
ar
X

iv
:1

10
6.

44
75

v2
 [

cs
.D

B
]

12
 S

ep
 2

01
1

Interesting Multi-Relational Patterns

Eirini Spyropoulou,
Department of Engineering Mathematics,

University of Bristol, UK
Email: eirini.spyropoulou@bristol.ac.uk

Tijl De Bie,
Department of Engineering Mathematics,

University of Bristol, UK
Email: tijl.debie@bristol.ac.uk

Abstract—Mining patterns from multi-relational data is a
problem attracting increasing interest within the data mining
community. Traditional data mining approaches are typically
developed for highly simplified types of data, such as an
attribute-value table or a binary database, such that those
methods are not directly applicable to multi-relational data.
Nevertheless, multi-relational data is a more truthful and
therefore often also a more powerful representation of real-
ity. Mining patterns of a suitably expressive syntax directly
from this representation, is thus a research problem of great
importance.

In this paper we introduce a novel approach to mining
patterns in multi-relational data. We propose a new syntax
for multi-relational patterns as complete connected subgraphs
in a representation of the database as aK-partite graph. We
show how this pattern syntax is generally applicable to multi-
relational data, while it reduces to well-known tiles [7] when
the data is a simple binary or attribute-value table. We propose
RMiner, an efficient algorithm to mine such patterns, and we
introduce a method for quantifying their interestingness when
contrasted with prior information of the data miner. Finall y, we
illustrate the usefulness of our approach by discussing results
on real-world and synthetic databases.

I. I NTRODUCTION

Since the formalization of frequent itemset mining and
association rule mining, the focus of data mining research
has mostly been on single-table databases. However, as most
information systems rely on a multi-relational representation
of data, the focus has recently started to shift to multi-
relational databases (MRDs). On top of the challenges faced
in most pattern mining research, a key additional challenge
here is the definition of insightful pattern types that properly
exploit or elucidate the structure in the data.

Previous work has focused on generalizing ideas from
frequent pattern mining. The most common strategy is to
first take the full join of all the tables of the MRD, after
which standard pattern mining methods can be applied.
However, in flattening the MRD in this way important
structural information is inevitably lost [16], [13], [10].
Approaches relying on Inductive Logic Programming type of
patterns avoid this, thus capturing better the structure ofthe
MRD [5], [17], [14]. However, all these approaches rely on
transferring the notions ofrecurring patternandsupportin
the multi-relational setting either by measuring the support
with respect to the entries of the join table [16], [13] or
with respect to just one table or entity in the database [10],

[5], [17], [14], which complicates the interpretation of the
results. (See Sec. V for a more detailed discussion of existing
work.)

On top of these conceptual problems, most existing meth-
ods for mining MRDs also suffer from usability problems:
the returned set of patterns is often overwhelmingly large
and redundant, or subjectively not very interesting. For-
tunately, these problems have recently been addressed by
the pattern mining research community, albeit in simpler
settings (mostly itemsets in binary databases). This includes
the definition of new objective interestingness measures with
various properties (see [8] for an overview), as well as
the definition of general schemes to formalize subjective
interestingness [9], [11], [3], [2]. Another related develop-
ment, mostly aimed at reducing redundancies, is the focus
on evaluating interestingness of pattern sets, instead of
individual patterns [19], [4]. To improve multi-relational data
mining methods, some of these ideas should be transferred
and adapted where needed.

Here we contribute on both these fronts: the conceptual-
ization and search for patterns in MRDs, and the quantifi-
cation of their interestingness. In particular, in Sec. II we
propose a new type of pattern syntax in MRDs that captures
the structural information of an MRD. It does not rely on
the concept of support, thus avoiding some of the pitfalls in
earlier work on this topic. We represent the MRD as aK-
partite graph and define a pattern as a complete connected
subgraph in thisK-partite graph. We illustrate that this type
of pattern iseasy to interpret, it is generally applicable
to MRDs, while in simple settings itsubsumes itemsets as
a special case(or more accurately, tiles [7]). We further
propose RMiner,an efficient algorithmto mine such patterns
directly from theK-partite graph representing the MRD
(Sec. III). In Sec. IV we show that the proposed pattern
syntax lends itself well toformalizating their subjective
interestingness, subject to certain prior knowledge on the
data. In a similar way as the work in [2] has done for
itemsets in binary databases, this approach guarantees the
interestingness of the returned patterns in a well-defined
setting. We discuss related work in Sec. V. Finally, in
Sec. VI we show results on real-world and synthetic MRDs,
to support the above claims.

http://arxiv.org/abs/1106.4475v2

II. M ULTI -RELATIONAL DATA AND PATTERNS

We first formalize multi-relational databases as considered
in this paper. In an abstract manner this formalization
is reminiscent of the Entity-Relationship (ER) model as
explained in [6]. Then we show how such an MRD can
be uniquely represented as aK-partite graph. Finally, we
move on to defining the proposed pattern syntax, based on
the graph-representation of the MRD.

Multi-relational database (MRD): We formalize a
multi-relational database as a collection ofentitieseik that
are grouped intoK entity typesEk (k = 1 : K). Each
entity type has adomain, denoted asEk for entity type
Ek, such thateik ∈ Ek. For the purpose of this paper
we assume domains are discrete. Arelationship typeRkl

between a pair of distinct entity typesEk andEl defines a
relationship setRkl which containsrelationship instances
rkl = (ek, el) ∈ Rkl between pairs of entitiesek ∈ Ek and
el ∈ El. Relationship types can be many-to-many, one-to-
many, or one-to-one, depending on how many relations the
elements of either domains can participate in.

Let us consider a toy example with ‘year’, ‘movie’, and
‘genre’ as entity types (with obvious domains), and with
relationship types between ‘year’ and ‘movie’, specifying
the year of release of the movie, and between ‘movie’
and ‘genre’, specifying the genres of a movie. The first of
these relations is a one-to-many relationship type, while the
second is a many-to-many relationship type.

Remark 1 (What about attributes?):In an ER model, an
entity can have attributes associated to it. Our formalism
differs from this, in treating each attribute as an entity type
of its own, with the set of possible attribute values as its
domain. Then, associating attribute values with the entity
they correspond to is done by making use of a one-to-many
relationship type between the entity type of the attribute
and the entity [6]. E.g., in the toy example considered
before, ‘year’ would typically be modelled as an attribute
to the ‘movie’ entity. However, we model it as an entity,
with a relationship type between ‘year’ and ‘movie’. While
this approach is inadequate for data modelling purposes, it
allows for a unified treatment of attributes and entities. This
is desirable, as in the ER model the distinction between
attributes and entities is often ambiguous, while we wish
our methods to be independent of such modelling choices.
Furthermore, it makes our methods more general than other
methods that do distinguish entities from attributes.

A graph representation of a MRD:In the rest of this
paper, we will make use of a graph representation of MRDs.
In this representation, there is a node for each entity in the
MRD, and an edge between the nodes corresponding to en-
tities ek andel for each relationship instancerkl = (ek, el).
We say that nodes representing entities of the same type
are of the same node type, and similarly we say that edges
representing relationship instances of the same type are of

the same edge type. Clearly, the resulting graph isK-partite,
each partition in the graph containing nodes of the same
node type.

Because of this symmetry between entities/relations and
nodes/edges, we slightly overload notation and denote the
resulting graph asG = (E ,R) whereE =

⋃

Ek (all nodes
of all types) andR =

⋃

Rkl (all edges of all types). We
will also refer toEk as thek’th node type, and toRkl as
an edge type between node typesEk andEl.

As an example, the graph representation of the toy MRD
is shown in Fig. 1. In this example there are three entity
types, namely ‘title’, ‘year’ and ‘genre’. Moreover there are
two relationship types, one one-to-many relationship type
between ‘year’ and ‘title’ and one many-to-many relation-
ship type between ‘title’ and ‘genre’.

Figure 1. Database transformed to aK-partite graph. The entity types
‘genre’, ‘title’, ‘year’ correspond to different parts in the graph and the
entities of each entity type correspond to different nodes.The join table
‘Of genre’ defines a many-to-many relationship between the entity types
‘genre’ and ‘title’ and the table ‘Film’ defines an one-to-many relationship
between entities ‘title’ and ‘year’. Two entities are linked with an edge if
they co-occur in a same tuple.

The pattern syntax:In this paper, we are interested
in identifying patterns that relate entities with each other,
within and between different entity types. The pattern syn-
tax we suggest for this purpose is a connected complete
subgraph (CCS), and in particular a Maximal CCS (MCCS),
in theK-partite graph representation of the MRD.

Definition 1 (Maximal connected complete subgraph):
Given a graphG = (E ,R) with E =

⋃

Ek andR =
⋃

Rkl,
a subgraph is defined as a graph(E ′,R′) for which E ′ ⊆ E
andR′ ⊆ R such that for every pair of nodesek, el ∈ E ′

part of the subgraph, if(ek, el) ∈ R then (ek, el) ∈ R′.
A subgraph(E ′,R′) is connected if there exists a path
between any pair of nodes fromE ′ along edges fromR′. It
is complete if for any pair of nodesek, el ∈ E ′ of different
types (i.e. withek ∈ Ek and el ∈ El, k 6= l) between
which an edge typeRkl exists, it holds that(ek, el) ∈ R′.
A maximal connected complete subgraph is a connected
complete subgraph to which no node can be added without
violating connectedness or completeness.

Note that a subgraph of size larger than one can be
connected only if it contains nodes of at least two different
types. A connected complete subgraph is a generalization of
a clique to theK-partite graph representation of the MRD,
used in this paper.

Figure 2. Transaction database as a bipartite graph. Transactions and
items represent different partitions of the graph and are linked with edges
according to the ‘1’s of the binary matrix.

Figure 3. Attribute-value database as a k-partite graph. Attributes represent
different partitions of the graph and attribute values represent the nodes.
Key and non-key attribute values are linked if they co-occurin the same
tuple of the attribute-value table.

In the example of Fig. 1 the set of nodes{T1, T3, Drama,
History, 2010} represent an MCCS pattern. This pattern
provides the information that titles T1 and T3 are both
produced in 2010 that are both Drama and History.

Special cases of MCCSs:Conceptually, MCCSs are
easy to grasp, and the empirical results will further demon-
state that this pattern syntax is a sensible and intuitive one.
An additional argument in support of MCCSs is that they
reduce to well-known pattern syntaxes of well-studied forms
of data.

Consider a market-basket database, containing two entity
types: items and transactions. There is one relationship type
representing the fact that an item was bought in a transaction.
It is well-known that a binary item-transaction database can
be represented by means of a bipartite graph [22], and
indeed this graph is exactly the graph representation of
this rather degenerate case of a MRD. An MCCS in this
bipartite graph is a maximal biclique, which corresponds to
a maximal tile in this database: the pair of a closed itemset
and its supporting transactions [7]. This is depicted in Fig. 2,
showing a database of three items and four transactions and
the corresponding bipartite graph. The set of nodes{T1, T2,
I1, I2} is an example of a maximal biclique in this graph.

Similarly, for a single attribute-value data table the entity
types in our formalization consist of the entity type that
uniquely identifies the rows of the table (typically identified
by a primary key attribute), along with an entity type for
each of the (non-key) attributes. Hence, for an attribute-value
table with K − 1 (non-key) attributes, we would haveK
entity types. An MCCS in thisK-partite graph contains a set
of nodes representing attribute-values and necessarily also a
set of nodes corresponding to the rows of the table. Mapped

back to the data table, this is equivalent to a set of attribute-
values along with the supporting set of rows in the table.
This is depicted in Fig. 3 which shows an attribute-value
data table with three attributes and three transactions. Here,
the set of nodes{A1, PK1, PK2, B1, C1} is an example of
an MCCS.

III. RM INER: AN ALGORITHM TO SEARCH FOR ALL

MCCSS

In this section we outline a new algorithm called RMiner
(from Relational Miner), that is able to efficiently enumerate
all CCSs in aK-partite graph. After this, we present a
variant of RMiner that can be used when only the Maximal
CCSs are required.

Note that practical methods to enumerate all cliques in
an ordinary graph exist (e.g. the Bron-Kerbosch algorithm
[12]). Furthermore, an algorithm for searching forK-partite
maximal cliques was proposed in [23], although there edges
are allowed between any pair of types. Despite clear sim-
ilarities between these problem settings and the task of
enumerating (M)CCSs in this paper, the differences are too
large to allow the use of these algorithms to our problem
without significant modifications or inefficiencies.

Enumerating all CCSs:In RMiner a CCS is repre-
sented using a list of the nodese = {e1, e2, . . . , e|e|}
it contains. It enumerates CCSs by enumerating all such
lists of nodes that represent a CCS. To do this efficiently,
such lists are organized in a tree-structured search space,
with the empty list (corresponding to the empty CCS) at
the root and with a CCS represented by the node list
e = {e1, e2, . . . , e|e|−1, e|e|} having its longest non-trivial
prefix {e1, e2, . . . , e|e|−1} as its parent. RMiner traverses
this tree in a depth-first manner, backtracking as soon as
a subgraph is constructed that is no longer connected or
complete. Note that this strategy ensures that each CCS is
represented by a list for which it holds that each prefix is also
a CCS. (For some permutations of the nodes, some prefixes
may not be connected and thus would not represent a CCS.)
We say such a representation hasconnected prefixes.

To branch down in this search tree, we need an efficient
way to identify which nodes may be added to a CCS such
that the result is still a CCS. These nodes are the adjacent
common neighbours to the CCS, defined as follows.

Definition 2 (Common neighbour, adjacent common neighbour):
A node ek of type Ek is a common neighbourof a CCS
represented by the list of nodese, iff for each nodeel ∈ e

of type El for which an edge typeRkl exists between
Ek and El, it holds that (ek, el) ∈ Rkl. An adjacent
common neighbourof a CCS is a common neighbour that
is connected by an edge to at least one node from that
CCS.

This approach by itself does not rule out enumerating the
same CCS more than once. Indeed, typically there are sev-
eral permutations of the nodes in a CCS that have connected

prefixes, such that the same CCS would be enumerated
several times represented by different permutations of the
node list. To avoid generating a CCS in more than one of
these permutations, a lexicographical ordering is imposed
over the nodes. RMiner is designed so that it only generates
the lexicographically smallest permutation for each CCS, re-
ferred to as therepresentative permutation. Importantly, the
prefix of a representative permutation is a also representative
permutation, such that the set of representative permutations
forms a subtree of the larger search tree described above.

Note that limiting the search to representative permuta-
tions only, is not as easy to implement as for ordinary cliques
in ordinary graphs (as done e.g. in the Bron-Kerbosch
algorithm [12]), since the nodes in a representative permuta-
tion are not necessarily sorted lexicographically themselves.
Indeed, the lexicographically sorted list of nodes in a CCS
may not have connected prefixes. Thus, representative per-
mutations cannot be generated simply by adding nodes in
lexicographical ordering. To specify how RMiner deals with
this, we need to introduce the conceptreachability.

Definition 3 (Reachable node type and reachable node):
A node type is said to bereachablefrom a CCS iff there
exists an edge type between this node type and the type
of at least one of the nodes already in the CCS. We say a
node isreachablewhen its node type is reachable.

RMiner will expand a CCS represented bye with an
adjacent common neighboure only if e is lexicographi-
cally larger than all nodesthat were added sincee first
became reachable. This concludes the high-level description
of RMiner for mining all CCSs. Correctness and efficiency
of RMiner’s enumeration strategy can be proven as follows.

Theorem 1 (Correctness):RMiner will enumerate each
CCS at least once.

Proof: The algorithm would reconstruct any given CCS
by first adding the lexicographically smallest node of the
CCS, after which the lexicographically smallestreachable
node from the CCS is added, recursively until all of its nodes
are added. That all nodes can be added follows from the fact
that a CCS is connected by definition, such that each node
type will become reachable at some point in the algorithm.

Theorem 2 (Efficiency):RMiner will enumerate each
CCS no more than once.

Proof: Assume the contrary, that the algorithm would
generate at least two permutations representing a given CCS.
Let us say that the first nodes in the permutations that differ
aree′ ande′′ respectively—i.e. all nodes precedinge′ in the
first permutation and precedinge′′ in the second permutation
are equal. This implies that they are both reachable from
the CCS comprised of the identical set of previously added
nodes. Assume without loss of generality thate′ < e′′ in the
lexicographical ordering. Then, in the second permutation,
e′ was added aftere′′, which is not possible sincee′′ was
reachable at the same time ase′ and can thus not be added

any more aftere′, showing contradiction.
Restricting the search to MCCSs:As the number of

CCSs can still be prohibitively large, in this paper we are
interested only in Maximal CCSs (MCCSs). Enumerating
only the MCCSs can be done more efficiently than enumer-
ating all CCSs, by pruning parts of the search tree that do
not lead to Maximal CCSs.

Our approach is based on the following observation
(which is similar to the observation that allows pruning non-
maximal partial solutions in the setting of frequent itemset
mining [21]). Assume nodese′ ande′′ with e′ < e′′ are both
extensions of a CCS. Then, if the common neighbours of
the CCS extended bye′′ are included in the set of common
neighbours of the CCS extended bye′, any MCCS including
that CCS as well as bothe′ ande′′ would be discovered when
extending the CCS withe′. Extending it directly withe′′ can
only lead non-maximal CCSs sincee′ cannot be included
after includinge′′, so we can prune the branch of the search
tree extending the CCS withe′′.

Clearly, MCCSs can only be found whenever a recursion
reaches an end point. That said, some of these end points
may in fact not be maximal. Checking maximality can be
done by verifying if the set ofadjacentcommon neighbours
is equal to the CCS itself.

Implementation details: Simplified pseudocode of
our algorithm is given in Algorithm 1. For space and
transparancy reasons, the pseudocode hides the following
implementation details that allow for additional efficiency.

Each intermediate CCS, represented by a node liste in
the pseudocode, is actually represented by RMiner in a
manner similar to the Itemset-Tidset pairs in [21], with some
additional intricacies due the fact that items and transactions
coincide when searching for MCCSs, and due to the graph
being K-partite. More specifically, for each CCS, three
pieces of information are kept in memory: the set of nodes
e already in the CCS, the set of common neighbours ofe

(remembering also which are adjacent), and the subset of
the adjacent common neighbours that are lexicographically
larger than the last node added toe since their node type
became reachable. These pieces of information can be stored
efficiently, upon extension of a CCS they can be updated by
means of simple set operations, and they facilitate pruning
and maximality checking. Various further optimizations can
be made (such as the use of diffsets), but they will be part of
our future work. Another implementation detail is that the
lexicographical order on the nodes is created by assuming an
overriding lexicographical order over the node types, along
with a lexicographical order over the nodes within each type.

IV. A SSESSMENT OF PATTERNS

The number of MCCSs is usually very large, which is a
recurring problem in Pattern Mining research. Typically this
problem is addressed by selecting or ranking patterns using
objective or subjective interestingness measures [8]. Here,

Algorithm 1 Simplified pseudocode for mining all MCCSs
from aK-partite graph.

RMiner (GraphG = (E ,R))

1: for e ∈ E in lexicographical orderdo
2: Expand(G, e)
3: end for

Expand(Graph G = (E ,R), Ordered node liste ∈
En)

1: N = ∅
2: for e ∈ E in lexicographical orderdo
3: k = max{l : e is not reachable from the prefixe1:l}

4: if ∀e′ ∈ ek+1:n : e′ < e then
5: n = the set of common neighbours ofee
6: if ∄n′ ∈ N : n ⊆ n

′ then
7: N = N ∪ {n}
8: Expand(G,ee)
9: end if

10: end if
11: end for
12: if N 6= ∅ && IsMaximal(G,e) then
13: Sende to the output
14: end if
IsMaximal (Graph G = (E ,R), Ordered node liste ∈
En)

1: a = set of adjacent common neighbours ofe in G
2: if a == e then
3: return true
4: else
5: return false
6: end if

we choose to define interestingness with respect to a specific
type of prior information, by defining an interestingness
measure which deems an MCCS to be more interesting if
it is more unexpected given this prior information. More
specifically, we consider as prior information the degree
of each node in the different relationship types of theK-
partite graph representation of the MRD. An MCCS is more
interesting if it is harder to explain based on this prior infor-
mation alone. For example in the setting of a movie MRD, an
MCCS containing directors that have directed many movies
would be deemed less interesting by our approach than an
equally large MCCS containing less prolific directors, as the
latter MCCS cannot as easily be attributed to randomness
and is more unexpected.

To introduce the interestingness measure, we can closely
follow the work presented in [2], [3], where it is argued that
subjective interestingness can be formalized by contrasting
patterns with a background model that is the Maximum
Entropy model subject to the prior information. Thus we
only need to detail the Maximum Entropy model for our case

(see Sec. IV-A), and the approach to contrast MCCS patterns
with this model to arrive at an interestingness measure (see
Sec. IV-B).

A. Maximum-Entropy model of the user’s prior information

We consider as prior information the degree of the nodes
for every relationship type in theK-partite graph repre-
sentation of the MRD. Following [2], we formalize this
prior information in a probability distributionP , fitting the
Maximum Entropy distribution on theK-partite graph of
the MRD, with constraints on the expected degree of the
nodes for every relationship type being equal to their actual
degree. This is the distribution of maximal uncertainty about
the data with only the prior information as bias.

The nature of the constraints is such that they are defined
for every relationship typeRkl of theMRDwithout imposing
any dependence between the relationship types. Therefore,
the Maximum Entropy distribution for the MRD subject to
these constraints will be a product of independent Maximum
Entropy distributions, one for each relationship type. Indeed,
if there were dependencies between the relationship types,
the Entropy of the joint distribution would be reduced by
their mutual information [1], and would therefore not be
maximal. Representing each relationship type as a binary
databaseDkl with Dkl(i, j) = 1 when (eik, e

j
l) ∈ Rkl, the

Maximum Entropy distribution for the MRD is thus:

P (∪klDkl) =
∏

kl

Pkl(Dkl).

Maximizing the Entropy for every relationship typeRkl

of the MRD represented by a binary matrixDkl subject to
constraints on the expected degrees of the nodes is equivalent
to maximising the Entropy of a distribution for a binary
database subject to constraints on the expected row and
column sums. The solution of this problem was shown to
be a product of independent Bernoulli distributions, given
by [2]:

Pkl(Dkl) =
∏

i,j

P
ij
kl (Dkl(i, j)) with P

ij
kl (Dkl(i, j)),

=
exp

(

Dkl(i, j)(−λi
kl − µ

j
kl)

)

1 + exp(−λi
kl − µ

j
kl)

,

whereλi
kl, µ

j
kl are parameters that can be computed effi-

ciently.

B. Contrasting MCCSs with the Maximum Entropy model

An interesting pattern conveys as much information as
possible when contrasted with the user’s prior information,
as concisely as possible. Following earlier work [2], we
can formalize this idea by quantifying the interestingness
of an MCCS patternγ = (E ′,R′) as the ratio of the self
information of the MCCS and its description length:

Interestingness(γ) =
SelfInformation(γ)

DescriptionLength(γ)
.

Here, the self information of an MCCS is defined given
the probability of its edges under the Maximum Entropy
model, as:

SelfInformation(γ) = −
∑

r
ij

kl
∈R′

log(P ij
kl (1)).

An MCCS is described most naturally by the set of nodes
it contains. More specifically, we choose to describe MCCS
patterns by specifying for each node whether it does or does
not belong to the pattern. To specify that a node belongs to
an MCCS, we will use− log(p) bits, and to specify it does
not belong to the MCCS we will use− log(1−p) bits, where
p is a probability parameter. Such a code satisfies Kraft’s
inequality exactly, and is thus optimal and asymptotically
achievable [1]. Using this approach, the description length
of an MCCS patternγ = (E ′,R′) with n = |E ′| nodes and
given that the graph of the MRD hasN = |E| nodes is given
by:

DescriptionLength(γ) = −
∑

i∈γ

log(1− p)−
∑

i6∈γ

log(p),

= N log
(

1−p

p

)

+ n log
(

1

1−p

)

.

In [2] it was suggested to setp by default to the density
of the database, an approach we adopted in our empirical
results as well. However, the parameter can be tuned so as
to bias the search more toward larger in number of nodes
MCCSs (largerp) or toward smaller in number of nodes
MCCSs (smallerp), if desired.

V. RELATED WORK

Most previous work on relational pattern mining can be
categorised into methods that generalize ideas from frequent
itemset mining to the relational setting and methods that are
based on Inductive Logic Programming (ILP). In this section
we discuss the differences between these approaches and our
approach as well as other works that do not fall into these
two categories.

Well known ideas and algorithms from frequent itemset
mining can be used for MRDs unaltered if applied on the
join of all tables. The syntax of this type of patterns is
essentially that of itemsets, with items in this case being
attribute values and transactions being the tuples of the
join table [16], [10], [13]. The characteristic of this pattern
syntax is that a tuple always contains one attribute value per
attribute and as a result it is impossible to have two values
of the same attribute in the same pattern. An itemset of this
type for instance would not be able to capture the fact that
a director can be related to many films. This is something
that an MCCS pattern naturally captures. However, itemsets
on the join table can still capture co-occurrences of attribute
values that belong to different attributes.

On the other hand, the support, measured as the ratio of
the tuples of the join table that contain an itemset, does
not have a clear meaning as attribute values are replicated
due to the join operation. A different approach is taken by
Smurfig [10] where the support is measured with respect to
every table, as the relative number of keys that the items
correspond to.

Warmr [5] and Farmer [17] are methods based on ILP.
The patterns have the form of logic rules which can be
regarded as local models of the database. The goal of these
methods is to mine for the most frequent rules. The support
is defined as the relative number of key values of one target
table that satisfy the rule. Therefore the more general the rule
the higher its support will be. This type of pattern syntax is
very expressive and can capture well the relational structure.
However, the objective of these methods (frequent rules
about the data) is different than ours (interesting patterns of
co-occurring attributes). Finally the interestingness measure
we propose in Sec. IV can not be applied on Warmr and
Farmer patterns and evaluating the interestingness of this
kind of patterns is a challenge.

Warmr, Farmer, and Smurfig are all based on the notion
of a recurring pattern, and they directly depend on a support
notion. Measuring the support with respect to one or a set
of target tables, makes the results difficult to interpret and
therefore introduces usability issues. The potential userwill
have to understand what exactly it means for a recurring
pattern to be frequent with respect to a certain target table.
Additionally, these techniques are likely to suffer from the
same problems as other frequent pattern mining techniques,
in particular the fact that support is usually only weakly
related to interestingness.

RDB-Krimp [14] is a method for mining relational
databases which is related to ours in that it also uses
information theoretic ideas for the assessment of patterns.
It uses the pattern syntax of Farmer [17] but considers
just patterns of depth two (patterns of a target table and
all the tables related to it with a foreign key). The most
frequent patterns of this kind are mined for every table
of the database as a target table and then RDB-Krimp
finds the most characteristic patterns among them using the
MDL principle. The focus of this method is on the total
description length of the database joint with the patterns,
and patterns are deemed more interesting if they are better
at compressing this description length. We instead deem
patterns more interesting if they describe surprising aspects
of the database in a concise way, which we argue makes
our results more relevant to an end-user. Finally RDB-Krimp
relies on heuristic search to find the optimal set of patterns
that best compress the database which is not the case for
our method that searches exhaustively.

An approach for assessing the statistical significance of
relational (SQL) queries based on randomisations of differ-
ent tables is proposed in [18]. Although this approach was

not intended to propose a method to mine such patterns it
provides an insight towards making relational patterns useful
to the user.

Finally one could see our work being connected to fre-
quent sub-graph mining [20], [15] however besides being
based on frequency, these methods are aimed at databases
of many graphs rather than one connected graph.

VI. EMPIRICAL RESULTS

To illustrate the kind of patterns retrieved by RMiner,
we show and discuss empirical results on real world data.
We additionally provide a comparison of our method with
other methods in three different levels, namely qualitative
comparison of the results, objective comparison of the rank
of artificially embedded patterns in data and computational
comparison. We compare with two representative methods
of the previous approaches Smurfig [10] and Farmer [17].
We chose to compare with Farmer rather than Warmr [5]
because its pattern language is closer to that of MCCSs.
Also note that RDB-Krimp was not publicly available.

A. Data

We performed experiments on three datasets of different
size and complexity taken from the IMDB database (imdb-
3ent-1year, imdb-4ent-1year, andimdb-4ent-3years, see be-
low for details)1 as well as on the Student database of the
Computer Science department of the University of Antwerp
[10] (called studentdbin this paper). The purpose of the
experiments in this section is to demonstrate computational
feasibility, to illustrate the kind of patterns we get when
mining real MRDs, and to show the usefulness of the
interestingness measure when used to rank such patterns.

The imdb-3ent-1yeardataset contains directors and genres
related to movies produced in 2010 and theimdb-4ent-
1yearadditionally contains keywords. Theimdb-4ent-3years
dataset contains directors, genres and keywords, related
to movies produced between 2008 and 2010. The Entity
Relationship diagram of the IMDB derived databases is
shown in Fig. 4. Thestudentdbdataset contains students,
related to professors and courses. The Entity Relationship
diagram of this database is shown in Fig. 5. General statistics
about all the datasets are shown in Table I.

B. Results using RMiner

We show results of RMiner on theimdb-3ent-1yearand
studentdbso that the resulting MCCS patterns are smaller
and can be shown in this paper. However, we refer the reader
to the website of this paper2 for a full list of results from
every dataset.

1See http://www.imdb.com/. Please note that there are some
inconsistencies between the version of IMDB that we downloaded and the
on-line version.

2https://sites.google.com/site/rminer2011/

Figure 4. Entity-Relationship diagram of theimdb-4ent-1yearand imdb-
4ent-3yearsdatabases (keysare omitted for clarity).

Figure 5. Entity-Relationship diagram of thestudentdbdatabase (keysare
omitted for clarity).

For all experiments we searched only for MCCSs that
contain at least one node of each entity type because we
wanted to show patterns that are different from tiles and
thus truly relational. However we emphasize that our method
works even without this constraint. Table I summarizes the
output sizes and the computation times of the mining step.

IMDB Database:Figure 6 shows the top three patterns
from the imdb-3ent-1yeardatabase, ranked based on the
interestingness measure defined in Section IV. We expect
patterns that convey as much information as possible as
concisely as possible to be high in the list. These will be
compact MCCS patterns containing many edges that are
unlikely under the Maximum Entropy model.

The top-ranked pattern (leftmost in Fig. 6) informs us
about a director who directed fourteen movie titles that
all of them are of genre Sci-Fi, Comedy and Short. More
technically this pattern contains many edges and many of
them are very unlikely edges under the model of prior
information of the user, given that this director has just
directed only these fourteen titles. The second pattern (top
right in Fig.6) shows that four directors directed two titles of
the genre Short. The third pattern tells us about two directors
that directed three films which are of the same genre. The
directors included in second ranked pattern have directed
only the titles of this pattern. The same holds for the third
ranked pattern except for one director who has directed two
more titles not included in this pattern. Hence the links
between the directors and the titles in both these patterns
are very unlikely, such that the information content of the
MCCS is high. While explaining a relatively large number
of unlikely edges, the number of nodes in the MCCS and
thus its description length is relatively small. This explains
the high interestingness.

Student Database dataset:The top-ranked MCCSs on
the studentdbdatabase are shown in Fig. 7. Since the first

Table I
DATABASE DETAILS AND COMPUTATION TIMES OFRMINER.

Non-key Attributes Tuples Nodes Edges Patterns Time(sec)
per Table per Table

(excluding the join tables) (excluding the join tables)

imdb-3ent-1year (1, 1, 1) (15702, 14400, 28) 30130 48976 14202 9
imdb-4ent-1year (1, 1, 1, 1) (15702, 14400, 28, 10878) 3100980981 4049 379
imdb-4ent-3years (1, 1, 1, 1) (59656, 49348, 28, 32762) 141796 387577 22393 8084

studentdb (3,1,1) (154, 40, 174) 401 3558 155 2

Figure 6. The three most interesting MCCS patterns inimdb-3ent-1year. The leftmost MCCS is the first, the right top is the second andthe right bottom
MCCS is the third MCCS pattern.

Figure 7. The first (left) and the third (right) most interesting MCCS patterns in thestudentdbdataset. Note that the number of student nodes is too large
to show here, so we collapsed them onto one node labelled withan ellipsis.

two patterns were structurally similar (although they convey
non-redundant information), Fig. 7 shows only the first and
the third most interesting patterns but we discuss all the first
three of them.

The top two patterns convey information about a set of
students, the program, contract, the track they are following,

two courses they attend, the professor teaching these courses
and the lecture room they are taught in. The difference
between these two patterns is that the first contains a set of
67 students who follow the ”Model” track while the second
contains a set of 46 students who follow the ”Individualised”
track. Roughly speaking, the second pattern ranks lower than

Figure 8. Three of the most frequent patterns of Smurfig onimdb-3ent-
1yearsdatabase.

Figure 9. Top three most frequent patterns of Farmer onimdb-3ent-1years
database.

the first as it contains 126 fewer edges. Finally the third
pattern (right in Fig. 7) conveys information about a set of
67 students, their program, contract, and track, as well as one
course, the professor teaching it and the lecture room. The
third pattern is less interesting than the first as it contains just
1 node less while it explains 67 fewer edges and contains is
more common course room.

C. Qualitative comparison

Here we qualitatively compare with the results of Smur-
fig [10] and Farmer [17] on theimdb-3ent-1yeardataset.

Smurfig patterns: We ran Smurfig with a support
threshold of 0.001 to be as inclusive as possible. To compare
with the patterns of RMiner we selected the ones that contain
items from all the three attributes. As pointed out in Sec. V,
each of these patterns can contain only one attribute value
per attribute. Because of the nature of theimdb-3ent-1year
dataset each of them has absolute support of 1. Figure 8
shows three of these patterns. Thus, Smurfig is clearly not
suited to find relations in relational data of this kind.

Farmer patterns: We ran Farmer with an abso-
lute support threshold of 1. The pattern syntax we used
had the following form: director(X), directs(X,Y),
genre(Y, g1) . . . genre(Y, gn) and the key of the search is
the atomdirector(X). Figure 9 shows the top three most
frequent of these patterns that contain all three predicates.
None of these patterns contain more than one genre con-
stants, which is to be expected as the most frequent rules
are bound to be the more general rules. Note that if we found
the directors and titles that satisfy these rules, these patterns
would correspond to CCSs. The difference between Farmer
patterns and CCSs is analogous to the difference between
itemsets and tiles. Farmer patterns corresponding to MCCSs
are expected to be less frequent as they are more specific.

D. Objective Comparison

We investigated how different methods detect artificially
embedded MCCS patterns of different sizes in theimdb-
3ent-1yeardata. More specifically, we investigated how
highly the embedded MCCS (or a larger MCCS containing
it) is ranked by our method using the interestingness measure
we propose. To compare with Farmer we checked the rank

of the most frequent rule corresponding to this MCCS and,
allowing Farmer an advantage due to the different pattern
syntax, also the rank of any CCS containing a smallsubset
of the embedded predicates.

To artificially embed a pattern, we addedk genres,k
directors, andk titles to the database, in such a way that
each of thesek genres and directors are connected to each
of thek titles, forming a CCS. As this by itself would create
an unrealistic disjoint part of the database, we additionally
added random links preserving the overall connectivity and
database statistics. E.g., we randomly added links between
the existing genres and the newly added titles so as to ensure
that, in expectation, the total fraction of titles each of the
existing genres is linked with stays the same. This is done
also between the existing titles and the newly added genres,
and similarly for the directors and titles.

Table II shows the rank of the embedded MCCS pattern
for increasingk. RMiner ranks the embedded pattern higher
as the number of nodes per entity type increases and ranks
it first when it contains more than just three nodes, showing
that RMiner ranks high even relatively small patterns known
to be present in the database.

For Farmer we used the same pattern syntax as in
Sec. VI-C. Table II shows the rank of the highest ranked
rule including allgenrepredicates in the embedded MCCS,
as well as corresponding to a CCS containing a subset
of just two or more of the embeddedgenre predicates.
Unsurprisingly, Farmer ranks the CCS patterns more highly
than the more specific and thus less frequent MCCS patterns.
However, even the CCS patterns are ranked much lower than
using RMiner.

Table II
RANK OF ARTIFICIALLY EMBEDDED MCCSPATTERN IN imdb-3ent-1year

DATASET WITH INCREASING NUMBER OF NODESk PER ENTITY TYPE.

k 2 3 4 6
RMiner Rank 103 6 1 1

Farmer Rank (MCCS) 121 502 1464 2141
Farmer Rank (CCS) 121 109 125 147

Table III
T IME IN SEC OF THE MINING STEP AND NUMBER OF PATTERNS(#P)

WITH INCREASING PERCENTAGE OF‘ TITLE ’ NODES(% N).

% n 20 40 60 80 100

RMiner #p 2848 5643 8575 11360 14202
time 0.6 1.9 4.1 6.1 9.1

Smurfig #p 357954 706344 1080203 1420896 1770200
time 57 220 561 952 1451

Farmer #p 1711 2048 3424 3860 4545
time 0.02 0.07 0.13 0.14 0.19

E. Scalability comparison

We did a scalability analysis by running RMiner, Smurfig
and Farmer on subsets ofimdb-3ent-1year, randomly select-
ing a varying percentage of movies along with the genres
and directors connected to these. The results of RMiner
show that the number of MCCSs and computation times
scale roughly linearly with the database size (see Table III).
Smurfig is slower than RMiner by a factor of at least
100. Farmer is faster by a factor of 30-40. However, we
believe this gap can be shrunk significantly by applying
the additional pruning techniques and the use of diffsets,
as discussed in Sec. III.

VII. C ONCLUSION

We have introduced a new syntax of multi-relational
patterns in MRDs, and an algorithm to mine them efficiently.
Our approach relies on a representation of the MRD as
a graph, and mines patterns that correspond to complete
connected subgraphs in this graph. This pattern syntax
generalizes the notion of a tile in a simple binary database,
and is easy to interpret also in more complex settings. Note
that while we have written the paper with MRDs in mind,
our approach is directly applicable also to RDF data.

An important advantage of the proposed pattern syntax is
that it is independent of a notion of support to assess the
interestingness of a pattern. Instead, we showed how ideas
introduced in [2] can be used, defining interestingness by
contrasting a pattern with a Maximum Entropy model rep-
resenting background knowledge on the degree of individual
nodes in the graph representation of the MRD.

This paper opens up several avenues for further research,
such as: The expansion of the types of prior beliefs that can
be taken into account in the MaxEnt model for the database;
The definition of different pattern syntaxes corresponding
to different graph patterns in the graph representation of
the database; The development of speed-ups of the RMiner
algorithm e.g. using diffsets and the so-called CHARM-
properties presented in [21]; The development of an algo-
rithm that directly mines the interesting MCCSs, instead of
using a two-step approach as in this paper.

ACKNOWLEDGMENTS

We would like to thank Michael Mampaey for providing
the Smurfig code and data and for his support in using Smur-
fig, as well as Jilles Vreeken for the thorough proof reading
and the insightful feedback. The authors are supported by
EPSRC grant EP/G056447/1.

REFERENCES

[1] T. M. Cover and J. A. Thomas.Elements of Information
Theory. Wiley, 2005.

[2] T. De Bie. Maximum entropy models and subjective inter-
estingness: an application to tiles in binary databases.Data
Mining and Knowledge Discovery, 2011.

[3] T. De Bie, K.-N. Kontonasios, and E. Spyropoulou. A
framework for mining interesting pattern sets.SIGKDD
Explorations, 2010.

[4] L. De Raedt and A. Zimmermann. Constraint-based pattern
set mining. InProc of the 2007 SIAM International Confer-
ence on Data Mining (SDM), pages 237–248, 2007.

[5] L. Dehaspe and H. Toivonen. Discovery of frequent datalog
patterns. Data Mining and Knowledge discovery, 3:7–36,
March 1999.

[6] R. Elmasri and S. B. Navathe.Fundamentals of Database
Systems. Addison Wesley, 2006.

[7] F. Geerts, B. Goethals, and T. Mielikainen. Tiling databases.
In Proc of Discovery Science, pages 278–289, 2004.

[8] L. Geng and H. J. Hamilton. Interestingness measures for
data mining: A survey.ACM Computing Surveys., 38, 2006.

[9] A. Gionis, H. Mannila, T. Mielikinen, and P. Tsaparas.
Assessing data mining results via swap randomization.ACM
Transactions on Knowledge Discovery from Data, 1(3), 2007.

[10] B. Goethals, W. L. Page, and M. Mampaey. Mining interest-
ing sets and rules in relational databases. InProc of the ACM
Symposium on Applied Computing (SAC), pages 997–1001,
2010.

[11] S. Hanhijarvi, M. Ojala, N. Vuokko, K. Puolamaki, N. Tatti,
and H. Mannila. Tell me something i don’t know: randomiza-
tion strategies for iterative data mining. InProc of the ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pages 379–388. ACM, 2009.

[12] H. C. Johnston. Cliques of a graph-variations on the Bron-
Kerbosch algorithm.International Journal of Parallel Pro-
gramming, 5:209–238, 1976.

[13] A. Koopman and A. Siebes. Discovering relational item sets
efficiently. In Proc of the SIAM Conference on Data Mining
(SDM), pages 108–119, 2008.

[14] A. Koopman and A. Siebes. Characteristic relational patterns.
In Proc of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pages 437–
446, 2009.

[15] M. Kuramochi and G. Karypis. Frequent subgraph discovery.
In Proc of the ICDM’01, pages 313–320, 2001.

[16] E. K. K. Ng, K. Ng, A. W.-C. Fu, and K. Wang. Mining
association rules from stars. InProc of the 2002 IEEE
International Conference on Data Mining (ICDM), pages
322–329, 2002.

[17] S. Nijssen and J. Kok. Efficient frequent query discovery in
FARMER. In Proc of the 7th European Conference on Prin-
ciples and Practice of Knowledge Discovery in Databases
(PKDD), pages 350–362, 2003.

[18] M. Ojala, G. C. Garriga, A. Gionis, and H. Mannila. Evaluat-
ing query result significance in databases via randomizations.
In Proc of the SIAM Conference on Data Mining (SDM),
pages 906–917, 2010.

[19] A. Siebes, J. Vreeken, and M. van Leeuwen. Item sets that
compress. InProc of the SIAM Conference on Data Mining
(SDM), 2006.

[20] X. Yan and J. Han. gspan: Graph-based substructure pattern
mining. In Proc of the ICDM’02, pages 721–730, 2002.

[21] M. Zaki and C.-J. Hsiao. CHARM: An efficient algorithm
for closed itemset mining. InProc of the 2002 SIAM
International Conference on Data Mining (SDM), pages 457–
473, 2002.

[22] M. Zaki and M. Ogihara. Theoretical foundations of asso-
ciation rules. In3rd ACM SIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovery, 1998.

[23] M. Zaki, M. Peters, I. Assent, and T. Seidl. Clicks: An
effective algorithm for mining subspace clusters in categorical
datasets.Data and Knowledge Engineering, 60(1):51 – 70,
2007.

	I Introduction
	II Multi-relational data and patterns
	III RMiner: an algorithm to search for all MCCSs
	IV Assessment of patterns
	IV-A Maximum-Entropy model of the user's prior information
	IV-B Contrasting MCCSs with the Maximum Entropy model

	V Related Work
	VI Empirical Results
	VI-A Data
	VI-B Results using RMiner
	VI-C Qualitative comparison
	VI-D Objective Comparison
	VI-E Scalability comparison

	VII Conclusion
	References

