPhase IMinimum

Utility

Threshold (%) # Candidates For

CHUIs
CHUIs

42.396,65584,39215788910

56.0472,810692,4706343,3116

197.653,381,71915,687,2524,91119,3622

796.2220,392,06468,634,45825,61139,5221

Candidates

For HUIs

Phase I

UPGrowth

#HUIs

Phase II

#HUI

#CHUI

Reduction

Ratio

CHUD

Phase IIPhase IMinimum

Utility

Threshold (%) # Candidates For

CHUIs
CHUIs

0 2 4 6 8 10
1

10

100

1000

10000
UPGrowth

CHUD

Minimum Utility Threshold (%)

E
x
e
c
u

ti
o
n

 T
im

e
(s

e
c
.)

0 2 4 6 8 10
10

100

1000

10000

100000

1000000
UPGrowth

CHUD+ DAHU

CHUD

Minimum Utility Threshold (%)

E
x
e
c
u

ti
o
n

 T
im

e
(s

e
c
.)

(a) Time for Phase I (b) Time for Phase II

Figure 8. Execution time on Mushroom

IV. EXPERIMENTS

In this section, we compare the performance of CHUD
and DAHU with UPGrowth [20], which is to our best
knowledge, the state-of-the-art method for high utility
itemset mining. Although CHUD and UPGrowth produce
different results, both of them consist of two phases. In
Phase I, CHUD and UPGrowth respectively generate
candidates for CHUIs and HUIs. In Phase II, CHUD and
UPGrowth respectively identify CHUIs and HUIs from
candidates produced in their Phase I. The combination of
CHUD and DAHU is denoted as CHUD+DAHU, which
first applies CHUD to find all closed

+
 high utility itemsets

and then uses DAHU to derive all high utility itemsets from
the set of closed

+
 high utility itemsets generated by CHUD.

The process of CHUD+DAHU in phase I is the same as that
of CHUD. In Phase II, CHUD+DAHU first identifies
CHUIs from the set of candidates and then uses CHUIs to
derive all HUIs. Experiments were performed on a desktop
computer with an Intel® Core 2 Quad Processor @ 2.66
GHz running Windows XP and 2 GB of RAM. CHUD and
DAHU were implemented in Java. The implementation of
UPGrowth was obtained from Tseng et al. [20], which is
also implemented in Java. All memory measurements were
done by using the Java API. Both synthetic and real datasets
were used to evaluate the performance of the algorithms. A
synthetic dataset T12I8D200K was generated by the IBM

data generator [1]. The parameters of the data generator are
described in Table III. Real datasets Mushroom and
BMSWebView1 were obtained from FIMI Repository [32].
Foodmart is a real dataset obtained from the Microsoft
foodmart 2000 database. Except the Foodmart dataset, the
external and internal utility of each item are generated with
the settings used in [20]. Foodmart already contains unit
profits and purchase quantities of items. The total utility of
Foodmart is 120,160.84. Table IV shows the characteristics
of the above datasets. Mushroom is a real-life dense dataset,
each transaction containing 23 items. Foodmart is a real-life
sparse dataset from a retail store, with real utility values.
BMSWebView1 is a real-life sparse dataset of click-stream
data with a mix of short and long transactions (up to 267
items). T10I8D200K is a large sparse dataset with an
average transaction length of 10.

A. Experiments on Mushroom Dataset

The first experiment consisted of running UPGrowth,
CHUD, and DAHU on the Mushroom dataset, while
varying min_utility from 10% to 1 %. The execution time of
UPGrowth, CHUD, and CHUD+DAHU is shown in Figure
8 for Phase I and Phase II. Results show that CHUD
outperforms UPGrowth for both phases, and the
performance gap increased as min_utility was set lower. For
example, when min_utility = 1%, CHUD is 50 times faster
than UPGrowth for Phase 1 and 63 times faster for Phase II.
Moreover, when CHUD is combined with DAHU to
discover all high utility itemsets, the combination largely
outperforms UPGrowth and was only slightly slower than
CHUD. Table V shows the number of candidates and the
number of results generated by UPGrowth, CHUD, and
CHUD+DAHU. CHUD generates a much smaller number
of candidates and results than UPGrowth. The smaller
number of candidates generated by CHUD in Phase I is
what makes CHUD perform better than UPGrowth in Phase
II and for the total execution time (because Phase II is more
costly than Phase I [20]). Lastly, we measured the reduction
achieved by the representation of closed

+
 high utility

itemsets generated by CHUD compared to the set of all high
utility itemsets generated by UPGrowth. As shown in Table
V, a huge reduction is obtained (up to 796 times). Moreover,
by running DAHU, it is possible to recover all high utility
itemsets.

B. Experiments on Foodmart Dataset

The second experiment consists of running UPGrowth,
CHUD and DAHU on the Foodmart dataset, while varying
min_utility from 0.10% to 0.005 % of the total utility in the
database. Execution times for Phase I and Phase II are
shown in Figure 9. The total execution time of UPGrowth is
less than CHUD, initially. But as the min_utility threshold
became smaller, CHUD becomes faster (up to two times
faster than UPGrowth). The reason why the performance
gap between CHUD and UPGrowth is smaller for Foodmart
than for Mushroom is due to the fact that Foodmart is a
sparse dataset. As a consequence the reduction achieved by
mining closed

+
 high utility itemsets is less (still up to 34.6

times, as shown in Table VI).

TABLE VI. NUMBER OF EXTRACTED PATTERNS FOR FOODMART

12581,5852585810.1

5.86,26637,1581,0761,4440.05

33.273209,387230,1656,2936,3320.01

34.647230,617233,0326,6566,6570.005

Candidates

For HUIs

Phase I

UPGrowth

#HUIs

Phase II

#HUI

#CHUI

Reduction

Ratio

CHUD

Phase IIPhase IMinimum

Utility

Threshold (%) # Candidates For

CHUIs
CHUIs

12581,5852585810.1

5.86,26637,1581,0761,4440.05

33.273209,387230,1656,2936,3320.01

34.647230,617233,0326,6566,6570.005

Candidates

For HUIs

Phase I

UPGrowth

#HUIs

Phase II

#HUI

#CHUI

Reduction

Ratio

CHUD

Phase IIPhase IMinimum

Utility

Threshold (%) # Candidates For

CHUIs
CHUIs

0.02 0.04 0.06 0.08 0.10
0

5

10

15
UPGrowth

CHUD

0

Minimum Utility Threshold (%)

E
x
e
c
u

ti
o
n

 T
im

e
(s

e
c
.)

0.02 0.04 0.06 0.08 0.10
0

50

100

150

200
UPGrowth

CHUD+DAHU

CHUD

0

Minimum Utility Threshold (%)

E
x
ec

u
ti

o
n

 T
im

e(
se

c.
)

(a) Time for Phase I (b) Time for Phase II

Figure 9. Execution time on Foodmart

TABLE VII. NUMBER OF EXTRACTED PATTERNS FOR BMSWEBVIEW1

*

536

198

165

Candidates

For HUIs

Phase I

UPGrowth

*

5

4

2

#HUIs

Phase II

1

1

1

1

#HUI

#CHUI

Reduction

Ratio

CHUD

Phase IIPhase I

7322

263

4132.6

5232.2

Minimum

Utility

Threshold (%) # Candidates For

CHUIs
CHUIs

*

536

198

165

Candidates

For HUIs

Phase I

UPGrowth

*

5

4

2

#HUIs

Phase II

1

1

1

1

#HUI

#CHUI

Reduction

Ratio

CHUD

Phase IIPhase I

7322

263

4132.6

5232.2

Minimum

Utility

Threshold (%) # Candidates For

CHUIs
CHUIs

2 4 6 8 10
0.1

1

10

100

1000

10000

100000
UPGrowth

CHUD

Minimum Utility Threshold (%)

E
x
e
c
u

ti
o
n

 T
im

e
(s

e
c
.)

2 4 6 8 10
0.01

0.1

1

10

100

1000

10000

100000
UPGrowth

CHUD

CHUD+DAHU

Minimum Utility Threshold (%)

E
x
e
c
u

ti
o
n

 T
im

e
(s

e
c
.)

(a) Time for Phase I (b) Time for Phase II

Figure 10. Execution time on BMSWebView1

TABLE VIII. NUMBER OF EXTRACTED PATTERNS FOR T12I8D200K

16,444

4,811

1,297

488

Candidates

For HUIs

Phase I

UPGrowth

782

169

47

8

#HUIs

Phase II

1

1

1

1

#HUI

#CHUI

Reduction

Ratio

CHUD

Phase IIPhase I

7824,7760.02

8280.1

471650.05

1691,0930.03

Minimum

Utility

Threshold (%) # Candidates For

CHUIs
CHUIs

16,444

4,811

1,297

488

Candidates

For HUIs

Phase I

UPGrowth

782

169

47

8

#HUIs

Phase II

1

1

1

1

#HUI

#CHUI

Reduction

Ratio

CHUD

Phase IIPhase I

7824,7760.02

8280.1

471650.05

1691,0930.03

Minimum

Utility

Threshold (%) # Candidates For

CHUIs
CHUIs

0.02 0.04 0.06 0.08 0.10
0

100

200

300

400
UPGrowth

CHUD

0

Minimum Utility Threshold (%)

E
x
e
c
u

ti
o
n

 T
im

e
(s

e
c
.)

0.02 0.04 0.06 0.08 0.10
0

200

400

600

800

1000
UPGrowth

0

CHUD+DHUI

CHUD

Minimum Utility Threshold (%)

E
x
e
c
u

ti
o
n

 T
im

e
(s

e
c
.)

(a) Time for Phase I (b) Time for Phase II

Figure 11. Execution time on T12I8D200K

Note that achieving a smaller reduction for sparse

datasets is a well-known phenomenon in frequent closed

itemset mining. A similar phenomenon occurs in closed
+

HUI mining. Besides, when DAHU was combined with

CHUD, the execution time of CHUD+DAHU was up to two

times faster than UPGrowth for low minimum utility

thresholds and slightly slower than CHUD.

C. Experiments on BMSWebView1 Dataset

The third experiment consists of running UPGrowth,

CHUD and CHUD+DAHU on BMSWebView1 while

varying min_utility from 10% to 1 % of the total utility of

the database. Results are presented in Figure 10 and Table

VII. UPGrowth runs faster than CHUD and CHUD+DAHU

for min_utility ≥ 3%. However, for min_utility < 3%, the

performance of UPGrowth decreases sharply. For

min_utility = 2%, UPGrowth cannot terminate within the

time limit of 100,000 seconds and it generates more than

1,000,000 candidates in Phase I, whereas CHUD terminates

in 80 seconds and produces only seven closed
+
 HUIs from

32 candidates. The reason why CHUD performs so well is

that it achieves a massive reduction in the number of

candidates by only generating a few long itemsets

containing up to 149 items, while UPGrowth has to consider

a huge amount of redundant subsets (for a closed itemset of

149 items, there can be up to 2
149

-2 non-empty proper

subsets that are redundant). DAHU also suffers from the

fact that there are too many HUIs. It runs out of memory for

min_utility < 2 % when trying to recover all HUIs because it

has to generate too many subsets.

D. Experiments on Sythetic Dataset

The fourth experiment is to run the algorithms on

T12I8D200K with min_utility varying from 0.1% to 0.02%

of the database total utility. Results are presented in Figure

11 and Table VIII. For this dataset, CHUD is faster than

UPGrowth for the total execution time. Although the

reduction on this synthetic dataset is not as good (since it

produced the same result as UPGrowth), CHUD is faster

because it generates about three times less candidates in

Phase I. CHUD takes more times to generate candidates in

Phase I. But the total execution time of CHUD is less than

UPGrowth because Phase II is more costly than Phase I.

CHUD+DAHU also outperforms UPGrowth, since DAHU

only spend one second to derive all HUIs.

E. Memory Usage

During the previous experiments, we also measure the

maximum memory usage of UPGrowth and CHUD. Results

for Mushroom and Foodmart are presented in Figure 12 and

are similar for the other datasets. In general, CHUD uses as

much or slightly more memory than UPGrowth because the

latter uses a compact tries-based data structure for

representing the database that is more memory efficient than

a vertical database. However, when the databases contain

very long HUIs such as BMSWebView1, the number of

candidates can be very large. In this case, the memory

consumption of UPGrowth rises dramatically because it

needs to create a number of conditional UPTrees that is

proportional to the number of candidates.

2 4 6 8 10
0

5

10

15

20

UPGrowth

CHUD

0

Minimum Utility Threshold (%)

M
e
m

o
ry

 U
sa

g
e
 (

M
B

.)

0.02 0.04 0.06 0.08 0.10
0

2

4

6

UPGrowth

CHUD

0

Minimum Utility Threshold (%)

M
e
m

o
ry

 U
sa

g
e
 (

M
B

.)

(a) Mushroom (b) Foodmart

Figure 12. Memory usages for the algorithms in phase I

V. CONCLUSION

In this paper, we addressed the problem of redundancy
in high utility itemset mining by proposing a compact
representation of all high utility itemsets named closed

+

high utility itemsets. To our knowledge, this is the first study
on compact and lossless representation of high utility
itemsets. To mine this representation, we proposed an
efficient algorithm named CHUD. We propose three
effective strategies named REG, RML and DCM to enhance
the performance of CHUD. These strategies are novel since
they have never been used for vertical mining of high utility
itemsets. To efficiently recover all high utility itemsets from
this representation, we proposed a top-down method named
DAHU. Real and synthetic datasets having varied
characteristics were used to perform a thorough
performance evaluation. Results show that the proposed
representation achieves a massive reduction in the number
of high utility itemsets on all real datasets (e.g. a reduction
of up to 800 times for Mushroom and 32 times for
Foodmart). Besides, CHUD outperforms UPGrowth, the
current best algorithm by several orders of magnitude under
low minimum utility thresholds (e.g. CHUD terminates in
80 seconds on BMSWebView1 for min_utility = 2%, while
UPGrowth cannot terminate within 24 hours). The
combination of CHUD and DAHU is also faster than
UPGrowth when DAHU could be applied.

REFERENCES

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association
rules. In Proc. of the 20th Int'l Conf. on Very Large Data Bases, pp.
487-499, 1994.

[2] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, and Y.-K. Lee. Efficient
Tree Structures for High utility Pattern Mining in Incremental
Databases. In IEEE Transactions on Knowledge and Data
Engineering, Vol. 21, Issue 12, pp. 1708-1721, 2009.

[3] J. -F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets: a condensed
representation of boolean data for the approximation of frequency
queries. In Data Mining and Knowledge Discovery, Vol. 7, Issue 1,
pp. 5–22.

[4] T. Calders and B. Goethals. Mining all non-derivable frequent
itemsets. In Proc. of the Int’l Conf. on European Conference on
Principles of Data Mining and Knowledge Discovery, pp. 74-85,
2002.

[5] C.-J. Chu, V. S. Tseng, T and Liang. An efficient algorithm for
mining temporal high utility itemsets from data streams. In Journal of
Systems and Software Vol. 81, Issure 7, pp. 1105-1117, 2008.

[6] C.-J. Chu, V. S. Tseng, and T. Liang. An Efficient Algorithm for
Mining High utility Itemsets with Negative Values in Large
Databases. In Applied Mathematics and Computation, Vol. 215,
Issue. 2, pp. 767-778, 2009.

[7] R. Chan, Q. Yang, and Y. Shen. Mining high utility itemsets. In Proc.
of IEEE Int'l Conf. on Data Mining, pp. 19-26, 2003.

[8] A. Erwin, R. P. Gopalan, and N. R. Achuthan. Efficient Mining of
High utility Itemsets from Large Datasets. In Int’l Conf. on PAKDD,
pp. 554-561, 2008.

[9] K. Gouda and M. J. Zaki. Efficiently mining maximal frequent
itemsets. In Proc. of IEEE Int'l Conf. on Data Mining, pp. 163-170,
2001.

[10] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In Proc. of the ACM SIGMOD Int'l Conf. on
Management of Data, pp. 1-12, 2000.

[11] H.-F. Li, H.-Y. Huang, Y.-C. Chen, Y.-J. Liu and S.-Y. Lee. Fast and
Memory Efficient Mining of High Utility Itemsets in Data Streams.
In Proc. of IEEE Int'l Conf. on Data Mining, pp. 881-886, 2008.

[12] B. Le, H. Nguyen, T. A. Cao, and B. Vo. A Novel Algorithm for
Mining High utility Itemsets. In Proc. of First Asian Conference on
Intelligent Information and Database Systems, pp.13-17, 2009.

[13] Y. Liu, W. Liao, and A. Choudhary. A fast high utility itemsets
mining algorithm. In Proc. of the Utility-Based Data Mining
Workshop, pp. 90-99, 2005.

[14] C. Lucchese, S. Orlando and R. Perego, “Fast and Memory Efficient
Mining of Frequent Closed Itemsets,” In IEEE Transactions on
Knowledge and Data Engineering, Vol. 18, Issue 1, pp. 21-36, 2006.

[15] Y.-C. Li, J.-S. Yeh, and C.-C. Chang. Isolated Items Discarding
Strategy for Discovering High utility Itemsets. In Data & Knowledge
Engineering, Vol. 64, Issue 1, pp. 198-217, 2008.

[16] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of
association rules using closed itemset lattice,” In Journal of
Information Systems, Vol 24, Issue 1, pp. 25–46, 1999.

[17] N. Pasquier, T. Bastide, R. Taouil, and L. Lakhal. Discovering
Frequent Closed Itemsets for Association Rules. In Proc. of Int'l
Conf. on Database Theory, pp. 398–416, Israel, 1999.

[18] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Generating a
Condensed representation for Association Rules, In Journal of
Intelligent Information Systems, Vol 24, Issue 1, pp. 29–60, 2005.

[19] B.-E. Shie, V. S. Tseng, and P. S. Yu. Online Mining of Temporal
Maximal Utility Itemsets from Data Streams. In Proc. of Annual
ACM Symposium on Applied Computing, pp. 1622-1626, 2010.

[20] V. S. Tseng, C.-W. Wu, B.-E. Shie, and P. S. Yu. UP-Growth: an
efficient algorithm for high utility itemset mining. In Proc. of ACM
SIGKDD Int'l Conf. on KDD, pp. 253–262, 2010.

[21] B. Vo, H. Nguyen, T. B. Ho, and B. Le. Parallel Method for Mining
High utility Itemsets from Vertically Partitioned Distributed
Databases. In Proc. of Int’l Conf. on Knowledge-based and Intelligent
Information and Enginnering Systems, pp. 251-260, 2009.

[22] J. Wang, J. Han, and J. Pei. Closet+: Searching for the Best Strategies
for Mining Frequent Closed Itemsets. In Proc. of Int'l Conf. on ACM
SIGKDD, pp. 236–245, 2003.

[23] U. Yun. Mining lossless closed frequent patterns with weight
constraints. In Knowledge-Based Systems, Vol. 20, pp. 86–97, 2007.

[24] J.-S. Yeh, C.-Y. Chang, and Y.-T. Wang. Efficient Algorithms for
Incremental Utility Mining. In Proc. of the 2nd Int'l Conf. on
Ubiquitous information management and communication, pp. 212-
217, 2008.

[25] H. Yao, H. J. Hamilton, L. Geng, A unified framework for utility-
based measures for mining itemsets. In Proc. of ACM SIGKDD 2nd
Workshop on Utility-Based Data Mining, pp. 28-37, 2006.

[26] S.-J. Yen and Y.-S. Lee. Mining High utility Quantitative Association
Rules. In Proc. of Int'l Conf. on Data Warehousing and Knowledge
Discovery, pp. 283-292, 2007.

[27] M. J. Zaki and C. J. Hsiao. Efficient Algorithms for Mining Closed
Itemsets and Their Lattice Structure. In IEEE Transactions on
Knowledge and Data Engineering, Vol. 17, Issue 4, pp. 462–478,
2005.

[28] Frequent itemset mining implementations repository,
http://fimi.cs.helsinki.fi/

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chu:Chun=Jung.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Liang:Tyne.html
http://www.informatik.uni-trier.de/~ley/db/journals/jss/jss81.html#ChuTL08
http://www.informatik.uni-trier.de/~ley/db/journals/jss/jss81.html#ChuTL08
http://portal.acm.org/citation.cfm?id=1835839
http://portal.acm.org/citation.cfm?id=1835839
http://fimi.cs.helsinki.fi/

