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Abstract

A critical open problem in ab initio protein folding is protein energy function design, which

pertains to defining the energy of protein conformations in a way that makes folding most efficient

and reliable. In this paper, we address this issue as a weight optimization problem and utilize a

machine learning approach, learning-to-rank, to solve this problem. We investigate the ranking-

via-classification approach, especially the RankingSVM method and compare it with the state-of-

the-art approach to the problem using the MINUIT optimization package. To maintain the

physicality of the results, we impose non-negativity constraints on the weights. For this we

develop two efficient non-negative support vector machine (NNSVM) methods, derived from L2-

norm SVM and L1-norm SVMs, respectively. We demonstrate an energy function which

maintains the correct ordering with respect to structure dissimilarity to the native state more often,

is more efficient and reliable for learning on large protein sets, and is qualitatively superior to the

current state-of-the-art energy function.
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I. INTRODUCTION

Proteins are polymers assembled from 20 naturally occurring amino acids, which fold to

unique, biologically active, three-dimensional conformations called native structures. Their

biological functions are governed by their three-dimensional structures, which in turn are

fully determined by their amino acid sequences. Predicting the native structure of a protein

from its amino acid sequence is one of the most important and challenging scientific

problems in contemporary biology and chemistry [1]. The capability to reliably make such

predictions would allow biochemists to design drugs more efficiently, understand biological
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processes in detail, and answer fundamental questions about biological systems, diseases,

immune response, and more.

The experimental determination of protein structure is a time consuming and expensive

process. Hence, computational methods play an essential role in the prediction of the native

structures of proteins. There are three classes of computational approaches to protein

structure prediction: homology modeling, threading, and ab initio folding. Homology

modeling and threading methods utilize proteins with known structure that are evolutionarily

related to the target protein with unknown structure [2]. If one can not find such proteins in

the available library of experimentally resolved protein structures, the only remaining

approach to predicting the native structure is ab initio folding.

Ab initio folding attempts to find the native structure of a protein “from scratch”. The

fundamental assumption in ab initio folding is the existence of a free energy function that

assigns an energy value to each three-dimensional structure the protein can in principle

assume. The native structure is assumed to be the one with the lowest energy [3]. Thus, there

are two main ingredients in ab initio folding: The design of a reliable energy function, and

the development of an efficient approach to search the space of all possible conformations

for the one with the lowest energy. In this paper, we focus on the first problem.

The energy functions used in ab initio folding are physics-based: for a given three

dimensional configuration of a protein, one first calculates various terms contributing to the

total energy such as electrostatic energy, covalent bonding energy, Van der Waals energy,

etc., and then adds these terms to obtain the total energy [4]. While these terms are based on

physics, their functional forms are sometimes approximate, and the coefficients that appear

are obtained by various fitting procedures. In this work, we represent the total energy of a

configuration as a linear combination of these physics-based energy terms, and optimize the

coefficients.

The fitness of a given energy function for a given protein can be visually inspected by

plotting the total energy versus the structural dissimilarity from the native structure. In order

to do this, one generates many possible conformations and computes the total energy and

dissimilarity from the native structure for each. 1 Fig. 1 shows such a plot for a desirable

energy function. As can be seen, the energy value is higher for conformations that have large

dissimilarities from the native structure, with a roughly monotonic trend. Due to the

monotonic trend, reducing the energy corresponds to getting closer to the native structure

during ab initio folding procedure. If one can construct an energy function that has energy

vs. structural dissimilarity plots like that of Fig. 1, one can hope to reproduce a similar trend

for proteins with unknown structure.

For a given protein, we represent the total energy of a conformation si as f (si) = wT xi = Ei,

where xi ∈ Rn represents the collection of the energy terms for si, and w ∈ Rn are the weight

coefficients. Treating w as the unknown, the task of learning an ab initio protein folding

1There are various notions of structural similarity used in the literature, the most basic one being the root mean squared distances
(RMSD) [5] between the building blocks (e.g., atoms) of the protein as represented in two candidate structures aligned in three-
dimensional space.
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energy function becomes a weight optimization problem. Much of the literature on this

problem is based on maximizing correlation (or related quantities) between the total energy

and the dissimilarity [4],[6]. In this paper, we propose a ranking-based approach to this

problem. Namely, given m conformations for each protein, we search for the weights w such

that for each protein a meaningful subset of the constraints below are satisfied.

• Total energy of the native structure is the minimum, that is, E0 < Ej for all j = 1,

… , m.

• Energy of random conformations with smaller structural dissimilarity are smaller

than those with larger dissimilarity, that is, if rj < ri, then Ej < Ei.

The paper is organized as follows. We begin in Section 2 by converting the weight

optimization problem into a learning-to-rank task and then describe RankingSVM, a

ranking-via-classification method that we utilize. Due to physicality constraints, we restrict

the problem to non-negative weights. Section 3 describes two efficient algorithms to solve

the constrained ranking problem. Section 4 summarizes the experiment results. Section 5

concludes the study and discusses future work.

II. APPROACH: WEIGHT LEARNING BY RANKING

The problem of learning protein energy function can be reduced into a learning-to-rank

problem if we consider the ordering derived from structure dissimilarity as the true ordering

over the protein conformations, and the ordering derived from the energy function as the

predicted ordering. The reduced problem seeks to find a ranking function f (s) = wT x that

optimally approximates the true ordering. That is, for each protein, we expect the predicted

ordering to satisfy the following requirements as closely as possible:

i. Rank the native structure above other conformations.

ii. Rank conformations with lower structural dissimilarities above those with higher

dissimilarities.

Current machine learning approaches in learning-to-rank tasks can be divided into three

classes: pointwise approach [7],[8]; pairwise approach [9],[10]; listwise approach [11],[12].

Pointwise and pairwise approaches have the advantage that the existing theories and

algorithms on regression and classification can be readily applied into the learning task.

Moreover, pairwise approaches generally outperform pointwise approaches and have been

successfully applied to various information retrieval applications [13],[14]. Therefore, we

adopt the pairwise ranking-via-classification approach, to solve our problem.

We next describe RankingSVM method, which is the basis of our proposed methods.

A. Ranking Via Support Vector Machines

RankingSVM finds a ranking function f (·) that maximizes the expected Kendall τ statistic

on training dataset S = {S1, … ,SN}. Kendall’s τ statistic

 [15], where an object pair si ≠ sj is

called discordant if the orderings  and  do not agree in how they order si and sj, and
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called concordant otherwise. In our study,  contains the energy data of the

3D confirmations of qth protein. Ranking  denotes the true ordering of the protein

conformations derived from structure dissimilarity, and  denotes the ordering determined

by the ranking function.

For strict orderings on m instances, we have  concordant # + discordant #.

Maximizing the expected Kendall’s τ statistic of a linear ranking function on a data set S is

equivalent to maximizing the pairwise agreement (concordant #). This optimization problem

can be formulated as a search for the weight vector w that maximizes the number of

inequalities of form Sign(ri − rj)wT(xi − xj) ≥ 1 that hold true. It can be approximately solved

by learning the SVM classifier [16] on the transformed data set, Sdif f = {zij = xi − xj, yij =

Sign(ri − rj )}, where zij is the pairwise difference vector, yij is the sign of the rank

difference of objects si, sj, and ξij are the slack variables.

(1)

III. METHOD: NON-NEGATIVITY CONSTRAINED WEIGHT LEARNING

A. Non-Negativity Constraints

The energy terms used in our optimization represent “costs”, in the sense that the natural

physical tendency of the protein is to decrease each one of these values. Each energy term,

taken separately, represents a uniquely defined physical tendency. For the case of

electrostatic interactions, two positive charges move away from each other in order to lower

their interaction energy. Reversing the sign of this interaction energy would turn the

repulsive force to an attractive one, hence resulting in an unphysical interaction. If we

sacrifice the physicality of the energy function by picking negative weights for some terms,

it may be possible to obtain a better ranking on the collected set of conformations.

Unfortunately, experience shows that such unphysical energy functions, while performing

well on the chosen set of existing proteins, perform poorly when predicting new physical

structures. This is partly because it is impossible to sample the whole set of possible

conformations for a given protein, and the methods used to generate the conformations in

the training set start from special, compact conformations that already satisfy various

physicality properties. Dropping the positivity constraints could improve the ranking for

these special conformations, but there will be very large, unsampled subsets of the set of

possible conformations where the negative coefficients would result in incorrect foldings/

orderings. Thus, one enforces a positivity constraint on the weights in order to avoid

overfitting to the (small) set of sampled conformations.

We next describe two approaches to non-negative support vector machines.
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B. Non-Negative L2-norm SVM

In this section, we propose a non-negative version of SVM by using an L2 norm approach,

and solve it through the exponential gradient (EG) algorithm [17].

Due to the characteristics of our problem, we formulate the optimization in primal form.

Adding the non-negativity constraints to the standard SVM formulation gives the

optimization problem,

(2)

where (u)+ = max(u, 0) sets the negative elements of the vector u to zero, A denotes the data

matrix with rows given by the zij s, D = diag(y1, … , yl) is the label matrix, 1l = [1, 1, 1,…,

1]T is an l-dimensional vector of 1s, and l is the total number of data points (i.e. total number

of pairwise difference vectors in our study).

The objective function in (2) is non-differentiable, hence typical optimization methods

cannot be directly applied to this problem. To address this issue, we use the L2-norm of the

hinge loss variables in the objective function. This type of SVM has gained popularity in

large scale classification because the resulting objective function J (w) is a piecewise

quadratic and strongly convex function, and efficient algorithms such as coordinate descent

can be applied. The Non-Negative L2-norm SVM (NNL2SVM) objective function is,

(3)

We use the exponential gradient (EG) algorithm [17] to solve this NNL2SVM problem

because its optimization is naturally constrained to the non-negative space . The

algorithm is summarized in Table I.

The standard normalization sets ∥ wt+1 ∥1= 1. We also investigate another normalization rule

that enforces ∥ wt+1 ∥1≤∥ wt ∥1 by keeping wt+1 unchanged if ∥ wt+1 ∥1 is less than ∥ wt ∥1,

and setting its norm to ∥ wt ∥1 otherwise. In our study, we set the learning rate , where

R = maxij(maxk zij,k − mink zij,k) is the largest value over the sample set of the maximum

difference between the components of a feature vector zij.

C. Non-Negative L1-norm SVM

Another approach to the NNSVM problem is to add non-negativity constraints to the L1-

SVM formulation and extend the existing L1SVM algorithm [18] to solve the resulting

NNL1SVM problem. The optimization problem is,

(4)
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We solve this problem using an approach described in [18]. Proposition 1 in [18] states that

for any  for some , the optimal solution of the exterior penalty problem gives

an exact solution to the original, primal problem. The corresponding exterior penalty

problem can be derived by assigning quadratic penalty terms to the constraints of the dual

problem. The exterior penalty problem of (4) minimize the following objective function,

(5)

Problem (5) is an unconstrained optimization problem. We solve it using a generalized

Newton method.

Following the definition of generalized Hessian in [18], the gradient and hessian for (5) are

given as,

where u* = Sign(u+), with Sign being applied element-wise on the vector. Notice that at each

Newton iteration, we need to invert the matrix Q = δIl + ∂2J (μ). This is computationally

expensive when the total number of data points l is large (l > 1000). We address this issue by

using the Sherman-Morrison-Woodbury formula [19]. We decompose the hessian matrix as

Q = F + H * HT, where diagonal matrix F = diag(ρ) with ρ = δ1l + (μ − π1l)* + (−μ)* and ρ >

0, and matrix H = DAE with E = (diag(ATDμ−1n) ) 2. The inversion can be computed as Q−1

= F −1 − F −1H(Il + HT F−1 H)−1 HT F−1 and the time complexity is reduced from O(l3) to

O(ln2)+ O(n3).

IV. RESULTS AND DISCUSSION

A. Data Set Description

The dataset used in this study consists of the values of various energy terms for a non-

redundant set of 171 proteins that fall into the ab initio folding class. This set is

representative of the “hard target” protein sequences in the Protein Data Bank with up to 200

residues, meaning that current homology search tools fail to identify proteins with an

evolutionary relationship with proteins in this class.

For each protein, a large set of non-native random conformations (over 50, 000 per protein)

are generated in the manner described in [4]. The energy terms for the native structure and

each one of the generated conformations are collected. The energy terms are obtained from

the CABS (Cα-Cβ-Side chain) force field [4], which is used in the protein structure

prediction tool TASSER [20]. We include 20 different energy terms from this force field,

briefly summarized in Table III. The structural similarity of conformations is measured by
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the 1-(TM-score) [21], which is intended as a more accurate similarity measure than the

commonly used RMSD [5].

B. Previous Approach

In an earlier optimization study [4], the authors proposed to use an objective function related

to the correlation corr(r(q), E(q)) between the structural dissimilarity and the total energy of

the generated conformations. Namely, they used the product of two quantities G1 and G3,

given by,

where Z-score of the mean of the total energy

.

Using the CERN MINUIT package [22] to optimize the weights, they achieved significant

results in CASP [20]. Their study employed proteins from all homology modeling,

threading, and ab initio prediction classes.

C. Experiment Design

The number of all pairwise difference vectors zij = xi − xj is quadratic in the number of data

points (conformations). In addition to this computational issue, it is not realistic to expect

the energy function to rank all conformations according to their dissimilarity from the native

structure. Therefore, in our experiments, we use the following sampling scheme to generate

the training data set.

• For the first class, C1 = {zi0 = xi − x0 | yi0 = sign(ri − r0) = 1}, we uniformly sample

100 non-native conformations according to their structural dissimilarity and include

their comparisons with the native structure.

• For the second class, C2 = {zjk = xj − xk | yjk = sign(rj − rk) = −1}, we generate pairs

of comparisons between non-native conformations. If two conformations have

close values of dissimilarity from the native structure, it may not be reasonable to

require the energy function to rank them according to the dissimilarity. We thus

restrict the second class to pairs whose dissimilarities from the native structure are

sufficiently different. In particular, we first partition the set of non-native

conformations into 6 subsets, S(0,0.1), S[0.1,0.2), … , S[0.4,0.5), S[0.5,0.6], where S(0,0.1)

contains conformations with dissimilarity from the native structure in the range (0,

0.1), etc. We then uniformly sample 25 conformations  according to

dissimilarity from each subset S[aj ,bj ). The comparisons we include are then,

.
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By the sampling method described above, we generate 100 data points in each class, for

each protein. This gives a total of 34, 200 data points of dimension 20.

D. Results Analysis

We evaluate the capability of our Non-Negative RankingSVM (NN-RankingSVM) approach

to learning protein energy functions through 10-fold cross validation. We randomly partition

the 171 proteins into 10 folds. For each fold i, we learn an energy function from the energy

data of the other 9 folds using each method, and evaluate the learned energy functions on the

data of fold i. We employ the grid search procedure during cross-validation for parameter

tuning of the NNSVM methods. We denote ranking via NNL2SVM with the normalization

rule ∥ wt ∥1= 1 as NNL2SVMn1, ranking via NNL2SVM with the normalization rule ∥ wt+1

∥1≤∥ wt ∥1 as NNL2SVMn2, and ranking via the NNL1SVM approach as NNL1SVM. The

baseline method (see Section 4.C) is denoted as TASSERMINUIT (with randomly generated

initial weights).

1) NN-RankingSVM versus TASSERMINUIT: We first compare the protein folding energy

function learned by our proposed NN-RankingSVM approach with those learned by the

baseline method. We use two criteria to evaluate the fitness of the learned energy functions:

Kendall τ rank statistics (approximated by sampled pairwise agreement) and Pearson’s

correlation. Fig. 2(a) lists the sampled pairwise agreement, measured by the average testing

accuracy on the labeled pairwise difference data. Fig. 2(b) lists the average correlation

coefficients between the (1-TMscore) value and the energy, which are computed using the

learned energy function during each cross-validation.

Comparing to the energy functions learned by base-line method, energy functions learned

using the NN-RankingSVM approach generally achieve better performance in both sampled

pairwise agreement and correlation. On average, energy functions learned using the

NNL2SVM methods can obtain around 9% increase in the sampled pairwise agreement and

around 34% increase on the correlation values. While those output by NNL1SVM method

have around 10% and 28% improvement on those values, respectively. In addition, the

average computation time of a 10-fold cross validation for NNL1SVM is about 7 seconds,

which is much more efficient comparing to the baseline method (around 2 minutes) and the

NNL2SVM methods (around 20 minutes). In summary, the experiments show that

NNL1SVM method outperform the other methods in terms of both learning performance

and computational efficiency.

2) NNL2SVM versus NNL1SVM: We then analyze the trend of the sampled pairwise

agreement (measured by testing accuracy) and the sparsity of the weight vector during the

algorithm optimization of the proposed NNSVMs. As shown in Fig. 3, NNL2SVM methods

generally converges to the optimal solutions after about 5000 EG iterations. NNL2SVMn1

method obtains sparser solutions than those of NNL2SVMn2 method on average, but at the

cost of classification accuracy. Overall, NNL1SVM method demonstrates robust

performance in classification accuracy and sparsity while enjoying fast convergence.
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V. CONCLUSION

A critical open problem in ab initio protein folding is protein energy function design. In this

paper, we addressed this problem as a weight optimization problem, and demonstrated a

machine learning approach using the ranking-via-classification paradigm. Comparing with

state-of-the-art approach that based on maximizing the correlation between the total energy

and the structural dissimilarity, our learning-to-rank approach was able to learn energy

functions that maintain the correct ordering of the conformations more often, and give

higher correlations with the structural dissimilarity from the native structure. We believe that

this new approach for learning protein energy functions presents a new avenue of

exploration with potential. We will investigate generalization of our methods to the problem

of learning nonlinear energy functions. We also expect the capability to learn SVMs with

non-negative weights to have diverse applications beyond protein structure prediction.
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Figure 1.
Energy versus Structural Dissimilarity Plot: each dot represents a non-native conformation,

and the red square represents the native structure
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Figure 2.
Error Plot of the Performance of the Learned Energy Functions
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Figure 3.
NNSVM Optimization Method Comparison
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Table I

EG ALGORITHM FOR NNL2SVM PROBLEM

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2014 October 10.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Guan et al. Page 15

Table II

NEWTON METHOD FOR NNL1SVM PROBLEM
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Table III

ENERGY TERMS USED IN TASSER
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