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Abstract—Mining patterns from multi-relational data is a
problem attracting increasing interest within the data mining
community. Traditional data mining approaches are typicaly
developed for highly simplified types of data, such as an
attribute-value table or a binary database, such that those
methods are not directly applicable to multi-relational data.
Nevertheless, multi-relational data is a more truthful and
therefore often also a more powerful representation of real
ity. Mining patterns of a suitably expressive syntax direcly
from this representation, is thus a research problem of gret
importance.

In this paper we introduce a novel approach to mining
patterns in multi-relational data. We propose a new syntax
for multi-relational patterns as complete connected subgaphs
in a representation of the database as & -partite graph. We
show how this pattern syntax is generally applicable to mult
relational data, while it reduces to well-known tiles [7] when
the data is a simple binary or attribute-value table. We propse
RMiner, an efficient algorithm to mine such patterns, and we
introduce a method for quantifying their interestingness when
contrasted with prior information of the data miner. Finall y, we
illustrate the usefulness of our approach by discussing resdts
on real-world and synthetic databases.
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[5], [17], [14], which complicates the interpretation ofeth
results. (See Selc]V for a more detailed discussion of agisti
work.)

On top of these conceptual problems, most existing meth-
ods for mining MRDs also suffer from usability problems:
the returned set of patterns is often overwhelmingly large
and redundant, or subjectively not very interesting. For-
tunately, these problems have recently been addressed by
the pattern mining research community, albeit in simpler
settings (mostly itemsets in binary databases). This dedu
the definition of new objective interestingness measurés wi
various properties (seel[8] for an overview), as well as
the definition of general schemes to formalize subjective
interestingness [9]) [11]/[3],12]. Another related deyel
ment, mostly aimed at reducing redundancies, is the focus
on evaluating interestingness of pattern sets, instead of
individual patterns [19]/[4]. To improve multi-relatiohdata
mining methods, some of these ideas should be transferred
and adapted where needed.

Here we contribute on both these fronts: the conceptual-

Since the formalization of frequent itemset mining andization and search for patterns in MRDs, and the quantifi-
association rule mining, the focus of data mining researcltation of their interestingness. In particular, in Set. B w
has mostly been on single-table databases. However, as mgsbpose a new type of pattern syntax in MRDs that captures

information systems rely on a multi-relational represtaia

the structural information of an MRD. It does not rely on

of data, the focus has recently started to shift to multi-the concept of support, thus avoiding some of the pitfalls in
relational databases (MRDs). On top of the challenges facedarlier work on this topic. We represent the MRD a¥a

in most pattern mining research, a key additional challenggartite graph and define a pattern as a complete connected
here is the definition of insightful pattern types that pmiypoe subgraph in thids-partite graph. We illustrate that this type

exploit or elucidate the structure in the data.

of pattern iseasy to interpretit is generally applicable

Previous work has focused on generalizing ideas fromo MRDs, while in simple settings gsubsumes itemsets as
frequent pattern mining. The most common strategy is ta special casgor more accurately, tiles [7]). We further
first take the full join of all the tables of the MRD, after propose RMineran efficient algorithnto mine such patterns
which standard pattern mining methods can be applieddirectly from the K-partite graph representing the MRD
However, in flattening the MRD in this way important (Sec.[l). In Sec[ IV we show that the proposed pattern

structural information is inevitably lost [16]/ [13]/ [1O]

syntax lends itself well toformalizating their subjective

Approaches relying on Inductive Logic Programming type ofinterestingnesssubject to certain prior knowledge on the

patterns avoid this, thus capturing better the structuthef

data. In a similar way as the work inl[2] has done for

MRD [5], [17], [14]. However, all these approaches rely onitemsets in binary databases, this approach guarantees the

transferring the notions akcurring patternand supportin

interestingness of the returned patterns in a well-defined

the multi-relational setting either by measuring the suppo setting. We discuss related work in Sécl V. Finally, in
with respect to the entries of the join table [[16€], [[13] or Sec[V] we show results on real-world and synthetic MRDs,
with respect to just one table or entity in the databasé [10]to support the above claims.
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Il. M ULTI-RELATIONAL DATA AND PATTERNS the same edge type. Clearly, the resulting grapkiipartite,
) ) ) ) ) each partition in the graph containing nodes of the same
We first formalize multi-relational databases as considlere ;4o type.

in this paper. In an abstract manner this formalization goca e of this symmetry between entities/relations and
IS rermmsqent\of the Entity-Relationship (ER) model asnodes/edges, we slightly overload notation and denote the
explalned in [[6]. Then we show how such an MRD Canresulting graph ag = (£,R) where€ = [J& (all nodes
be uniquely rep_r_esented asla-partite graph. Finally, we of all types) andR = |JRy (all edges of all types). We
move on to defining the proposed pattern syntax, based ARill also refer to E), as thek'th node type, and tRy; as

the graph-representation of the MRD. an edge type between node types and E;.

Multi-relational database (MRD):We formalizé a  as an example, the graph representation of the toy MRD
multi-relational database as a collection enitities ¢}, that is shown in Fig[dL. In this example there are three entity
are grouped intak” entity typesEj, (k = 1 : K). Each  ypes namely ‘title’, ‘year and ‘genre’. Moreover thereea
entity type has adomain denoted asf; for entity type o relationship types, one one-to-many relationship type

Ej, such thate; € &. For the purpose of this paper peryeen ‘year and ‘title’ and one many-to-many relation-
we assume domains are discrete.rédationship typeRy; ship type between ‘title’ and ‘genre’.

between a pair of distinct entity typds, and E; defines a

relationship setR; which containsrelationship instances of_genre
. e " Movie
r = (ex,e1) € Ry, between pairs of entities, € &, and Gome [ GME M SHE
. . Drama T
e; € &. Relationship types can be many-to-many, one-to- [er = T 2010
many, or one-to-one, depending on how many relations the :"mw Dama T3 T 2000
. . .. . I Histo T
elements of either domains can participate in. -t i || e
Let us consider a toy example with ‘year’, ‘movie’, and L |

‘genre’ as entity types (with obvious domains), and with
relationship types between ‘year’ and ‘movie’, specifying Figure 1. Database transformed toFapartite graph. The entity types

the year of release of the movie. and between ‘movie’denre’, ‘title’, ‘year' correspond to different parts irhé graph and the
’ entities of each entity type correspond to different nodé®e join table

and ‘genrg’, spgcifying the genres Of.a mqVie- The ﬁTSt ofiof_genre’ defines a many-to-many relationship between thayetyipes
these relations is a one-to-many relationship type, whiée t ‘genre’ and ‘title’ and the table ‘Film’ defines an one-to4myarelationship

second is a many-to-many relationship type. between entitigs ‘title’ and ‘year’. Two entities are limkevith an edge if
Remark 1 (What about attributes? an ER model, an they co-aceur in a same fuple.

entity can have attributes associated to it. Our formalism

differs from this, in treating each attribute as an entitgety The pattern syntax:in this paper, we are interested

of its own, with the set of possible attribute values as itsin identifying patterns that relate entities with each othe

domain. Then, associating attribute values with the entitywithin and between different entity types. The pattern syn-

they correspond to is done by making use of a one-to-mantax we suggest for this purpose is a connected complete

relationship type between the entity type of the attributesubgraph (CCS), and in particular a Maximal CCS (MCCS),

and the entity [[6]. E.g., in the toy example consideredin the K-partite graph representation of the MRD.

before, ‘year’ would typically be modelled as an attribute  Definition 1 (Maximal connected complete subgraph):

to the ‘movie’ entity. However, we model it as an entity, Given a graphg = (£, R) with £ = J&, andR = | R,

with a relationship type between ‘year’ and ‘movie’. While a subgraph is defined as a gra@h, R’) for which &’ C &€

this approach is inadequate for data modelling purposes, #ind R’ C R such that for every pair of nodes,,e; € &’

allows for a unified treatment of attributes and entitiesisTh part of the subgraph, ifex,e;) € R then (ex,e;) € R'.

is desirable, as in the ER model the distinction betweermA subgraph(&’,R’) is connected if there exists a path

attributes and entities is often ambiguous, while we wishbetween any pair of nodes frofii along edges fronRk’. It

our methods to be independent of such modelling choicess complete if for any pair of nodes,,e; € £ of different

Furthermore, it makes our methods more general than otheypes (i.e. withe, € &, ande; € &, k # ) between

methods that do distinguish entities from attributes. which an edge typeRy,; exists, it holds thafex,e;) € R'.

A graph representation of a MRDIn the rest of this A maximal connected complete subgraph is a connected
paper, we will make use of a graph representation of MRDscomplete subgraph to which no node can be added without
In this representation, there is a node for each entity in th&iolating connectedness or completeness.

MRD, and an edge between the nodes corresponding to en- Note that a subgraph of size larger than one can be
tities e, ande, for each relationship instaneg; = (ex, e;). connected only if it contains nodes of at least two different
We say that nodes representing entities of the same typgpes. A connected complete subgraph is a generalization of
are of the same node type, and similarly we say that edges clique to theK -partite graph representation of the MRD,
representing relationship instances of the same type are ofsed in this paper.



e‘a back to the data table, this is equivalent to a set of atiebut
<

e @< values along with the supporting set of rows in the table.
o1 1 o ‘ ‘G This is depicted in Fig[13 which shows an attribute-value
: Z 1 :’ @ e data table with three attributes and three transactionse,He
the set of node$Al, PK1, PK2, B1, C} is an example of
e an MCCS.
Figure 2. Transaction database as a bipartite graph. Totoss: and I1l. RMINER: AN ALGORITHM TO SEARCH FOR ALL
items represent different partitions of the graph and ameetl with edges MCCSs

according to the ‘1's of the binary matrix.

In this section we outline a new algorithm called RMiner
(from Relational Miner), that is able to efficiently enumiera
all CCSs in aK-partite graph. After this, we present a
variant of RMiner that can be used when only the Maximal
CCSs are required.

Note that practical methods to enumerate all cliques in
an ordinary graph exist (e.g. the Bron-Kerbosch algorithm
[12]). Furthermore, an algorithm for searching fgrpartite
Figure 3. Attribute-value database as a k-partite graphibétes represent  maximal cliques was proposed In [23], although there edges
different partitions of 'the graph and at_tribute' values espnt the nodes. gre allowed between any pair of types. Despite clear sim-
Key and non-key attribute values are linked if they co-occuthe same ., .. .
tuple of the attribute-value table. ilarities between these problem settings and the task of

enumerating (M)CCSs in this paper, the differences are too
large to allow the use of these algorithms to our problem

In the example of Fid.]1 the set of nodgEL, T3, Drama,  Wwithout significant modifications or inefficiencies.

History, 201G represent an MCCS pattern. This pattern Enumerating all CCSs:In RMiner a CCS is repre-
provides the information that tittes T1 and T3 are bothsented using a list of the nodas = {e!,¢?,... el®l}
produced in 2010 that are both Drama and History. it contains. It enumerates CCSs by enumerating all such
Special cases of MCCS<Lonceptually, MCCSs are lists of nodes that represent a CCS. To do this efficiently,
easy to grasp, and the empirical results will further demonsuch lists are organized in a tree-structured search space,
state that this pattern syntax is a sensible and intuitive on with the empty list (corresponding to the empty CCS) at
An additional argument in support of MCCSs is that theythe root and with a CCS represented by the node list
reduce to well-known pattern syntaxes of well-studied form e = {e',€2,...,el¢I=1 ¢elel} having its longest non-trivial
of data. prefix {e!,e?,...,eleI=1} as its parent. RMiner traverses

Consider a market-basket database, containing two entitthis tree in a depth-first manner, backtracking as soon as
types: items and transactions. There is one relationsipig ty a subgraph is constructed that is no longer connected or
representing the fact that an item was bought in a transactio complete. Note that this strategy ensures that each CCS is
It is well-known that a binary item-transaction database ca represented by a list for which it holds that each prefix is als
be represented by means of a bipartite graph [22], and CCS. (For some permutations of the nodes, some prefixes
indeed this graph is exactly the graph representation ofay not be connected and thus would not represent a CCS.)
this rather degenerate case of a MRD. An MCCS in thisWe say such a representation ltasinected prefixes
bipartite graph is a maximal biclique, which corresponds to To branch down in this search tree, we need an efficient
a maximal tile in this database: the pair of a closed itemsetvay to identify which nodes may be added to a CCS such
and its supporting transactions [7]. This is depicted in[Big that the result is still a CCS. These nodes are the adjacent
showing a database of three items and four transactions armmmon neighbours to the CCS, defined as follows.
the corresponding bipartite graph. The set of nodek, T2, Definition 2 (Common neighbour, adjacent common neighbour)
11, 12} is an example of a maximal biclique in this graph. A node e, of type Ej is a common neighbouof a CCS

Similarly, for a single attribute-value data table the gnti represented by the list of nodes iff for each nodee; € e
types in our formalization consist of the entity type thatof type E; for which an edge typeRj; exists between
uniquely identifies the rows of the table (typically idemtdi Ej, and Ej, it holds that (ex,e;) € Ry An adjacent
by a primary key attribute), along with an entity type for common neighbouof a CCS is a common neighbour that
each of the (non-key) attributes. Hence, for an attribatierey  is connected by an edge to at least one node from that
table with K — 1 (non-key) attributes, we would hav& CCs.
entity types. An MCCS in thig(-partite graph contains aset  This approach by itself does not rule out enumerating the
of nodes representing attribute-values and necessasityaal same CCS more than once. Indeed, typically there are sev-
set of nodes corresponding to the rows of the table. Mappedral permutations of the nodes in a CCS that have connected

PK1 Al B1 c1
PK2 A1 B1 c1




prefixes, such that the same CCS would be enumeratemhy more after’, showing contradiction. ]
several times represented by different permutations of the  Restricting the search to MCCS#s the number of
node list. To avoid generating a CCS in more than one ofCSs can still be prohibitively large, in this paper we are
these permutations, a lexicographical ordering is imposethterested only in Maximal CCSs (MCCSs). Enumerating
over the nodes. RMiner is designed so that it only generatesnly the MCCSs can be done more efficiently than enumer-
the lexicographically smallest permutation for each CE@S, r ating all CCSs, by pruning parts of the search tree that do
ferred to as theepresentative permutatiommportantly, the  not lead to Maximal CCSs.
prefix of a representative permutation is a also repredeatat Our approach is based on the following observation
permutation, such that the set of representative perroutati (which is similar to the observation that allows pruning non
forms a subtree of the larger search tree described abovemaximal partial solutions in the setting of frequent itetse
Note that limiting the search to representative permutamining [21]). Assume nodes ande” with ¢’ < e” are both
tions only, is not as easy to implement as for ordinary clique extensions of a CCS. Then, if the common neighbours of
in ordinary graphs (as done e.g. in the Bron-Kerboschthe CCS extended by’ are included in the set of common
algorithm [12]), since the nodes in a representative peemut neighbours of the CCS extended &y any MCCS including
tion are not necessarily sorted lexicographically themesl that CCS as well as bo#ti ande” would be discovered when
Indeed, the lexicographically sorted list of nodes in a CCSextending the CCS with'. Extending it directly withe”” can
may not have connected prefixes. Thus, representative pesnly lead non-maximal CCSs sineé cannot be included
mutations cannot be generated simply by adding nodes iafter includinge”, so we can prune the branch of the search
lexicographical ordering. To specify how RMiner deals with tree extending the CCS with’.
this, we need to introduce the concegachability. Clearly, MCCSs can only be found whenever a recursion
Definition 3 (Reachable node type and reachable node):reaches an end point. That said, some of these end points
A node type is said to beerachablefrom a CCS iff there may in fact not be maximal. Checking maximality can be
exists an edge type between this node type and the typgone by verifying if the set ofdjacentcommon neighbours
of at least one of the nodes already in the CCS. We say & equal to the CCS itself.
node isreachablewhen its node type is reachable. Implementation details: Simplified pseudocode of
RMiner will expand a CCS represented lywith an  our algorithm is given in Algorithni]l. For space and
adjacent common neighbour only if e is lexicographi- transparancy reasons, the pseudocode hides the following
cally larger than all nodeshat were added since first  implementation details that allow for additional efficignc
became reachabl& his concludes the high-level description  Each intermediate CCS, represented by a nodeeliist
of RMiner for mining all CCSs. Correctness and efficiencythe pseudocode, is actually represented by RMiner in a
of RMiner's enumeration strategy can be proven as followsmanner similar to the ltemset-Tidset pairs[in/[21], with ®om
Theorem 1 (CorrectnessRMiner will enumerate each additional intricacies due the fact that items and transast
CCS at least once. coincide when searching for MCCSs, and due to the graph
Proof: The algorithm would reconstruct any given CCS being K-partite. More specifically, for each CCS, three
by first adding the lexicographically smallest node of thepieces of information are kept in memory: the set of nodes
CCSs, after which the lexicographically smallestachable e already in the CCS, the set of common neighboure of
node from the CCS is added, recursively until all of its nodeqremembering also which are adjacent), and the subset of
are added. That all nodes can be added follows from the fache adjacent common neighbours that are lexicographically
that a CCS is connected by definition, such that each nodrger than the last node added dosince their node type
type will become reachable at some point in the algorithmbecame reachable. These pieces of information can be stored
m  efficiently, upon extension of a CCS they can be updated by
Theorem 2 (Efficiency)RMiner will enumerate each means of simple set operations, and they facilitate pruning
CCS no more than once. and maximality checking. Various further optimizations ca
Proof: Assume the contrary, that the algorithm would be made (such as the use of diffsets), but they will be part of
generate at least two permutations representing a given CC8ur future work. Another implementation detail is that the
Let us say that the first nodes in the permutations that diffefexicographical order on the nodes is created by assuming an
aree’ ande” respectively—i.e. all nodes precediagin the  overriding lexicographical order over the node types, glon
first permutation and preceding in the second permutation with a lexicographical order over the nodes within each type
are equal. This implies that they are both reachable from
the CCS comprised of the identical set of previously added
nodes. Assume without loss of generality thak ¢” in the The number of MCCSs is usually very large, which is a
lexicographical ordering. Then, in the second permutationrecurring problem in Pattern Mining research. Typicallisth
¢’ was added aftee”, which is not possible since’ was problem is addressed by selecting or ranking patterns using
reachable at the same time @sand can thus not be added objective or subjective interestingness measures [8]eHer

IV. ASSESSMENT OF PATTERNS



Algonthm 1 Slmpllfled pseUdOCOde for mining all MCCSs (See Sem)’ and the approach to contrast MCCS patterns

from a K -partite graph.

RMiner (Graphg = (£,R))

1: for e € £ in lexicographical orderdo

2:  Expandg,e)

3: end for
Expand(Graph ¢ =
Em)

LN =10

2: for e € £ in lexicographical orderdo

3: k= max{l: e is not reachable from the prefix.;}

(€,R), Ordered node liste €

4. if Ve' € epr1., 1 € < e then

5: n = the set of common neighbours ef
6: if 7in’ € N :n C n’ then

7: N =NU{n}

8: Expand(,ee)

9: end if

10:  end if

11: end for

12: if N # ) && IsMaximal(G,e) then
13:  Sende to the output
14: end if

IsMaximal(Graph G = (£,R), Ordered node liste €
Em)
a = set of adjacent common neighbourseoin G
if a==e then
return true
else
return false
- end if

o aRwNR

with this model to arrive at an interestingness measure (see
Sec[1V-B).

A. Maximum-Entropy model of the user’s prior information

We consider as prior information the degree of the nodes
for every relationship type in thd(-partite graph repre-
sentation of the MRD. Following[[2], we formalize this
prior information in a probability distributiorP, fitting the
Maximum Entropy distribution on thd{-partite graph of
the MRD, with constraints on the expected degree of the
nodes for every relationship type being equal to their dctua
degree. This is the distribution of maximal uncertaintyatbo
the data with only the prior information as bias.

The nature of the constraints is such that they are defined
for every relationship typ&;,; of theMRD without imposing
any dependence between the relationship types. Therefore,
the Maximum Entropy distribution for the MRD subject to
these constraints will be a product of independent Maximum
Entropy distributions, one for each relationship type edl,
if there were dependencies between the relationship types,
the Entropy of the joint distribution would be reduced by
their mutual information[[1], and would therefore not be
maximal. Representing each relationship type as a binary
databaseDy; with Dy (i, j) = 1 when (e}, e]) € Ry, the
Maximum Entropy distribution for the MRD is thus:

P(UpDi) = H Pri(Dpi).
Kl

Maximizing the Entropy for every relationship typey;
of the MRD represented by a binary matri®;; subject to
constraints on the expected degrees of the nodes is equtivale
to maximising the Entropy of a distribution for a binary
database subject to constraints on the expected row and
column sums. The solution of this problem was shown to

we choose to define interestingness with respect to a specifife a product of independent Bernoulli distributions, given
type of prior information, by defining an interestingnesspy [2]:
measure which deems an MCCS to be more interesting if

it is more unexpected given this prior information. More

Pu(Dw) = T[1P(Du(i,j)) with P (D, 5)),

specifically, we consider as prior information the degree i

of each node in the different relationship types of tiie
partite graph representation of the MRD. An MCCS is more =
interesting if it is harder to explain based on this priooinf

exp (Dkz(iaj)(—/\?cl - #il))
1+ exp(=Xj; = 4j,)

)

mation alone. For example in the setting of a movie MRD, anyhere AL, Hiz are parameters that can be computed effi-
MCCS containing directors that have directed many moviegiently.

would be deemed less interesting by our approach than
equally large MCCS containing less prolific directors, as th

aﬁ. Contrasting MCCSs with the Maximum Entropy model

latter MCCS cannot as easily be attributed to randomness An interesting pattern conveys as much information as

and is more unexpected.

possible when contrasted with the user’s prior information

To introduce the interestingness measure, we can closef8 concisely as possible. Following earlier work [2], we
follow the work presented in [2].[3], where it is argued that can formalize this idea by quantifying the interestingness
subjective interestingness can be formalized by contrgsti of an MCCS patterny = (£’,R’) as the ratio of the self
patterns with a background model that is the Maximuminformation of the MCCS and its description length:

Entropy model subject to the prior information. Thus we
only need to detail the Maximum Entropy model for our case

Selfinformatiort)
DescriptionLengtfy)

Interestingneds) =



Here, the self information of an MCCS is defined given On the other hand, the support, measured as the ratio of
the probability of its edges under the Maximum Entropythe tuples of the join table that contain an itemset, does
model, as: not have a clear meaning as attribute values are replicated

due to the join operation. A different approach is taken by

) . Smurfig [10] where the support is measured with respect to

Selfinformatioriy) = — Z log(P (1)) every table, as the relative number of keys that the items
T ER! correspond to.

5
An MCCS is described most naturally by the set of nodes]_ Warmr [3] and Farmer([17] are methods based on ILP.

. . o . he patterns have the form of logic rules which can be
it contains. More specifically, we choose to describe MCCS
Iy : regarded as local models of the database. The goal of these
patterns by specifying for each node whether it does or does . .
. methods is to mine for the most frequent rules. The support
not belong to the pattern. To specify that a node belongs to

an MCCS, we will use- log(p) bits, and to specify it does is defined as the relative number of key values of one target

not belong to the MCCS we will use log(1—p) bits, where table that satisfy the rule. Therefore the more generalilee r

p is a probability parameter. Such a code satisfies Kraft’s:[he higher its support will be. This type of pattern syntax is

inequality exactly, and is thus optimal and asymptoticallyvery expressive and can capture well the relational stractu

! . ; - However, the objective of these methods (frequent rules
achievablel[[l]. Using this approach, the description lengt about the data) is different than ours (interesting pastetn
of an MCCS patterny = (£/,R’) with n = |£’| nodes and gp

. _ L co-occurring attributes). Finally the interestingnessasuge
given that the graph of the MRD h&é = |£| nodes is given we propose in Se¢V can not be applied on Warmr and

by: Farmer patterns and evaluating the interestingness of this
kind of patterns is a challenge.

DescriptionLengtfy) = — > log(l—p)— > log(p), Warmr, Farmer, and Smurfig are all based on the notion

ey ey of a recurring pattern, and they directly depend on a support

= Nlog (1—;17) +nlog (ﬁ) . notion. Measuring the support with respect to one or a set

) ) of target tables, makes the results difficult to interpred an

In [2] it was suggested to setby default to the density i erefore introduces usability issues. The potential ustr
of the database, an approach we adopted in our empiricglaye 1o understand what exactly it means for a recurring
results as well. However, the parameter can be tuned so &3tern to be frequent with respect to a certain target table
to bias the search more toward larger in number of nodegqgitionally, these techniques are likely to suffer froneth
MCCSs (largerp) or toward smaller in number of nodes g3me problems as other frequent pattern mining techniques,
MCCSs (smallep), if desired. in particular the fact that support is usually only weakly
related to interestingness.

RDB-Krimp [14] is a method for mining relational

Most previous work on relational pattern mining can bedatabases which is related to ours in that it also uses
categorised into methods that generalize ideas from freque information theoretic ideas for the assessment of patterns
itemset mining to the relational setting and methods that arlt uses the pattern syntax of Farmér1[17] but considers
based on Inductive Logic Programming (ILP). In this sectionjust patterns of depth two (patterns of a target table and
we discuss the differences between these approaches and allir the tables related to it with a foreign key). The most
approach as well as other works that do not fall into thesdrequent patterns of this kind are mined for every table
two categories. of the database as a target table and then RDB-Krimp

Well known ideas and algorithms from frequent itemsetfinds the most characteristic patterns among them using the
mining can be used for MRDs unaltered if applied on theMDL principle. The focus of this method is on the total
join of all tables. The syntax of this type of patterns is description length of the database joint with the patterns,
essentially that of itemsets, with items in this case beingand patterns are deemed more interesting if they are better
attribute values and transactions being the tuples of that compressing this description length. We instead deem
join table [16], [10], [13]. The characteristic of this path  patterns more interesting if they describe surprising etspe
syntax is that a tuple always contains one attribute value peof the database in a concise way, which we argue makes
attribute and as a result it is impossible to have two valuesur results more relevant to an end-user. Finally RDB-Krimp
of the same attribute in the same pattern. An itemset of thiselies on heuristic search to find the optimal set of patterns
type for instance would not be able to capture the fact thathat best compress the database which is not the case for
a director can be related to many films. This is somethingour method that searches exhaustively.
that an MCCS pattern naturally captures. However, itemsets An approach for assessing the statistical significance of
on the join table can still capture co-occurrences of atteb relational (SQL) queries based on randomisations of differ
values that belong to different attributes. ent tables is proposed in_[18]. Although this approach was

V. RELATED WORK



not intended to propose a method to mine such patterns it
provides an insight towards making relational patterngulise
to the user.

Finally one could see our work being connected to fre-
qguent sub-graph mining _[20]l_[15] however besides being
based on frequency, these methods are aimed at databagggire 4. Entity-Relationship diagram of tiradb-dent-lyeamndimdb-
of many graphs rather than one connected graph. 4ent-3yearglatabaseskeysare omitted for clarity).

V1. EMPIRICAL RESULTS

To illustrate the kind of patterns retrieved by RMiner,
we show and discuss empirical results on real world data.
We additionally provide a comparison of our method with
other methods in three different levels, namely qualitativ
comparison of the results, objective comparison of the rank
of artificially embedded patterns in data and computational
comparison. We compare with two representative methodsigure 5. Entity-Relationship diagram of tiseidentdbdatabasekeysare
of the previous approaches Smurfigi[10] and Farrher [17]°™tted for clarit).

We chose to compare with Farmer rather than Waimr [5]
because its pattern language is closer to that of MCCSs.
Also note that RDB-Krimp was not publicly available.

For all experiments we searched only for MCCSs that
contain at least one node of each entity type because we
A. Data wanted to show patterns that are different from tiles and

thus truly relational. However we emphasize that our method

_We performed experiments on three datasets of differenfyorks even without this constraint. Tatfle | summarizes the
size and complexity taken from the IMDB databasedb-  oytput sizes and the computation times of the mining step.

3ent-lyearimdb-4ent-lyearandimdb-4ent-3yearssee be- IMDB Database:Figure[® shows the top three patterns

low for detailsl as well as on the Student database of therom the imdb-3ent-lyeadatabase, ranked based on the
Computer Science department of the University of Antwerrﬁnterestingness measure defined in Secfich IV. We expect
[10] (called studentdbin this paper). The purpose of the nayerns that convey as much information as possible as
experiments in this section is to demonstrate computduonq:oncisew as possible to be high in the list. These will be

feasibility, to illustrate the kind of patterns we get when compact MCCS patterns containing many edges that are
mining real MRDs, and to show the usefulness of theunlikely under the Maximum Entropy model.

interestingness measure when used to rank such patterns. The top-ranked pattern (leftmost in Figl 6) informs us
Theimdb-3ent-lyeadataset contains directors and genres, 4 5 director who directed fourteen movie titles that

related to movies produced in 2010 and tiedb-4ent- o of them are of genre Sci-Fi, Comedy and Short. More
lyearadditionally contains keywords. Thedb-4ent-3years technically this pattern contains many edges and many of

datasetl contains directors, genres and keywords, rela.tqﬂem are very unlikely edges under the model of prior
to movies produced between 2008 and 2010. The Entity,ormation of the user, given that this director has just

Relatiopship diagram of the IMDB derived.databases 'Sdirected only these fourteen titles. The second patteqm (to
shown in Fig.[#. Thestudentdbdataset contains students, right in Fig[B) shows that four directors directed two titief

related to professors and courses. The Entity Relationshige genre Short. The third pattern tells us about two dirscto
diagram of this database is shown in fig. 5. General stisti 1ot irected three films which are of the same genre. The
about all the datasets are shown in Tdble I. directors included in second ranked pattern have directed
only the titles of this pattern. The same holds for the third
ranked pattern except for one director who has directed two
We show results of RMiner on thiendb-3ent-1yeaand  more titles not included in this pattern. Hence the links
studentdbso that the resulting MCCS patterns are smallethetween the directors and the titles in both these patterns
and can be shown in this paper. However, we refer the readeire very unlikely, such that the information content of the
to the website of this pagfor a full list of results from  MCCS is high. While explaining a relatively large number
every dataset. of unlikely edges, the number of nodes in the MCCS and

) thus its description length is relatively small. This expta
See http://www.imdb.com/. Please note that there are some the high interestingness

inconsistencies between the version of IMDB that we dowadoiaand the 9 9 :

on-line version. Student Database datasethe top-ranked MCCSs on

2https://sites.google.com/site/rminer2011/ the studentdbdatabase are shown in Fig. 7. Since the first

B. Results using RMiner



Table |
DATABASE DETAILS AND COMPUTATION TIMES OF RMINER.

Non-key Attributes Tuples Nodes Edges Patterns  Time(sec)
per Table per Table
(excluding the join tables)  (excluding the join tables)
imdb-3ent-1year 1,1,1) (15702, 14400, 28) 30130 48976 0242 9
imdb-4ent-1lyear 1,1,1,1) (15702, 14400, 28, 10878) 310080981 4049 379
imdb-4ent-3years 1,1,1,1) (59656, 49348, 28, 32762) 9417 387577 22393 8084
studentdb (3.1,1) (154, 40, 174) 401 3558 155 2
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Figure 6. The three most interesting MCCS patternsridb-3ent-lyearThe leftmost MCCS is the first, the right top is the second tedright bottom
MCCS is the third MCCS pattern.
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Figure 7. The first (left) and the third (right) most interegtMCCS patterns in thetudentdbdataset. Note that the number of student nodes is too large
to show here, so we collapsed them onto one node labelledanitllipsis.

prof."prof_21

contrac

two patterns were structurally similar (although they agnv two courses they attend, the professor teaching theseeours
non-redundant information), Figl 7 shows only the first andand the lecture room they are taught in. The difference
the third most interesting patterns but we discuss all tis¢ fir between these two patterns is that the first contains a set of
three of them. 67 students who follow the "Model” track while the second
The top two patterns convey information about a set ofcontains a set of 46 students who follow the "Individualised

students, the program, contract, the track they are foligwi  {rack. Roughly speaking, the second pattern ranks lower tha



(genre=Action) (name="Appleford, Russell") (.title="40 Years")

(gore=Acton (ame=Wagner, e (1e-~600") of the most frequent rule corresponding to this MCCS and,
enre=Action) (name="Gao, Fawn") (title=" " . .

¢ allowing Farmer an advantage due to the different pattern
Figure 8. Three of the most frequent patterns of Smurfigrodb-3ent-  Syntax, also the rank qf any CCS containing a srealiset
lyearsdatabase. of the embedded predicates.

, To artificially embed a pattern, we addédgenres,k
director(VONO), directs(VONO,V1NO), genre(V1NO,Drama) . . .
di (VONO), directs(VONO,V1NO), VINO,Short;
director(VONO) directs(VONO.VNO) gorre(V INO.Shor) directors, andk titles to the (_jatabase, in such a way that
each of thesé: genres and directors are connected to each
Figure 9. Top three most frequent patterns of Farmemaib-3ent-1years  Of the k titles, forming a CCS. As this by itself would create
database. an unrealistic disjoint part of the database, we additignal
added random links preserving the overall connectivity and

the first as it contains 126 fewer edges. Finally the thirddatabase statistics. E.g., we randomly added links between

pattern (right in Fig[T7) conveys information about a set c)fthe existing genres and the newly added titles so as to ensure

. that, in expectation, the total fraction of titles each of th
67 students, their program, contract, and track, as welhaso _ .. - . T
T existing genres is linked with stays the same. This is done
course, the professor teaching it and the lecture room. Thée

third pattern is less interesting than the first as it costaist dlso between the existing titles and the newly added genres,

1 node less while it explains 67 fewer edges and contains i%nd similarly for the directors and titles.

more common Course room. Table[Tl shows the rank of the embedded MCCS pattern
for increasingk. RMiner ranks the embedded pattern higher
C. Qualitative comparison as the number of nodes per entity type increases and ranks

Here we qualitatively compare with the results of Smur-it first When it contai_ns more than_just three nodes, showing
fig [10] and Farmer[[17] on thémdb-3ent-lyeadataset. that RMiner ranks high even relatively small patterns known
) to be present in the database.

Smurfig patterns: We ran Smurfig with a support For Farmer we used the same pattern syntax as in
threshold of 0.001 to be as inclusive as possible. To compargec.[VI-C. Table 1l shows the rank of the highest ranked
with the patterns of RMiner we selected the ones that contairule including allgenrepredicates in the embedded MCCS,
items from all the three attributes. As pointed out in $dc. V,as well as corresponding to a CCS containing a subset
each of these patterns can contain only one attribute valuef just two or more of the embeddegenre predicates.
per attribute. Because of the nature of thedb-3ent-1year Unsurprisingly, Farmer ranks the CCS patterns more highly
dataset each of them has absolute support of 1. Figure ®an the more specific and thus less frequent MCCS patterns.
shows three of these patterns. Thus, Smurfig is clearly ndtlowever, even the CCS patterns are ranked much lower than

suited to find relations in relational data of this kind. using RMiner.

Farmer patterns: We ran Farmer with an abso-
lute support threshold of 1. The pattern syntax we used Table Ii
had the following form: director(X), directs(X,Y),  RANKOF ARTIFICIALLY EMBEDDED MCCSPATTERN INimdb-3ent-lyear
genre(Y, 91) o genre(Y, gn) and the key of the search is DATASET WITH INCREASING NUMBER OF NODESk PER ENTITY TYPE
the atomdirector(X). Figure[9 shows the top three most k 2 3 4 6
frequent of these patterns that contain all three predscate RMiner Rank 103 6 1 1

Farmer Rank (MCCS) 121 502 1464 2141

None of these patterns contain more than one genre con- Farmer Rank (CCS) 121 109 125 147

stants, which is to be expected as the most frequent rules
are bound to be the more general rules. Note that if we found
the directors and titles that satisfy these rules, thegernoat
would correspond to CCSs. The difference between Farmer
patterns and CCSs is analogous to the difference between Table Il

itemsets and tiles. Farmer patterns corresponding to MCCSS Ty in SEC OF THE MINING STEP AND NUMBER OF PATTERNE#P)

are expected to be less frequent as they are more specific. =~ WITH INCREASING PERCENTAGE OF TITLE' NODES(%N).
. . . 0
D. Objective Comparison %n 20 40 60 80 100
. . . e RMiner  # 2848 5643 8575 11360 14202
We investigated how different methods detect artificially timpe 0.6 19 41 6.1 9.1

embedded MCCS patterns of different sizes in tmelb- o 0™ ™ 207000 706344 1080208 1420896 1770200

3ent-lyeardata. More specifically, we investigated how time 57 220 561 952 1451
highly the embedded MCCS (or a larger MCCS containing e e ™ 40 1711 2048 3424 3860 4545
it) is ranked by our method using the interestingness measur time  0.02 0.07 0.13 0.14 0.19

we propose. To compare with Farmer we checked the rank



E. Scalability comparison

We did a scalability analysis by running RMiner, Smurfig
and Farmer on subsets iofidb-3ent-1yegrandomly select-

(3]

ing a varying percentage of movies along with the genres[4]
and directors connected to these. The results of RMiner
show that the number of MCCSs and computation times

scale roughly linearly with the database size (see TaBe IlI
Smurfig is slower than RMiner by a factor of at least

(5]

100. Farmer is faster by a factor of 30-40. However, we

believe this gap can be shrunk significantly by applying
the additional pruning techniques and the use of diffsets,

as discussed in Selc I,

VIl. CONCLUSION

We have introduced a new syntax of multi-relational
patterns in MRDs, and an algorithm to mine them efficiently.

(6]

[7]

(8]

Our approach relies on a representation of the MRD as
a graph, and mines patterns that correspond to completd¢9] A. Gionis, H. Mannila, T. Mielikinen, and P. Tsaparas.
connected subgraphs in this graph. This pattern syntax
generalizes the notion of a tile in a simple binary database,
and is easy to interpret also in more complex settings. Notg, o

that while we have written the paper with MRDs in mind,

our approach is directly applicable also to RDF data.

An important advantage of the proposed pattern syntax is
that it is independent of a notion of support to assess thg ;
interestingness of a pattern. Instead, we showed how ideas
introduced in [[2] can be used, defining interestingness by

contrasting a pattern with a Maximum Entropy model rep-

resenting background knowledge on the degree of individual

nodes in the graph representation of the MRD.

[12]

This paper opens up several avenues for further research,
such as: The expansion of the types of prior beliefs that can
be taken into account in the MaxEnt model for the database;

The definition of different pattern syntaxes correspondin

13]

to different graph patterns in the graph representation of
the database; The development of speed-ups of the RMiner
algorithm e.g. using diffsets and the so-called CHARM-[14] A. Koopman and A. Siebes. Characteristic relationalguas.
properties presented ih [21]; The development of an algo-
rithm that directly mines the interesting MCCSs, instead of

using a two-step approach as in this paper.

ACKNOWLEDGMENTS

We would like to thank Michael Mampaey for providing
the Smurfig code and data and for his support in using Smu

(15]

po

fig, as well as Jilles Vreeken for the thorough proof reading
and the insightful feedback. The authors are supported by

EPSRC grant EP/G056447/1.

REFERENCES

[1] T. M. Cover and J. A. Thomas.Elements of Information

Theory Wiley, 2005.

[2] T. De Bie. Maximum entropy models and subjective inter-

estingness: an application to tiles in binary databafxsta
Mining and Knowledge Discoverp011.

(17]

(18]

T. De Bie, K.-N. Kontonasios, and E. Spyropoulou. A
framework for mining interesting pattern setsSIGKDD
Explorations 2010.

L. De Raedt and A. Zimmermann. Constraint-based pattern
set mining. InProc of the 2007 SIAM International Confer-
ence on Data Mining (SDM)pages 237-248, 2007.

L. Dehaspe and H. Toivonen. Discovery of frequent dagalo
patterns. Data Mining and Knowledge discoveng:7—-36,
March 1999.

R. Elmasri and S. B. NavatheFundamentals of Database
SystemsAddison Wesley, 2006.

F. Geerts, B. Goethals, and T. Mielikainen. Tiling daaés.
In Proc of Discovery Sciencgages 278-289, 2004.

L. Geng and H. J. Hamilton. Interestingness measures for
data mining: A surveyACM Computing Surveys38, 2006.

Assessing data mining results via swap randomizatiM
Transactions on Knowledge Discovery from Daté3), 2007.

B. Goethals, W. L. Page, and M. Mampaey. Mining interest
ing sets and rules in relational databasesPioc of the ACM
Symposium on Applied Computing (SA@Gages 997-1001,
2010.

S. Hanhijarvi, M. Ojala, N. Vuokko, K. Puolamaki, N. Tiat
and H. Mannila. Tell me something i don’t know: randomiza-
tion strategies for iterative data mining. Rroc of the ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD) pages 379-388. ACM, 2009.

H. C. Johnston. Cliques of a graph-variations on thenBro
Kerbosch algorithm.International Journal of Parallel Pro-
gramming 5:209-238, 1976.

A. Koopman and A. Siebes. Discovering relational itegbss
efficiently. In Proc of the SIAM Conference on Data Mining
(SDM), pages 108-119, 2008.

In Proc of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDDpages 437—
446, 2009.

M. Kuramochi and G. Karypis. Frequent subgraph discpve
In Proc of the ICDM'01 pages 313-320, 2001.

E. K. K. Ng, K. Ng, A. W.-C. Fu, and K. Wang. Mining
association rules from stars. IRroc of the 2002 IEEE
International Conference on Data Mining (ICDM)ages
322-329, 2002.

S. Nijssen and J. Kok. Efficient frequent query discgvier
FARMER. InProc of the 7th European Conference on Prin-
ciples and Practice of Knowledge Discovery in Databases
(PKDD), pages 350-362, 2003.

M. Qjala, G. C. Garriga, A. Gionis, and H. Mannila. Evalu
ing query result significance in databases via randomiasitio
In Proc of the SIAM Conference on Data Mining (SDM)
pages 906-917, 2010.



[19]

[20]

[21]

[22]

(23]

A. Siebes, J. Vreeken, and M. van Leeuwen. ltem sets that
compress. IrProc of the SIAM Conference on Data Mining
(SDM), 2006.

X. Yan and J. Han. gspan: Graph-based substructurerpatt
mining. In Proc of the ICDM’'02 pages 721-730, 2002.

M. Zaki and C.-J. Hsiao. CHARM: An efficient algorithm
for closed itemset mining. IrProc of the 2002 SIAM
International Conference on Data Mining (SDMyages 457—
473, 2002.

M. Zaki and M. Ogihara. Theoretical foundations of asso
ciation rules. In3rd ACM SIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovet®98.

M. Zaki, M. Peters, I. Assent, and T. Seidl. Clicks: An
effective algorithm for mining subspace clusters in catiegd
datasets.Data and Knowledge Engineerin¢0(1):51 — 70,
2007.



	I Introduction
	II Multi-relational data and patterns
	III RMiner: an algorithm to search for all MCCSs
	IV Assessment of patterns
	IV-A Maximum-Entropy model of the user's prior information
	IV-B Contrasting MCCSs with the Maximum Entropy model

	V Related Work
	VI Empirical Results
	VI-A Data
	VI-B Results using RMiner
	VI-C Qualitative comparison
	VI-D Objective Comparison
	VI-E Scalability comparison

	VII Conclusion
	References

