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Abstract—Mining high utility itemsets from transactional 

databases is an important data mining task, which refers to the 

discovery of itemsets with high utilities (e.g. high profits). 

Although several studies have been carried out, current 

methods may present too many high utility itemsets for users, 

which degrades the performance of the mining task in terms of 

execution time and memory requirement. To achieve high 

efficiency for the mining task and provide a concise mining 

result to users, we propose a novel framework in this paper for 

mining closed+ high utility itemsets, which serves as a compact 

and lossless representation of high utility itemsets. We present 

an efficient algorithm called CHUD (Closed+ High utility 

itemset Discovery) for mining closed+ high utility itemsets. 

Further, a method called DAHU (Derive All High Utility 

itemsets) is proposed to recover all high utility itemsets from 

the set of closed+ high utility itemsets without accessing the 

original database. Results of experiments on real and synthetic 

datasets show that CHUD and DAHU are very efficient and 

that our approach achieves a massive reduction in the number 

of high utility itemsets (up to 800 times in our experiments). In 

addition, when all high utility itemsets can be recovered by 

DAHU, the combination of CHUD and DAHU outperforms the 

state-of-the-art algorithms for mining high utility itemsets. 

Keywords-utility mining; frequent itemset; closed+ high 

utility itemset; lossless and concise representation 

I.  INTRODUCTION  

Frequent itemset mining (abbreviated as FIM) [1, 10] is a 
fundamental research topic in data mining. One of its popular 
applications is market basket analysis, which refers to the 
discovery of sets of items (itemsets) that are frequently 
purchased together by customers. However, in this 
application, the traditional model of FIM may discover a 
large amount of frequent but low revenue itemsets and lose 
the information on valuable itemsets having low selling 
frequencies. These problems are caused by the facts that (1) 
FIM treats all items as having the same importance/unit 
profit/weight and (2) it assumes that every item in a 
transaction appears in a binary form, i.e., an item can be 
either present or absent in a transaction, which doesn’t 
indicate its purchase quantity in the transaction. Hence, FIM 
cannot satisfy the requirement of users who desire to 
discover itemsets with high utilities such as high profits. 

To address these issues, utility mining [2, 5, 6, 7, 8, 11, 
13, 15, 19, 20, 24, 26] emerges as an important topic in data 
mining. In utility mining, each item has a weight (e.g. unit 
profit) and can appear more than once in each transaction 
(e.g. purchase quantity).  The utility of an itemset represents 

its importance, which can be measured in terms of weight, 
profit, cost, quantity or other information depending on the 
user preference. An itemset is called a high utility itemset 
(abbreviated as HUI) if its utility is no less than a user-
specified minimum utility threshold; otherwise, it is called a 
low utility itemset. Utility mining is an important task and 
has a wide range of applications such as website click stream 
analysis [2, 5, 19, 24], cross-marketing in retail stores [6, 20, 
26] and biomedical applications [7]. 

However, HUIs mining is not an easy task since the 
downward closure property [1, 10] in FIM does not hold in 
utility mining. In other words, the search space cannot be 
directly pruned to find HUIs as it is done in FIM because a 
superset of a low utility itemset can be a high utility itemset. 
Many studies [2, 13, 15, 20, 21] were proposed for mining 
HUIs, but they often present a large number of high utility 
itemsets to users. A very large number of high utility 
itemsets makes it difficult for the users to comprehend the 
results. It may also cause the algorithms to become 
inefficient in terms of time and memory requirement, or even 
run out of memory. It is widely recognized that the more 
high utility itemsets the algorithms generate, the more 
processing they consume. The performance of the mining 
task decreases greatly for low minimum utility thresholds or 
when dealing with dense databases. 

In FIM, to reduce the computational cost of the mining 
task and present fewer but more important patterns to users, 
many studies focused on developing concise representations, 
such as free sets [3], non-derivable sets [4], maximal itemsets 
[9] and closed itemsets [14, 16-18 22, 27]. These 
representations successfully reduce the set of itemsets found, 
but they are developed for frequent itemset mining instead of 
high utility itemset mining. Therefore, an important research 
question is “Is it possible to conceive a compact and lossless 
representation of high utility itemsets inspired by these 
representations to address the aforementioned issues in HUI 
mining?” 

Answering this question positively is not easy. 
Developing a concise and complete representation of HUIs 
poses several challenges: 
1. Integrating concepts of concise representations from 

FIM into HUI mining may produce a lossy 
representation of all HUIs or a representation that is not 
meaningful to the users.  

2. The representation may not achieve a significant 
reduction in the number of extracted patterns to justify 
using the representation.  
 



3. Algorithms for extracting the representation may not be 
efficient. They may be slower than the best algorithms 
for mining all HUIs.  

4. It may be hard to develop an efficient method for 
recovering all HUIs from the representation. 

In this paper, we address all of these challenges by 
proposing a condensed and meaningful representation of 
HUIs named Closed

+
 High Utility Itemsets (Closed

+
 HUIs), 

which integrates  the concept of closed itemset into HUI 
mining. Our contributions are four-fold and correspond to 
resolving the previous four challenges: 
1. The proposed representation is lossless due to a new 

structure named utility unit array that allows 
recovering all HUIs and their utilities efficiently.  

2. The proposed representation is also compact.  
Experiments show that it reduces the number of 
itemsets by several orders of magnitude, especially for 
datasets containing long HUIs (up to 800 times).  

3. We propose an efficient algorithm, named CHUD 
(Closed

+
 High Utility itemset Discovery), to find this 

representation. It includes three novel strategies named 
REG, RML and DCM that greatly enhance its 
performance.  Results show that CHUD is much faster 
than the current best methods for mining all HUIs [20]. 

4. We propose a top-down method named DAHU (Derive 
All High Utility itemsets) for efficiently recovering all 
HUIs from the set of Closed

+
 HUIs. The combination 

of CHUD and DAHU provides a new way to obtain all 
HUIs and outperforms UPGrowth [20], the state-of-
the-art algorithm for mining HUIs. 

The remainder of this paper is organized as follows. In 
Section II, we introduce the background for compact 
representations and utility mining. Section III defines the 
representation of closed

+
 HUIs and presents our methods. 

Experiments are shown in Section IV and conclusions are 
given in Section V. 

TABLE I.  AN EXAMPLE TRANSACTIONAL DATABASE 

TID Transaction TU 

T1 A(1), B(1), E(1), W(1) 5 

T2 A(1), B(1), E(3) 8 

T3 A(1), B(1), F(2) 8 

T4 E(2), G(1) 5 

T5 A(1), B(1), F(3) 11 

TABLE II.  UNIT PROFITS FOR EVERY ITEM  

Item A B E F G W 

Unit Profit ($) 1 1 2 3 1 1 

II. BACK GROUND 

In this section, we introduce the preliminaries associated 
with high utility itemset mining and compact representations. 

A. High Utility itemset Mining 

Let I ={a1, a2, …, aM} be a finite set of distinct items. A 
transactional database D = {T1, T2,…,TN} is a set of 

transactions, where each transaction TRD (1 ≤ R ≤ N) is a 
subset of I and has an unique identifier R, called Tid. Each 

item aiI is associated with a positive real number p(ai, D), 
called its external utility. Every item ai in the transaction TR 
has a real number q(ai, TR), called its internal utility. An 
itemset X = {a1, a2, …, aK} is a set of K distinct items, where 

ai I, 1 ≤ i ≤ K, and K is the length of X. A K-itemset is an 
itemset of length K. An itemset X is said to be contained in a 
transaction TR if X TR. 

Definition 1. The support count of an itemset X is defined as 
the number of transactions containing X in D and denoted as 
SC(X). The support of X is defined as the ratio of SC(X) to 
|D|. The complete set of all the itemsets in D is denoted as L 
and L = {X | X I, SC(X) > 0}. 

Definition 2. The utility of an item ai in a transaction TR is 
denoted as u(ai, TR) and defined as p(ai, D) × q(ai, TR). 

Definition 3. The utility of an itemset X in a transaction TR 

is denoted as u(X, TR) and defined as u(X, TR)= ∑ ),(∈ Ri
i Xa Tau . 

Definition 4. The utility of an itemset X in D is denoted as 
u(X) and defined as u(X) = ∑  ∈  ∧  ⊆ RRR

),(DTTX TXu . 

Definition 5. An itemset X is called high utility itemset if u(X) 
is no less than a user-specified minimum utility threshold 
min_utility. Otherwise, X is a low utility itemset. 

Definition 6. Let S be a set of itemsets and a function fH(S) 
= {X | XS, u(X) min_utility}. The complete set of HUIs 
in D is denoted as H (H ⊆ L) and defined as fH(L).

 
The 

problem of mining HUIs is to find the set H in D. 
 

Example 1. Let Table I be a database containing five 
transactions. Each row in Table I represents a transaction, in 
which each letter represents an item and has a purchase 
quantity (internal utility). The unit profit of each item is 
shown in Table II (external utility). In Table I, the utility of 
the item {F} in the transaction T3 is u({F}, T3) = p({F}, D) × 
q({F}, T3) = 3 × 2 = 6. The utility of {BF} in T3 is u({BF}, 
T3) = u({B}, T3) + u({F}, T3) = 1 + 6 = 7. The utility of {BF} 
is u({BF}) = u({BF}, T3) + u({BF}, T5) = 17, since {BF} is 
contained in T3 and T5. If the min_utility is set to 10, the set 
of HUIs in Table I is H = {{E}:12, {F}:15, {AE}:10, 
{AF}:17, {BE}:10, {BF}:17, {ABE}:12, {ABF}:19}, 
where the number beside each itemset is its utility. 

Note that the utility constraint is neither monotone nor 
anti-monotone. In other words, a superset of a low utility 
itemset can be high utility and a subset of a high utility 
itemset can be low utility.  Hence, we cannot directly use 
the anti-monotone property (also known as downward 
closure property) to prune the search space. To facilitate the 
mining task, Liu et al. introduced the concept of 
transaction-weighted downward closure [13], which is 
based on the following definitions. 

Definition 7. The transaction utility of a transaction TR is 
denoted as TU(TR) and defined as u(TR, TR).  

Definition 8. The transaction-weighted utilization of an 
itemset X is the sum of the transaction utilities of all the 
transactions containing X, which is denoted as TWU(X) and 
defined as TWU(X) = ∑  ∈  ∧  ⊆ RRR

)(DTTX TTU . 



Definition 9. An itemset X is a high transaction-weighted 
utilization itemset (HTWUI) if TWU(X)   min_utility. 

Property 1. The transaction-weighted downward closure 
property states that for any itemset X that is not a HTWUI, 
all its supersets are low utility itemsets [2, 13, 15, 20]. 

For example, the transaction utilities of T1 and T3 are 
TU(T1) = u({ABE}, T1) = 5 and TU(T3) = 8. When 

min_utility = 10, {AB} is a HTWUI since TWU({AB}) = 
TU(T1) + TU(T3) = 13 is no less than min_utility. In contrast, 
the itemset {W} is not a HTWUI, and therefore all the 
supersets of {W} are low utility itemsets. 

Many studies have been proposed for mining HUIs, 
including Two-Phase [13], IHUP [2], TWU-Mining [21], 
IIDS [15] and UPGrowth [20]. Two-Phase, IHUP and TWU-
Mining utilize transaction-weighted downward closure 
property to find high utility itemsets. They consist of two 
phases. In phase I, they find all HTWUIs from the database. 
In phase II, high utility itemsets are identified from the set 
of HTWUIs by scanning the original database once. 
Although these methods capture the complete set of HUIs, 
they may generate too many candidates in phase I, i.e. 
HTWUIs, which degrades the performance of phase II and 
the overall performance (in terms of time and space). To 
reduce the number of candidates in phase I, various methods 
have been proposed (e.g. [15, 20]). Recently, Tseng et al. 
proposed UPGrowth with four strategies DGU, DGN, DLU 
and DLN, for mining HUIs. Experiments in [20] show that 
the number of candidates generated by UPGrowth in phase I 
can be order of magnitudes smaller than that of HTWUIs. 
To the best of our knowledge, UPGrowth is the state-of-the-
art method for mining HUIs.  

Although the above methods perform well in some case, 
their performance degrades quickly when there are many 
HUIs in the databases. A large number of HUIs and 
candidates cause these methods to suffer from long 
execution time and huge memory consumption. When the 
system resources are limited (the memory, disk space or 
processing power), it is often impractical to generate the 
entire set of HUIs. Besides, a large amount of HUIs is hard 
to be comprehended or analyzed by users. In FIM, to reduce 
the number of patterns, many studies were conducted to 
develop compact representations of frequent itemsets that 
eliminate redundancy, such as free sets [3], non-derivable 
sets [4], maximal itemsets [9] and closed itemsets [16-18]. 
Although these representations achieve a significant 
reduction in the number of extracted frequent itemsets, some 
of them lead to loss of information (e.g. [9]). To provide not 
only compact but also complete information about frequent 
itemsets to users, many studies were conducted on closed 
itemset mining.  

B. Closed Itemset Mining 

In this subsection, we introduce definitions and 
properties related to closed itemsets and mention relevant 
methods. For more details about closed itemsets, readers can 
refer to [14, 16-18, 22, 27]. 

Definition 10. The Tidset of an itemset X is denoted as g(X) 
and defined as the set of Tids of transactions containing X. 

The support count of an itemset X is expressed in terms of 
g(X) as SC(X) = |g(X)|. 

Property 2. For itemsets X, Y∈L, SC(X  Y) = |g(X)  g(Y)|. 

Definition 11. The closure of an itemset X∈ L, denoted as 
C(X), is the largest set Y∈ L

 
such that X⊆Y and SC(X) = 

SC(Y). Alternatively, it is defined as C(X) = R )( ∈ TXgR .  

Property 3. ∀X∈L, SC(X) = SC(C(X)) ⇔ g(X) = g(C(X)). 

Definition 12. An itemset X∈L is a closed itemset if there 
exists no itemset Y∈L such that (1) X Y and (2) SC(X) = 
SC(Y).  Otherwise X is a non-closed itemset. An equivalent 
definition is that X is closed if C(X) = X. For example, {B} 
is non-closed since C({B}) = T1  T2  T3 T5 = {AB}.  

Definition 13. Let S be a set of itemsets and a function fC(S) 
={X| XS, ∃¬ YS such that X⊂Y and SC(X) = SC(Y)}.The 
complete set of closed itemsets in D is denoted as C (C⊆L) 
and defined as fC(L). For example, the set of closed itemsets 
in Table I is C = {{E}:3, {EG}:1, {AB}:4, {ABE}:2, 
{ABF}:2, {ABEW}:1}, in which the number beside each 
itemset is its support count. 

Property 4. ∀X∈ L, SC(X) = max{SC(Y) | Y∈ fC(L) ∧  
X⊆Y}. For example, the supersets of {B} in fC(L) are 
{AB}:4, {ABE}:2, {ABF}:2 and {ABEW}:1. Thus, 
SC({B}) is the maximum of these support counts, i.e. 4. 

Mining frequent closed itemset refers to the discovery of 
all the closed itemsets whose supports are no less than a 
user-specified threshold. It is widely recognized that the 
number of frequent closed itemsets can be much smaller 
than the set of frequent itemsets for real-life databases and 
that mining frequent closed itemsets can also be much faster 
and memory efficient than mining frequent itemsets [14, 22, 
27]. The set of closed itemsets is lossless since all frequent 
itemsets and their supports can be easily derived from it by 
property 4 without scanning the original database [16-18].  
Many efficient methods were proposed for mining frequent 
closed itemsets, such as A-Close [16-18], CLOSET+ [22], 
CHARM [27] and DCI-Closed [14]. However, these 
methods do not consider the utility of itemsets. Therefore, 
they may present lots of closed itemsets with low utilities to 
users and omit several high utility itemsets. 

C. Compact Representations of High Utility Itemsets 

To present representative HUIs to users, some concise 
representations of HUIs were proposed. Chan et al. 
introduced the concept of utility frequent closed patterns [7]. 
However, it is based on a definition of high utility itemset 
that is different from [2, 13, 15, 20] and our work. Shie et al. 
proposed a compact representation of high utility itemsets, 
called maximal high utility itemset and the GUIDE algorithm 
for mining it [19]. A HUI is said to be maximal if it is not a 
subset of any other HUI. For example, when min_utility = 10, 
the set of maximal HUIs is {{ABE}, {ABF}}. Although this 
representation reduces the number of extracted HUIs, it is 
not lossless. The reason is that the utilities of the subsets of a 
maximal HUI cannot be known without scanning the 
database. Besides, recovering all HUIs from maximal HUIs 



can be very inefficient because many subsets of a maximal 
HUI can be low utility. Another problem is that the GUIDE 
algorithm cannot capture the complete set of maximal HUIs. 

III. CLOSED
+
 HIGH UTILITY ITEMSET MINING 

In this section, we incorporate the concept of closed 
itemset with high utility itemset mining to develop a 
representation named closed

+
 high utility itemset. We 

theoretically prove that this new representation is meaningful, 
lossless and not larger than the set of all HUIs. 

A. Pushing Closed Property into HUI Mining 

The first point that we should discuss is how to 
incorporate the closed constraint into high utility itemset 
mining. There are several possibilities. First, we can define 
the closure on the utility of itemsets. In this case, a high 
utility itemset is said to be closed if it has no proper superset 
having the same utility. However, this definition is unlikely 
to achieve a high reduction of the number of extracted 
itemsets since not many itemsets have exactly the same 
utility as their supersets in real datasets. For example, there 
are seven HUIs in Example 1 and only one itemset {E} is 
non-closed, since {E}⊆{ABE} and u({E}) = u({ABE}) = 
12. A second possibility is to define the closure on the 
supports of itemsets. In this case, there are two possible 
definitions depending on the join order between the closed 
constraint and the utility constraint: 

 Mine all the high utility itemsets first and then apply 
closed constraint. We formally define this set as H’ = 
fC(fH(L)). It follows that H’⊆H.  

 Mine all the closed itemsets first and then apply the 
utility constraint. We formally define this set as C’ = 
fH(fC(L)). It follows that C’⊆C. 

As indicated in [23], the join order between two 
constraints often lead to different results. Therefore, our next 
step is to analyze the result sets defined based on the above 
two join orders. We show that they produce the same result 
set by the following lemmas.  

Lemma 1. H’⊆C’. 
Proof. We prove that H’⊆C’ by proving that∀X∈H’⇒ 
X∈C’. Since X∈ H’, X∈ H and u(X)≥ min_utility. Then, 

we prove that ∃¬ Y∈H such that X⊂Y and SC(X) = SC(Y) 
yields X∈C by showing that XC contradicts Y∈H. If 

XC, there must exists an itemset Y∈L such that X⊂Y and 

SC(X) = SC(Y). By Definition 4, u(Y) > u(X)≥ min_utility, 

and therefore Y∈H, which is a contradiction.  

Lemma 2. C’⊆H’  
Proof. We prove that C’⊆H’ by proving that∀X∈C’⇒ X∈ 
H’. Since X∈C’ and u(X) ≥ min_utility, we have X∈H. 

Then, we prove that X∈C yields ∃¬ Y∈H such that X⊂Y 
and SC(X) = SC(Y) by showing that∃Y∈H contradicts 
XC. If YH, then Y∈L. Because X⊂Y, Y∈L and SC(X) = 

SC(Y), it follows that XC.  

Theorem 1. H’= C’. 
Proof. This directly follows from Lemma 1 and Lemma 2.  

Because the two join orders produce the same result, we 
remove the join order to obtain a general definition.  

Definition 14. We define the set of closed high utility 
itemsets as HC = {X | X∈ L, X = C(X), u(X)≥ min_utility}, 

HC = H’ = C’. An itemset X is called a non-closed high 
utility itemset if X∈ H and X C. For example, the set of 

closed HUIs in Table I is HC = {{E}, {ABE}, {ABF}}.  

Definition 14 gives an alternative solution to incorporate 
the closed constraint with high utility itemset mining. The 
advantage of using this definition is that the two constraints 
can be applied in any order during the mining process. We 
say that the representation HC is concise because its size is 
guaranteed to be no larger than the set of all HUIs (because 
HC⊆H).We next show that this representation is meaningful.  

Property 5. For any non-closed high utility itemset X, ∃Y∈ 
HC such that Y= C(X) and u(Y) > u(X). 
Proof. ∀X∈ L, ∃Y∈ C such that Y= C(X) and SC(X) = 
SC(Y). Since X∈ H and XC, u(X)≥ min_utility and X⊂Y. 

SC(X) = SC(Y) and X⊂Y yields u(Y) > u(X)≥ min_utility by 

Property 3 and Definition 4. 

We claim that HC is a meaningful representation of all 
HUIs by Property 5. For any non-closed high utility itemset 
X, X does not appear in a transaction without its closure Y. 
Moreover, the utility (e.g. profit/user preference) of Y is 
guaranteed to be higher than the utility of X. For these 
reasons, users are more interested in finding Y than X. 
Moreover, closed itemsets having high utilities are useful in 
many applications. For example, in market basket analysis, Y 
is the closure of X means that no customer purchase X 
without its closure Y. Thus, when a customer purchase X, the 
retailer can recommend Y-X to the customer, to maximize 
profit.  

Although HC is based on the concise representation of 
closed itemsets,  the set of closed HUIs is not lossless. If an 
itemset is not included in this representation,  there is no way 
to infer its utility and to know whether it is high utility or not. 
To tackle this problem, we attach to each closed HUI a 
special structure named utility unit array, which is defined as 
follows. 

Definition 15. ∀X = {a1, a2,…,aK}∈ L, the utility unit array 
of X is denoted as V(X) = [v1, v2,…, vK] and contains K utility 
values. The i-th utility value vi in V(X) is denoted as V(X, ai) 
and defined as ∑ ),(

Ri   ∈  ∧)( ∈ RiTaXgR Tau .  

For example, consider the itemset {ABE} appearing in T1 
and T2. The first utility value in V({ABE}) is V({ABE}, {A}) 
= u({A}, T1) + u({A}, T2) = 2. The utility unit array of {ABE} 
is V({ABE}) = [2, 2, 8]. 

Property 6. ∀X = {a1, a2,…,aK}∈ L, u(X) = ∑ 1= i ),(K
i aXV . 

Proof. The utility of X is the sum of the utilities of items a1, 
a2,…,aK in transactions containing X. For an item ai, the 
value V(X, ai) represents the sum of the utilities of ai in 
transactions containing X. Therefore u(X) can be expressed 
as V(X, a1) + V(X, a2) + … + V(X, aK). For example, 
u({ABE}) = V({ABE}, {A}) + V({ABE}, {B}) + V({ABE}, 
{E}) = 2 + 2 + 8 = 12. 



Property 7. ∀X∈ L, X is low utility if C(X)HC. 

Proof. If C(X)HC, u(C(X)) < min_utility. Since SC(X) = 

SC(C(X)) and X⊆C(X), by Definition 4 we have u(X) ≤ 

u(C(X)) < min_utility. 

Property 8. ∀X = {a1, a2,…, aK}∈ L, the utility of X can be 
calculated as u(X) = ∑ )),(( ∈ i

i Xa aXCV  by using the utility unit 

array of its closure if C(X)∈ HC. 
Proof. Because X⊆C(X), there exists an entry V(C(X), ai) in 
V(C(X)) for each ai∈X. Besides, g(X) = g(C(X)) since SC(X) 
= SC(C(X)) and X⊆C(X) (Property 3). Therefore, V(X, ai) = 
V(C(X), ai), by Definition 15. According to Property 6, u(X) 
= ∑ ),(1= i

K
i aXV . By replacing V(X, ai) with V(C(X), ai), we 

obtain Property 8. 

Definition 16. An itemset X is called a closed
+
 high utility 

itemset (abbreviated as CHUI) if X∈ HC and X is annotated 
with V(X). The set of closed

+
 HUIs is a lossless 

representation of all HUIs. For any itemset X∈H, its exact 
utility can be inferred from the utility unit array of its closure 
by Property 8 without scanning the original database.  

Although the set of closed
+
 HUIs is meaningful, concise 

and lossless, mining closed
+
 HUIs is not an easy task. There 

are two naive methods. The first one is to find all HUIs and 
then to remove non-closed itemsets. The main drawbacks of 
this method are that it cannot be more efficient than mining 
all HUIs and that in the worst case removing all non-closed 
itemset requires comparing all HUIs with each other. The 
second approach is to first mine all closed itemsets and then 
to remove those that are low utility itemsets. The drawback 
of this method is that it needs to generate all closed itemsets 
and this set can be very large since no threshold can be used.  

B. Efficient Discovery of Closed
+
 High Utility Itemsets 

In this subsection, we present an efficient algorithm 
named CHUD (Closed

+
 High Utility itemset Discovery) for 

mining closed
+
 HUIs. CHUD is an extension of DCI-Closed  

[14], one of the current best methods for mining closed 
itemsets, and it also integrates the TWU model and effective 
strategies to prune low utility itemsets. CHUD consists of 
two phases. In phase I, CHUD discovers candidates for 
closed

+
 HUIs. In phase II, the closed

+
 HUIs are identified 

from the set of candidates found in phase I and their utility 
unit  arrays are computed by scanning the database once. 

Similar to the DCI-Closed algorithm, CHUD adopts an 
IT-Tree (Itemset-Tidset pair Tree) [14, 27] to find closed

+
 

HUIs. In an IT-Tree, each node N(X) consists of an itemset X, 
its Tidset g(X), and two ordered sets of items named PREV-
SET(X) and POST-SET(X). The IT-Tree is recursively 
explored by the CHUD algorithm until all closed itemsets 
that are HTWUIs are generated. Different from the DCI-
Closed algorithm, each node N(X) of the IT-Tree is attached 
with an estimated utility value EstU(X).  

A data structure called TU-Table (Transaction Utility 
Table) [13] is adopted for storing the transaction utilities of 
transactions. It is a list of pairs <R, TU(TR)> where the first 
value is a TID R and the second value is the transaction 
utility of TR. Given a TID R, the value TU(TR) can be 

efficiently retrieved from the TU-Table. Given a node N(X) 
with its Tidset g(X) and a TU-Table TU, the estimated utility 
of the itemset X can be efficiently calculated by the 
procedure shown in Figure 1. 

The main procedure of CHUD is named Main and is 
shown in Figure 2. It takes as parameter a database D and 
the min_utility threshold. CHUD first scans D once to 
convert D into a vertical database. At the same time, CHUD 
computes the transaction utility for each transaction TR and 
calculates TWU of items. When a transaction is retrieved, 
its Tid and transaction utility are loaded into a global TU-
Table named GTU. An item is called a promising item if its 
estimated utility (e.g. its TWU) is no less than min_utility. 
After the first scan of database, promising items are 
collected into an ordered list O = <a1, a2,…,an>, sorted 
according to a fixed order   such as increasing order of 
support. Only promising items are kept in O since supersets 
of unpromising items are low utility itemsets. According to 
[22], the utilities of unpromising items can be removed from 
the GTU table. This step is performed at line 2 of the Main 
procedure. Then, CHUD generates candidates in a recursive 
manner, starting from candidates containing a single 
promising item and recursively joining items to them to 
form larger candidates. To do so, CHUD takes advantage of 
the fact that by using the total order  , the complete set of 
itemsets can be divided into n non-overlapping subspaces, 
where the k-th subspace is the set of itemsets containing the 
item ak but no item ai  ak [14]. For each item ak

O, CHUD 
creates a node N({ak}) and puts items a1 to ak-1 into PREV-
SET({ak}) and items ak+1 to an into POST-SET({ak}). Then 
CHUD calls the CHUDPhase-I procedure for each node 
N({ak}) to produce all the candidates containing the item ak 
but no item ai  ak. Finally, the Main procedure performs 
phase II on these candidates to obtain all closed

+
 HUIs. 

CalculateEstUtility(g(X), TU) 
01. EstU := 0; 

02.  for each TID R∈g(X) do  
03. { EstU := EstU + TU.get(R)        } 
04. return EstU 

Figure 1.   CalculateEstUtility 

Main(D, min_utility) 
01. InitialDatabaseScan(D) 
02. RemoveUtilityUnpromisingItems(O, GTU). 

03.  for each item ak∈O do 
04.  Create node N({ak}) 
05.   CHUDPhase-I(N({ak}), GTU, min_utility)  
06.  //Apply Strategy 3(REG) 
07.  PerformPhase-II(D) 

Figure 2.  Main 

CHUDPhase-I (NX, TU, min_utility) 
01.  if (SubsumeCheck(N(X), PREV-SET(X)) == false) then 
02.  {      XC := ComputeClosure(N(X), POST-SET(X)) 

03.         if (EstU(XC)≥ min_utility) then  //Apply Strategy 5(DCM) 

04.         {  Output XC with EstU(XC)    
05.                        Explore(N(XC), TU, min_utility)   }  } 

Figure 3.  CHUDPhase-I 

SubsumeCheck (N(X), PREV-SET(X)) 

01. for each item a∈ PREV-SET(X) do  

02. { if (g(X)⊆ g(a)) then return true  } 
03. return false    

Figure 4.  SubsumeCheck 



ComputeClosure (N(X), POST-SET(X)) 
01. XC := X 

02. for each item a∈ POST-SET(X) do  

03.  {    if (g(X)⊆g(a)) then 
04.                  {    POST-SET(X) := POST_SETX /{a}  

05.            XC := XC∪{a}                          }  } 

06.  return XC 

Figure 5.  ComputeClosure 

Explore (N(X), TUX, min_utility) 

01. for each item ak∈ POST-SET(X) do  
02. { POST-SET(X) := POST-SET(X) /{ak} 

03.  Create a node N(Y), where Y := X ∪{ak} 

04.  g(Y) := g(X)∩ g(ak) 
05.  POST-SET(Y) := POST-SET(X) 
06.  PREV-SET(Y) := PREV-SET(X) 

07.  EstU(Y) := CalculateEstUtility(g(Y), TUX) 
08.  if (EstU(Y), EstU(X) ≥ min_utility) then 
09.  {   CHUDPhase-I (N(Y), TUX, min_utility)  

10.       PREV-SET(X) := PREV-SET(X)∪{ak}   } 

11.      // Apply Strategy 4(RML) } 

Figure 6.  Explore 

The CHUDPhase-I procedure shown in Figure 3 takes 
as parameter a node N(X), a TU-Table TU and the 
min_utility threshold. The procedure first performs 
SubsumeCheck on X as presented in Figure 4. This check 
verifies if there exists an item a from PREV-SET(X) such 
that g(X)⊆g(a). If there exists such an item, it means that X 
is included in a closed itemset that has already been found 
and supersets of X do not need to be explored (see [14] for a 
complete justification). Otherwise, the next step is to 
compute the closure XC = C(X) of X. This is performed by 
the procedure ComputeClosure(N(X), POST-SET(X)) 
shown in Figure 5 [14]. Then the estimated utility of XC is 
calculated. If it is no less than min_utility, XC is considered 
as a candidate for Phase II and it is outputted with its 
estimated utility value EstU(XC). Note that CHUD does not 
maintain any discovered candidate in memory. Instead, 
when a candidate itemset is found, it is outputted to disk. 
After this, a node N(XC) is created and the procedure 
Explore is called for finding candidates that are supersets of 
XC.  

The Explore procedure is shown in Figure 6. It takes as 
parameter a node N(X), a TU-Table and the min_utility 
threshold. The Explore procedure explores the search space 
of closed candidates that are superset of X by appending 
items from POST-SET(X) to X. We here briefly explain this 
process. For a proof that this method is a correct way of 
exploring closed candidates, the reader can consult the paper 
describing DCI-Closed [14]. For each item ak of POST-
SET(X), the procedure first removes ak from POST-SET(X) 

to create a node N(Y) with Y = X∪{ak}. The Tidset of Y is 

then calculated as g(Y) = g(X)∩g(ak) by Property 2. The set 
POST-SET(Y) and PREV-SET(Y) are respectively set to 
POST-SET(X) and PREV-SET(X). Then, the estimated 
utility of Y is calculated by calling the CalculateEstUtility 
procedure with g(Y) and TU. If EstU(Y) and EstU(X) are no 
less than min_utility, the procedure CHUDPhase-I is 
recursively called with N(Y) to consider the search space of 
Y and ak is added to PREV-SET(X). If EstU(Y) is lower than 

min_utility, the search space of Y is pruned since Y and its 
supersets are low utility itemsets (Property 1). 

After recursions of the Explore and CHUDPhase-I 
procedures are completed, closed candidates that have been 
outputted are processed by phase II. Phase II consists of 
taking each candidate X and to calculate its exact utility and 
utility unit array. Each candidate that is a low utility itemset 
is discarded. Calculating the exact utility of a candidate X is 
performed by doing the summation of u(X, TR) for each 
R∈g(X). This is done very efficiently thanks to the vertical 
representation of the database (only transactions containing 
X are considered to calculate its utility). 

We now prove that this basic version of the CHUD 
algorithm generates the complete set of closed

+
 HUIs. We 

consider the two phases of CHUD to prove the correctness. 
The first phase produces a set of candidates P⊆ C, since it 
is based on the DCI-Closed algorithm that generates all 
closed itemsets C (see [14] for the proof that DCI-Closed 
generates C). The second phase consists of discarding 
candidates that are low utilities from P to obtain C’. The 
algorithm is therefore correct if and only if C’⊆ P (the set 
of candidates P produced in Phase I contains all closed

+
 

HUIs C’). To prove this, we need to show that the 
modifications that have been made to DCI-Closed will not 
discard any closed

+
 high utility itemset X ⊆ C’. We discuss 

the correctness of these modifications thereafter. 

Strategy 1. Considering only promising items. The first 
strategy that we have incorporated in CHUD is to only 
consider promising items for generating candidates and to 
remove the utilities of unpromising items from the GTU 
table. It is applied in line 2 and 3 of the Main procedure. 
Rationale. It was shown in [14] that unpromising items 
cannot be part of a HUI and that the utility of unpromising 
items can be ignored in the calculation of the estimated 
utility of itemsets when searching for high utility itemsets.  

Strategy 2. Discarding itemsets having an estimated 
utility lower than min_utility. The second strategy in 
CHUD is to discard the itemset XC such that EstU(XC) ≥ 

min_utility. This strategy is integrated in line 3 of the 
CHUDPhase-I procedure.  
Rationale. It was demonstrated in Section 2 that an itemset 
that is not a HWTUI is not a high utility itemset as well as 
all of its supersets (see Property 1 and Definition 4, 8 and 9). 
Because DCI-Closed discovers candidates recursively by 
considering supersets of candidates, discarding an itemset 
such that EstU(XC) < min_utility will not discard any itemset 
from P that is in C’. 

To enhance the performance of CHUD, we integrate 
three additional strategies, which have never been used in 
vertical mining of HUIs. They are described as follows. 

Strategy 3. Removing the Exact utilities of items from 
the Global TU-Table (REG).  Strategy 3 is called REG, 
which is applied after line 5 of the procedure Main. Each 
time that an item ak ∈O has been processed, u(ak) is 
removed from the transaction utility of each transaction 
containing ak in the global TU-Table.  



Rationale. CHUD explores the search space of patterns by 
dividing it into non-overlapping subspaces such that each 
item ai that has been processed is excluded from the 
subspace of item aj  ai. Therefore, u(ai) can be removed 
from the transaction utility of each transaction containing aj 
in the global TU-Table. The pseudo code for this strategy is 
shown as follows. 

06.   for each Tid R∈ g(ak) do 
07.  { remove u(ak) from <R, GTU(TR)> } 

Definition 17. The minimum item utility of an item a is 

denoted as miu(a) and defined as the value u(a, Tr) for 
which ∃¬  Ts ∈ D such that u(a, Ts) < u(a, Tr). 

Definition 18. Let N(X) be a node for the itemset X and a be 
an item in POST-SET(X). The local TU-Table for the node 
Y = X∪{a} is denoted as TUY and is initialized with the 

entries from TUX corresponding to transactions from g(Y). 
The local TU-Table for the root node of the IT-Tree is GTU. 

Strategy 4. Removing the Mius of items from Local TU-
Tables (RML). Strategy 4 is called RML, which is applied 
after line 11 of the procedure Explore. This strategy consists 
of using a local TU-Table TUX for each node N(X) in the 
IT-Tree. Let Y = X  {ak} and NY be the child node of NX.  

Each time that an item ak from POST-SET(X) is processed, 
miu(ak) is removed from the transaction utility of each 
transaction containing ak in TUX. The updated local TU-
Table TUX is used for all child nodes of N(X). This process 
reduces the estimated utility of N(X)  and that of its children 
nodes. Besides, miu(ak) × SC(Y) is removed from EstU(X). 
If the updated EstU(X) is less than min_utility, the algorithm 
will not process X  {ak} for each item ak∈ POST-SET(X).  

Rationale. Each item ai that is processed for a node N(X) 

will not be considered for any child node N(Y), where Y = X 
 {aj} and aj  ai. Therefore, miu(ai) × SC(Y)  and miu(ai) 

can be removed from EstU(X) and the transaction utility of 
each transaction containing aj from TUX. The pseudo code 
for this strategy is shown as follows. 

11.   for each Tid R∈ g(Y) do 
12.  {     remove miu(ak) from <R,TUX(Tc)> } 
13.   remove miu(ak) × SC(Y) from EstU(X) 

Definition 19. The maximum item utility of an item a is 

denoted as mau(a) and defined as the value u(a, Tr) for 
which ∃¬  Ts ∈ D such that u(a, Ts) > u(a, Tr). 

Definition 20. The maximum utility of an itemset X={a1, 
a2,…, aK} is defined as MAU(X) =∑ )(1= i

K
i amau × SC(X). 

Lemma 4. ∀X, X is low utility if MAU(X) < min_utility. 
Proof. The utility of an itemset X is the sum of the utility of 
its items in transactions containing X. MAU(X) is the sum of 
the maximum item utility of each item multiplied by the 
number of transactions containing X. Since the maximum 
item utility of each item represents the highest utility that an 
item can have, MAU(X) is higher or equals to the utility of X. 

Strategy 5. Discarding Candidates with a MAU that is 
less than the minimum utility threshold (DCM). The last 
strategy is called DCM and is applied to line 3 of the 
CHUDPhase-I procedure. A candidate XC can be discarded 
from phase II if its estimated utility EstU(XC) or MAU(XC) is 
less than min_utility. 
Rationale. Lemma 4 guarantees that an itemset X is not a 
closed

+
 HUI if MAU(X) < min_utility. The pseudo code for 

the strategy 5 is shown below.  

03.          if (min{EstU(XC), MAU(XC)}≥ min_utility) then 

C. Efficient Recovery of High Utility Itemsets 

In this subsection, we present a top-down method named 
DAHU (Derive All High Utility itemsets) for efficiently 
recovering all the HUIs. The pseudo code of DAHU is 
shown in Figure 7. It takes as input a min_utility threshold, a 
set of closed

+
 HUIs HC and Kmax the maximum length of 

itemsets in HC. DAHU outputs the complete set of high 

utility itemsets H = K
i 1= HK respecting min_utility, where HK 

denotes the set of HUIs of length K. To derive all HUIs, 
DAHU proceeds as follows. First, the set HKmax is initialized 
to HCKmax, where the notation HCK represents the set of K-
itemsets in HC. During step 2 to step 14 in Figure 7, each 
set HK is constructed from K = (Kmax  – 1) to K = 1. In each 
iteration, H(K–1) is recovered by using HCK. For each itemset 
X = {a1, a2,…,aK} in HCK, if the utility of X is no less than 
min_utility, the algorithm outputs the high utility itemset X 
with its exact utility and then generates all (K–1)-subsets of 
X. The latter are obtained by removing each item ai∈ X 
from X one at a time to obtain subsets of the form Y = X – 
{ai}. If Y is not present in HK or Y is present in HK with 
SC(X) > SC(Y), Y is added to H(K–1), its support count is set 
to the support count of X (Property 4), i.e., SC(Y) = SC(X), 
and the utility of Y is set to the utility of X minus the i-th 
value in V(X), i.e., u(Y) = u(X) – V(X, ai) (Property 6-8). In 
addition, the utility unit array of V(Y) is set to V(X) with the 
value V(X, ai) removed (Property 8). This process is 
repeated until H has been completely recovered. 

 

DAHU(HC, min_utility, Kmax) 
01. HKmax := HCKmax 
02. for (K := Kmax  – 1; K > 0 ; K– –) do 
03.    {   for each K-itemset X = {a1, a2,…,aK} in CHK do 
04.        { if (u(X) < min_utility) then delete X from CHK  
05.       else add X and its exact utility u(X) to H.  

06.         { for each item ai∈X do  
07.          { Y: = X – {ai} 
08.              u(Y) := u(X) – V(X, ai) 

09.              if(u(Y)≥min_utility) then 

10.                 { if Y∈CH(K-1) and SC(X) > SC(Y) then 
11.                     { SC(Y) := SC(X) } 

12.                  else if (YHC(K-1)) then 

13.                    { put Y into HC(K-1)  
14.                                SC(Y) := SC(X)      }}}}}} 

Figure 7.  DAHU 

 

 



TABLE III.  PARAMETER FOR SYNTHETIC DATASETS 

Parameter Descriptions Default 

D: Total number of transactions 200K 

T: Average transaction length 12 

N: Number of distinct items 1,000 

I: Average size of maximal potential frequent itemsets 8 

TABLE IV.  CHARACTERISTICS OF DATASETS 

Dataset N T D 

Mushroom 119 23 8,124 

Foodmart 1,559 4.4 4,141 

BMSWebView1 497 2.51 59,601 

T10I8D200K 1,000 10 200K 

TABLE V.  NUMBER OF EXTRACTED PATTERNS FOR MUSHROOM 
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(a) Time for Phase I (b) Time for Phase II 

Figure 8.  Execution time on Mushroom 

IV. EXPERIMENTS 

In this section, we compare the performance of CHUD 
and DAHU with UPGrowth [20], which is to our best 
knowledge, the state-of-the-art method for high utility 
itemset mining. Although CHUD and UPGrowth produce 
different results, both of them consist of two phases. In 
Phase I, CHUD and UPGrowth respectively generate 
candidates for CHUIs and HUIs. In Phase II, CHUD and 
UPGrowth respectively identify CHUIs and HUIs from 
candidates produced in their Phase I. The combination of 
CHUD and DAHU is denoted as CHUD+DAHU, which 
first applies CHUD to find all closed

+
 high utility itemsets 

and then uses DAHU to derive all high utility itemsets from 
the set of closed

+
 high utility itemsets generated by CHUD. 

The process of CHUD+DAHU in phase I is the same as that 
of CHUD. In Phase II, CHUD+DAHU first identifies 
CHUIs from the set of candidates and then uses CHUIs to 
derive all HUIs. Experiments were performed on a desktop 
computer with an Intel® Core 2 Quad Processor @ 2.66 
GHz running Windows XP and 2 GB of RAM. CHUD and 
DAHU were implemented in Java. The implementation of 
UPGrowth was obtained from Tseng et al. [20], which is 
also implemented in Java. All memory measurements were 
done by using the Java API. Both synthetic and real datasets 
were used to evaluate the performance of the algorithms. A 
synthetic dataset T12I8D200K was generated by the IBM 

data generator [1]. The parameters of the data generator are 
described in Table III. Real datasets Mushroom and 
BMSWebView1 were obtained from FIMI Repository [32]. 
Foodmart is a real dataset obtained from the Microsoft 
foodmart 2000 database. Except the Foodmart dataset, the 
external and internal utility of each item are generated with 
the settings used in [20]. Foodmart already contains unit 
profits and purchase quantities of items. The total utility of 
Foodmart is 120,160.84. Table IV shows the characteristics 
of the above datasets. Mushroom is a real-life dense dataset, 
each transaction containing 23 items. Foodmart is a real-life 
sparse dataset from a retail store, with real utility values. 
BMSWebView1 is a real-life sparse dataset of click-stream 
data with a mix of short and long transactions (up to 267 
items). T10I8D200K is a large sparse dataset with an 
average transaction length of 10. 

A. Experiments on Mushroom Dataset 

The first experiment consisted of running UPGrowth, 
CHUD, and DAHU on the Mushroom dataset, while 
varying min_utility from 10% to 1 %. The execution time of 
UPGrowth, CHUD, and CHUD+DAHU is shown in Figure 
8 for Phase I and Phase II. Results show that CHUD 
outperforms UPGrowth for both phases, and the 
performance gap increased as min_utility was set lower. For 
example, when min_utility = 1%, CHUD is 50 times faster 
than UPGrowth for Phase 1 and 63 times faster for Phase II. 
Moreover, when CHUD is combined with DAHU to 
discover all high utility itemsets, the combination largely 
outperforms UPGrowth and was only slightly slower than 
CHUD. Table V shows the number of candidates and the 
number of results generated by UPGrowth, CHUD, and 
CHUD+DAHU. CHUD generates a much smaller number 
of candidates and results than UPGrowth. The smaller 
number of candidates generated by CHUD in Phase I is 
what makes CHUD perform better than UPGrowth in Phase 
II and for the total execution time (because Phase II is more 
costly than Phase I [20]). Lastly, we measured the reduction 
achieved by the representation of closed

+
 high utility 

itemsets generated by CHUD compared to the set of all high 
utility itemsets generated by UPGrowth. As shown in Table 
V, a huge reduction is obtained (up to 796 times). Moreover, 
by running DAHU, it is possible to recover all high utility 
itemsets. 

B. Experiments on Foodmart Dataset 

The second experiment consists of running UPGrowth, 
CHUD and DAHU on the Foodmart dataset, while varying 
min_utility from 0.10% to 0.005 % of the total utility in the 
database. Execution times for Phase I and Phase II are 
shown in Figure 9. The total execution time of UPGrowth is 
less than CHUD, initially. But as the min_utility threshold 
became smaller, CHUD becomes faster (up to two times 
faster than UPGrowth). The reason why the performance 
gap between CHUD and UPGrowth is smaller for Foodmart 
than for Mushroom is due to the fact that Foodmart is a 
sparse dataset. As a consequence the reduction achieved by 
mining closed

+
 high utility itemsets is less (still up to 34.6 

times, as shown in Table VI).  



TABLE VI.  NUMBER OF EXTRACTED PATTERNS FOR FOODMART 
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(a) Time for Phase I (b) Time for Phase II 

Figure 9.  Execution time on Foodmart 

TABLE VII.  NUMBER OF EXTRACTED PATTERNS FOR BMSWEBVIEW1 
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(a) Time for Phase I (b) Time for Phase II 

Figure 10.  Execution time on BMSWebView1 

TABLE VIII.  NUMBER OF EXTRACTED PATTERNS FOR T12I8D200K 
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(a) Time for Phase I (b) Time for Phase II 

Figure 11.  Execution time on T12I8D200K 

Note that achieving a smaller reduction for sparse 

datasets is a well-known phenomenon in frequent closed 

itemset mining. A similar phenomenon occurs in closed
+
 

HUI mining. Besides, when DAHU was combined with 

CHUD, the execution time of CHUD+DAHU was up to two 

times faster than UPGrowth for low minimum utility 

thresholds and slightly slower than CHUD. 

C. Experiments on BMSWebView1 Dataset 

The third experiment consists of running UPGrowth, 

CHUD and CHUD+DAHU on BMSWebView1 while 

varying min_utility from 10% to 1 % of the total utility of 

the database. Results are presented in Figure 10 and Table 

VII. UPGrowth runs faster than CHUD and CHUD+DAHU 

for min_utility ≥ 3%. However, for min_utility < 3%, the 

performance of UPGrowth decreases sharply. For 

min_utility = 2%, UPGrowth cannot terminate within the 

time limit of 100,000 seconds and it generates more than 

1,000,000 candidates in Phase I, whereas CHUD terminates 

in 80 seconds and produces only seven closed
+
 HUIs from 

32 candidates. The reason why CHUD performs so well is 

that it achieves a massive reduction in the number of 

candidates by only generating a few long itemsets 

containing up to 149 items, while UPGrowth has to consider 

a huge amount of redundant subsets (for a closed itemset of 

149 items, there can be up to 2
149

-2 non-empty proper 

subsets that are redundant). DAHU also suffers from the 

fact that there are too many HUIs. It runs out of memory for 

min_utility < 2 % when trying to recover all HUIs because it 

has to generate too many subsets.  

D. Experiments on Sythetic Dataset 

The fourth experiment is to run the algorithms on 

T12I8D200K with min_utility varying from 0.1% to 0.02% 

of the database total utility. Results are presented in Figure 

11 and Table VIII. For this dataset, CHUD is faster than 

UPGrowth for the total execution time. Although the 

reduction on this synthetic dataset is not as good (since it 

produced the same result as UPGrowth), CHUD is faster 

because it generates about three times less candidates in 

Phase I. CHUD takes more times to generate candidates in 

Phase I. But the total execution time of CHUD is less than 

UPGrowth because Phase II is more costly than Phase I. 

CHUD+DAHU also outperforms UPGrowth, since DAHU 

only spend one second to derive all HUIs. 

E. Memory Usage 

During the previous experiments, we also measure the 

maximum memory usage of UPGrowth and CHUD. Results 

for Mushroom and Foodmart are presented in Figure 12 and 

are similar for the other datasets. In general, CHUD uses as 

much or slightly more memory than UPGrowth because the 

latter uses a compact tries-based data structure for 

representing the database that is more memory efficient than 

a vertical database. However, when the databases contain 

very long HUIs such as BMSWebView1, the number of 

candidates can be very large. In this case, the memory 

consumption of UPGrowth rises dramatically because it 

needs to create a number of conditional UPTrees that is 

proportional to the number of candidates. 
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Figure 12.  Memory usages for the algorithms in phase I 

V. CONCLUSION 

In this paper, we addressed the problem of redundancy 
in high utility itemset mining by proposing a compact 
representation of all high utility itemsets named closed

+
 

high utility itemsets. To our knowledge, this is the first study 
on compact and lossless representation of high utility 
itemsets. To mine this representation, we proposed an 
efficient algorithm named CHUD. We propose three 
effective strategies named REG, RML and DCM to enhance 
the performance of CHUD. These strategies are novel since 
they have never been used for vertical mining of high utility 
itemsets.  To efficiently recover all high utility itemsets from 
this representation, we proposed a top-down method named 
DAHU. Real and synthetic datasets having varied 
characteristics were used to perform a thorough 
performance evaluation. Results show that the proposed 
representation achieves a massive reduction in the number 
of high utility itemsets on all real datasets (e.g. a reduction 
of up to 800 times for Mushroom and 32 times for 
Foodmart). Besides, CHUD outperforms UPGrowth, the 
current best algorithm by several orders of magnitude under 
low minimum utility thresholds (e.g. CHUD terminates in 
80 seconds on BMSWebView1 for min_utility = 2%, while 
UPGrowth cannot terminate within 24 hours). The 
combination of CHUD and DAHU is also faster than 
UPGrowth when DAHU could be applied. 
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