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Abstract

Finding ways of incorporating auxiliary information or auxiliary data into the learning process has

been the topic of active data mining and machine learning research in recent years. In this work

we study and develop a new framework for classification learning problem in which, in addition to

class labels, the learner is provided with an auxiliary (probabilistic) information that reflects how

strong the expert feels about the class label. This approach can be extremely useful for many

practical classification tasks that rely on subjective label assessment and where the cost of

acquiring additional auxiliary information is negligible when compared to the cost of the example

analysis and labelling. We develop classification algorithms capable of using the auxiliary

information to make the learning process more efficient in terms of the sample complexity. We

demonstrate the benefit of the approach on a number of synthetic and real world data sets by

comparing it to the learning with class labels only.
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I. Introduction

Nowadays, large real-world data sets are collected in various areas of science, engineering,

economy, health care and other fields. These data sets provide us with a great opportunity to

understand the behaviour of complex natural and man-made systems and their combinations.

However, many of these real-world data sets are not perfect and come with missing

information we currently have no means to collect automatically.

One type of information that is often not collected and recorded in the real-world data are

subjective labels provided by an expert in the field that assign examples in the data to one of

the classes of interest. Take for example a patient health record. While some of the data

(such as lab test data, medications given) are archived and collected, diagnoses of some

conditions, or adverse events that occurred during the hospitalization are not. If the goal is to

analyse these conditions and predict them, individual patient examples must be first labelled

by an expert or a group of experts.

The process of labelling examples using subjective human assessments can be an extremely

time-consuming and costly process, especially when examples are non-trivial and high-

dimensional. Optimizing the time and cost of this process boils down to reducing the

number of examples one must assess. One direction to address this problem explored
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extensively by the machine learning community in recent years is to develop active learning

[1] methods that analyse examples, prioritize them and select those that are most critical for

the task we want to solve, while optimizing the overall data labelling cost.

In this work, we explore another direction that is orthogonal to the active learning approach

that can help us to alleviate the costly example labelling process in practice. The idea is

based on a simple premise, the human expert that gives us a subjective label can often

provide us with auxiliary information related to the case and its assessment which reflects

his/her certainty in the label decision and may take the form of belief or assessment

confidence or similar measure, and this at cost that is insignificant when compared to the

cost of the example review and label assessment. To illustrate this point, assume an expert

reviewing electronic health record data in order to provide some diagnostic assessment of

the patient case. Clearly the complexity of the data prompts him/her to spend a large amount

of time reviewing and analysing the case (typically 3–5 minutes). Once the example is

understood and the label decision is made, the cost of providing additional assessment of the

confidence in this decision is relatively small and insignificant.

In this work we propose and study a machine learning framework in which a classification

learning problem relies on both a class label and a probabilistic assessment of the confidence

or belief in this label. We first show how one can easily modify one of the basic learning

algorithms (the logistic regression), to accept the probabilistic assessments and learn a high

quality classifiers with a smaller number examples. Since the new model depends strongly

on the accuracy of subjective probabilistic estimates it may become sensitive to the

assessment inconsistencies and noise. To address the problem we propose a novel method

based on the support vector machine and learning to rank approach that is more robust to

this noise and is able to learn a high quality classifier with a smaller number of examples.

We demonstrate the benefits of our method on a number of UCI data sets, while adding

noise to probabilistic assessments. Finally we test the method on a real-world clinical

diagnosis problem.

II. Problem description

We want to learn a binary classifier f : X → Y. In addition to binary {0, 1} labels defining Y

we also have access to additional information: a probability pi reflecting one’s belief the

example xi belongs to class 1. Hence each data entry in the data set D = {d1, d2, ⋯ dN} we

learn from consists of three components: di = (xi, yi, pi), an input, a class label and an

estimate of the probability of class 1.

The probabilistic information we assume in our problem can be often obtained when labels

are acquired from human assessment. For example, if x is a patient and y denotes the

presence or absence of a disease or some adverse condition that is based on physician’s

evaluation of the patient, the probability captures the physician’s belief the patient indeed

suffers from the condition. The cost of obtaining this additional information is typically

small once the patient case is reviewed and assessed by the expert.

Despite possible noise in the human-based assessment, a discrete class label yi and the

probability pi are closely related. Adopting a decision-theoretic perspective, we assume the
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class label yi is determined by a threshold on the class posterior probability p(yi|x) that

reflects different loss applied to different types of misclassification errors.

Our main conjecture in this work is that additional probabilistic information can help us to

learn a classifier more efficiently and with a smaller number of examples. This can be

particularly useful when the data we learn from are unbalanced (the prior probability of one

of the classes is small), and when the number of labelled examples we can learn from is

limited.

A. Related work

The process of labelling examples using subjective human assessments can be an extremely

time-consuming and costly process, especially when examples are non-trivial and high-

dimensional. Optimizing the time and cost of this process boils down to reducing the

number of examples one must assess. In the following we briefly review research work that

addresses the problem and contrast them to our framework.

One of the research directions relevant to our work is transfer learning [2], [3], [4], [5], [6].

Transfer learning relies on auxiliary data sources and labels related to the target problem.

The auxiliary data and their labels are either combined with the existing (typically small-

size) data for the target task or used to refine the model or at least some of the model

components and hence simplify the learning. The limitation of this approach is that we do

not always have auxiliary data that are relevant to the current task, and also there is often a

need to tune some parameter that regularizes the ”importance” of auxiliary training data with

that of the training data. Our framework is different from the transfer learning work; the

auxiliary information it uses is directly related to the target labels.

Another relevant research direction explored extensively by the data mining and machine

learning communities in recent years is the development of active learning [1] methods that

analyse examples, prioritize them and select those that are most critical for the task we want

to solve, while optimizing the overall data labelling cost. We would like to note that our

approach is orthogonal to this effort, since we try to gain more useful information from

selected examples with little additional cost. A combination of active learning with auxiliary

confidence information is a possibility and we leave this direction for the future work.

Learning with labels based on subjective human estimates is central also to the learning

from crowds framework. In this framework a case is reviewed and labelled by multiple

reviewers [7], [8], [9] and a ’consensus’ model is sought. In our work, we study ways of

better learning model from one expert, not a crowd, so these methods are complementary. A

combination of our approach with the crowd learning is a possible extension.

The closest to our framework is the research by [10], [11] who considers probabilistic

information as a vital component of the learning process because of the ambiguities in the

class labelling. This work applies the approach to classification of volcanoes from radar

images of distant planets. The differences from our framework are: they rely only on the

probabilistic information to build the models, class labels are ignored; only classification
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models based on simple neural network and probabilistic models are considered; they make

no attempt to correct for the variations and noise in subjective estimates.

III. Algorithms for learning with probabilistic labels

In this section we develop classification learning algorithms that let us accept and learn from

probabilistic labels. We start with modifying a simple discriminative model, and keep

modifying the model to account for possible noise and inconsistencies in subjective

probability estimates.

A. Discriminative model

In the discriminative classification approach we want to learn a function f : X → ℛ that lets

us discriminate examples in the two classes. Once the function f is known, the class decision

is made with the help of a threshold σ such that for values f(x) ≥ σ we classify the example

as class 1, otherwise the class is 0.

In the standard binary classification setting, the discriminant function is learned from

examples with class labels ({0, 1}) only. In our framework, in addition to class labels, we

have access also to auxiliary probabilistic information associated with these class labels. The

question is how this information can be used to learn a better model. One, relatively

straightforward, solution is to assume the discriminant function is defined directly in terms

of these auxiliary probabilities. In such a case, the learning of the discriminant function can

be converted into a regression problem. One way to learn the function is to regress the

features directly to probabilities, that is, we can learn a regression mapping f where (xi, pi)

are the input-output pairs. Obviously, using an arbitrary function model, the outputs of the

regression may not be consistent with probabilities. For example, by applying a linear

regression directly to the input-probability pairs we may not guarantee the consistency of

probabilistic labels once the model is learned, that is, some data points may fall outside [0,

1] interval. An alternative is to regress inputs to a new space in ℛ obtained by transforming

the probabilistic space, such that the transformation is monotonic in pi, and its inverse lets us

revert back to probabilities. An example of such a transformation is  which is

the inverse of the logistic function. In such a case the regression model is trained on (xi,

t(pi)) pairs. The results of the regression can be transformed back to the probability space by

using the logistic function  and the probabilities are consistent.

1) Linear regression—Assuming the function f : X → R is formed by a linear model f(x)

= wT x, the learning problem becomes a linear regression problem solved by minimizing the

error function based on the sum of squared residuals.

(1)
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The solution w* = arg minError(D,w) yields a weight vector optimizing the linear model. If

needed, the posterior probabilities are recovered as: .

Defining the classification threshold: Once the weights of the discriminant function are

learned, a classifier can be defined using a decision threshold σ. To find the optimal

threshold, we can use true class labels and minimize the overall loss in the training data.

2) Regularization—Regression methods are quite common and can be enriched with

different bells and whistles that fit better different data settings. Our primary concern is the

dimensionality of x and the number of samples N in the data set. Briefly, if the

dimensionality of x is high and the number of examples N is small, a possibility of the

model over-fit arises. In such a case we can modify and improve the performance of the

regression model using one of regularization approaches, such as the ridge (or L2)

regularization [12], the lasso (or L1) regularization [13], [14], or their elastic network

combination [15]. Briefly, using regularization, the optimization in Equation 1 is modified

to:

(2)

such that Q(w) is a regularization penalty. Examples of regularization penalties are: Q(w) =

λ‖w‖1 for the L1 (lasso) regularization, or Q(w) = λ‖w‖2 for the L2 (ridge) regularization.

3) Sensitivity to the noise in subjective estimates—Learning of the discriminant

function directly from auxiliary probabilities raises a concern of what happens if these

subjective probabilistic assessments are not consistent and subject to noise due to inaccurate

subjective human estimates. Clearly, if the estimates differ widely one expects them to

impact the quality of the discriminant function. Figure 1 shows the performance of the linear

regression model on one of the data sets (Concrete) we analysed during the study (see

Section IV). It shows the performance of the logistic regression model learnt from original

probabilistic estimates and estimates corrupted by additional noise. The logistic regression

model learnt from binary labels is shown as the baseline. If the noise is too strong the benefit

of auxiliary probabilistic information disappears and the binary label information may

become more reliable when learning a classification model.

B. Using ranking to improve the noise tolerance

The above regression approach learns the model solely using the auxiliary probabilistic

information. As a result it may become very sensitive to the noise and inconsistencies in the

numerical assessments as illustrated in Figure 1. Since humans are not very good in

providing well calibrated probabilistic estimates [16], [17], [18], the deterioration of the

performance due to the noise becomes an important issue and methods that are more robust

to this noise must be used to alleviate the problem.

To address the problem we propose to adapt ranking methods that are more robust and

tolerate the noise in the estimates better. Briefly, instead of relying strongly on exact
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probabilistic estimates, we try to model the relation in between the two probabilistic

assessments only qualitatively, in terms of pairwise order constraints.

Let f : X → ℛ be a linear model f(x) = wT x that lets us discriminate between examples in

class 0 and class 1. Now assume the same model represents a linear ranking function that

lets us order individual data points such that if the instance x1 is ranked higher than x2 then

f(x1) > f(x2). Now assuming any two data points x1 and x2 are ordered according to their

subjective probability p1 and p2, we expect the ranking function to preserve their order.

The learning to rank algorithms [19], [20] let us find the ranking function from the training

data by minimizing the number of violated pairwise constrains between the data points and

the amount of these violations. Such a formulation of a learning problem makes the problem

of learning the discriminative model less dependent on exact subjective value estimates that

are used to induce the pairwise ordering. Hence we hope this relaxation would allow us to

better absorb some amount of noise in subjective probability estimates, eventually leading to

more robust learning algorithms.

Let r* be our target ranking order determined by the probabilistic information pi associated

with each example. Then for every pair of examples xi and xj : (xi, xj) ∈ r* we can write a

constrain wT (xi − xj) > 0 we want the ranking function f(x) = wT x to satisfy. Just, like in the

classification SVM, we allow some flexibility in building the hyperplane by adding slack

variables ξi,j representing penalties for the constraint violation and a constant C to regularize

these penalties. Now the learning-to-rank of N examples is equivalent to the following

optimization problem:

where i, j = 1, 2, …,N indexes examples, Q(w) a regularization penalty, typically ,

and C is a constant. Solving this problem will give us the weight vector w and the

discriminant function f(x) = wT x that violates the smallest number of constraints.

Assuring class-label consistencies—The basic ranking solution presented above

relies purely on the auxiliary probabilistic information and ignores the class labels. Because

of the subjective estimates, it is not uncommon that two different class labels may get

probabilities that rank them opposite of their expected order, that is, the probability assigned

to a class 0 example is higher than the subjective probability assigned to a class 1 example.

To address the problem we may set the priority and define the pairwise ordering constraints

such that they respect the class label as the primary criterion and the auxiliary information as

the secondary criterion.
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C. Optimizing the discriminant function by combining the label and auxiliary probabilistic
information

The ranking approach presented above improves the noise tolerance of the model to

subjective probability estimates by ignoring their exact values and taking into account only

their relative order. Another feature of the model is that the binary label information is

incorporated in the model only in terms of the order constraints. The main question that

arises is whether it is possible to incorporate and benefit from both the class labels and

auxiliary information by combining the loss function for the class label and the loss from the

auxiliary information into a single coherent optimization criterion. The hope for doing this is

to assure the model is driven by the class label first and refined with the auxiliary

probabilistic information, if it is consistent with the labels.

In particular, we propose to optimize:

where B and C are constants and Q(w) is a regularization penalty. Briefly, this formulation

assumes two sets of constraints, one defining the hinge loss for all examples and their labels,

the other one loss for not respecting the order induced by subjective probabilistic estimates.

Once again solving this problem will give us the weight vector w and the discriminant

function f(x) = wT x that violates the smallest number of constraints. Note that by changing

scaling constants B and C one can stress more either the label or the probabilistic order

information. For example, if the noise in probabilistic labels is large then its influence can be

decreased by decreasing C. In general the settings of these parameters can be optimized

using the internal cross-validation approach. In the paper we refer to this approach as to the

SVM-Combo approach.

IV. Experiments

We have conducted two sets of experiments to test our framework and methods. The first set

of experiments uses four UCI Irvine data sets. We modify these data to fit our framework

and provide both the label and auxiliary information with different levels of noise. We use

the data to first demonstrate the benefits of auxiliary information for learning the

classification models. Second, we show the robustness of our methods to noise in the

auxiliary information. Finally we use the data to show how our approach can alleviate the

learning problem when the data are unbalanced. The second experiment applies the

framework to real-world clinical data and human assessments of a risk of a life threatening

condition – the heparin induced thrombocytopenia [21], [22] and demonstrates the improved

learning of classification models.
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A. Experiments with UCI data sets

In this set of experiments we use four UCI regression data sets. The data sets and their

properties are summarized in Table I. For all these data sets we modified the continuous

output variables and interpreted them as probabilities. We defined a binary class variable by

using a threshold on the underlying continuous variable. For example, the variable

representing the strength of concrete in the Concrete data set was used to define two classes:

a concrete with a good strength and a concrete with a bad strength. Specific thresholds used

to define the binary class variable and are discussed below.

1) Effect of the training data size on the model quality—To test the benefit of the

methods and the impact of auxiliary probabilistic information on the sample complexity we

trained the new models with training data of different size and compared them to models

that learn from the binary labels only. We used the following models in our comparisons:

• LR. The logistic regression with lasso regularization trained on binary labels,

• LRPR. The logistic regression model with lasso regularization trained on the

auxiliary probabilistic information (from Section III-A),

• SVM. The linear SVM with the hinge loss and L2 regularization trained on binary

labels only, and

• SVM-Combo. The new SVM model (from Section III-C) with the L2

regularization penalties and two hinge losses: one for binary labels and the other

one for pairwise ordering constraints.

The constants C and B for SVM models were optimized using 3-fold cross-validation

approach.

We evaluated performance of the different methods by calculating the Wilcoxon statistic

(the area under the ROC curve). Each data set was split into training and testing set (2/3 and

1/3 of all data respectively). We fixed the testing set and randomly selected samples from

the training set to train the models. The training process was repeated 30 times. We reported

the average AUC on the fixed test set. Figure 2 compares the performance of the different

methods on all data sets by varying the number of samples selected for training. The error

bars show 95% confidence interval.

Discussion: The results on all four data sets clearly show the benefit of learning with

auxiliary probabilistic information. All methods trained with the auxiliary information

outperformed their binary label counterparts and the sample complexity for training the

model of equivalent quality was greatly reduced. On three of the data sets the best method

was the SVM-Combo method, the logistic regression with auxiliary information was the best

performing method on one data set.

2) Effect of the noise on the auxiliary information—Our first experiment assumed

the class label is defined directly by the probabilistic information. It meant to show that the

auxiliary information may help. However, in practice the probabilistic information is often

imprecise and subject to noise. This may effect its utility for learning the classification
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models. Our second experiment aims to demonstrate the robustness of our method to such a

noise.

Figure 3 shows the performance of four methods from the previous experiment when

auxiliary probabilistic information is corrupted by a noise. We assume four different levels

of noise: no, weak, moderate and strong noise. To obtain the noisy estimates each auxiliary

probability value was modified as follows:

• no noise: 0;

• weak noise: Gaussian noise from 0.05*N(0,1);

• moderate noise: Gaussian noise from 0.1*N(0,1);

• strong noise: Gaussian noise from 0.2*N(0,1).

To avoid inconsistent probability values, we assured all auxiliary values always fell in the

interval [0,1]. To better understand the true noise influence on the probabilistic information

Table II lists the average proportion of the noise to the original signal after different levels

of noise were applied to original data.

Discussion: When the noise is injected into the probabilistic information the logistic

regression model trained with probabilistic information is sensitive and its performance

drops. We see the logistic regression model trained on binary labels in some instances

outperforms the model with auxiliary information. However, our SVM-Combo approach

that uses ranking is more robust and outperforms both the baseline logistic regression and

the baseline SVM for all three noise levels. This shows the robustness of our approach to

noisy auxiliary information estimates.

3) Effect of auxiliary information when learning with unbalanced data set—The

binary labels in all previous experiments were generated using the probabilistic information

such that the number of positive and negative examples was 25% and 75% of data

respectively. The question we investigate now is how the probabilistic information

influences the learning process when different proportions of positive and negative examples

are observed. In general, we expect that learning from labelled data when data set is

unbalanced is much harder than with a balanced data set.

Experiment: Figure 4 compares four learning methods on four UCI data sets where positive

labels were restricted to top 10, 25 and 50 percent of examples with the highest observed

outcome values respectively. After labels were generated, the weak level of noise was

applied to corrupt the probabilistic information.

Discussion: The results in Figure 4 clearly show the benefit of learning with the auxiliary

information relative to learning binary labels only for more unbalanced data. More

specifically, the gap in the predictive performance between models learned with and without

the auxiliary information increases when the data set is more unbalanced.
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B. Experiments with patient data

Our next experiment tests the methodology on the real clinical data and the problem of

detection of the risk of the heparin induced thrombocytopenia (HIT) [21]. HIT is an adverse

immune reaction that may develop if the patient is treated for a longer time with heparin,

which is the most common anticoagulation treatment. If the condition is not detected and

treated promptly it may lead to further complications (such as thrombosis) and even to

patient’s death. An important problem is the monitoring and detection of patients who are at

risk of developing the condition. In this work, we investigate the possibility of building a

detector from patient data using the assessment of the HIT and its risk by an expert. This

corresponds to the problem of learning a classification model from data.

Data collection—In this experiment we have started with data extracted from electronic

health records that consisted of over 50,000 patient-state instances. Out of these we have

selected 199 instances using a special stratified sampling approach where individual strata

were defined to increase or decrease the chance the patient-state instance is associated with

HIT. We asked an expert to provide us with the following information: (1) assess whether

they would consider the instance at the risk of HIT and alert on it, or not, and (2) the

confidence in raising the alert. In order to make the qualified judgement, the expert was able

to see the complete patient medical record. The review of the case was the most costly part

of the process and on average took 247 seconds. The time to enter assessment of the alert

and confidence of the case was small and typically was finished under 10 seconds.

The data in medical records are high dimensional. For the purpose of this study, we have

selected 50 features derived from patient health record and clinical variables most important

for the detection of HIT. These features were used to define the patient state example. The

alert decision by the expert was used as a class label. The confidence information collected

was the auxiliary information supplementing the class label information. We run the same

set of four methods from the previous experiments. The average AUC results over 30

training/testing splits are summarized in Figure 5.

Discussion—The results on this experiment confirm the results on UCI data set. They

show the auxiliary probabilistic information may help us learning better models with a

smaller number of samples. However, the difference from the baseline classifiers is much

smaller than for UCI data sets which we attribute to a large amount of noise we observe in

human subjective assessments of the alert confidence. This is evident also from the results

for the logistic regression model trained with auxiliary information which has been shown

above to be sensitive to the noise.

V. Conclusions

Making use of many real-world data sets often prompts one to fill additional information

with subjective human labels. However, this process is often very time consuming and

different ways of reducing the labelling costs need to be sought. In this work we investigate

a new framework for reducing this cost by reducing the number of examples one must label.

The trick is to use an auxiliary probabilistic information that reflects how strongly the

human believes in the label which can be extracted cheaply and virtually at no additional
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cost. We propose multiple methods that use this information to make the learning more

sample-efficient. Since the subjective estimates are often inconsistent and noisy we propose

and test ranking based methods that are more resilient to the noise. We test the methods and

show the improved performance on UCI and a real-world medical data set.
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Figure 1.
The sensitivity of the logistic regression model learnt with auxiliary probabilistic

information to the noise. Left: AUC for the model learnt with the auxiliary information.

Right: AUC for the model learnt when the auxiliary information was corrupted by a

moderate Gaussian noise.
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Figure 2.
The benefit of learning with auxiliary probabilistic information on four different UCI data

sets. The quality of resulting classification models for different training sample sizes is

shown in terms of the Area under the ROC curve statistic.
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Figure 3.
The sensitivity to noise in auxiliary information. Area under the ROC curve vs. sample size

for different learning methods trained on data with auxiliary information corrupted by

different levels of noise.
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Figure 4.
Learning with auxiliary information on data with different percentages of positive examples.

Area under the ROC curve statistic vs. sample size is shown.
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Figure 5.
The results of the different methods on the HIT data set
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Table I

UCI data sets used in the experiments

Data set # examples # features

ailerons 7154 40

concrete 1030 8

kinematics 8192 8

puma32 4499 32
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Table II

Average noise to signal value injected into the auxiliary information for 4 UCI data sets and 3 noise levels

Data set Weak noise Moderate noise Strong noise

ailerons 5.2 % 10.3 % 39.8 %

concrete 15.2 % 29.6 % 55.1 %

kinematics 10.6 % 20.8 % 38.9 %

puma32 10.3 % 20.2 % 39.3 %
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