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Abstract—Providing methods to support semantic interaction
with growing volumes of video data is an increasingly important
challenge for data mining. To this end, there has been some
success in recognition of simple objects and actions in video;
however most of this work requires strongly supervised training
data. The supervision cost of these approaches therefore renders
them economically non-scalable for real world applications.

In this paper we address the problem of learning to annotate
and retrieve semantic tags of human actions in realistic video
data with sparsely provided tags of semantically salient activities.
This is challenging because of (1) the multi-label nature of the
learning problem and (2) realistic videos are often dominated by
(semantically uninteresting) background activity un-supported by
any tags of interest, leading to a strong irrelevant data problem.

To address these challenges, we introduce a new topic model
based approach to video tag annotation. Our model simultane-
ously learns a low dimensional representation of the video data,
which dimensions are semantically relevant (supported by tags),
and how to annotate videos with tags. Experimental evaluation
on three different video action/activity datasets demonstrate the
challenge of this problem, and value of our contribution.

Index Terms—action recognition; annotation; tag learning;
topic model;

I. INTRODUCTION

Managing and exploiting growing volumes of video data is
an important challenge for data mining and computer vision
research. Semantic video interactions such as content based
indexing, search, retrieval, classification and annotation are
therefore all topical problems. One of the most useful content
classes for semantic interaction is that of human actions, with
applications in security, retailing, entertainment and sports.
Towards this end, the problem of human activity analysis has
recently been studied intensively [1]. Most of these contem-
porary approaches to learning human activity models require
pre-segmented or strongly labeled data for training [30], [18],
[29], [7]. Specifically, the user must specify three dimensional
bounding cuboids in (x,y,t) for each training example of an
interesting activity. This is a rather imposing barrier to real
world use. It would be much more useful if a system could
learn from the sparse semantic tags (text) that might already
have been associated with a video, for example in the metadata
management system of a video sharing site, social network, or
home media center. Ideally, such a system would leverage a
large existing collection of video data and associated existing
tags to learn a model of the dynamic visual content relevant
to each tag. Once such a model is learned, newly added video
can be annotated with likely tags without further effort from

the user and these annotated tags can then be used in support
of indexing, retrieval, etc.

This video tag learning problem can be viewed as a multi-
label learning problem [24] in that each instance (video) may
be associated with multiple labels. There has been progress
on multi-label learning with static image data [6], [26], [16].
However solving the same problem with video data is harder
for two reasons: (i) the video instances are now unbounded
in (temporal) size, potentially making the multi-label aspect
of the problem harder; and (ii) the visual support of the tags
associated with a video may be a fairly small percentage of the
overall volume of the video. That is, most of the moving pixels
may be semantically uninteresting, thereby posing a strong
irrelevant data problem [12]. Fig. 1 illustrates this challenge
in two sample video frames. Here, more visual interest points
are related to irrelevant background activity (crosses) than the
punching and waving actions of interest (dots). In fact, the
problem can be worse than visualized as the temporal extent of
a video could include an unbounded number of frames where
the tagged actor has not yet arrived, or has already left.

In this paper, we present a framework for joint generative
topic modeling, relevance determination, and annotation of
video, which we call VIT (Video Tags and Topics). The
general idea is to learn a topic model which jointly predicts the
visual words (bags of visual feature interest points) and asso-
ciated semantic tags (text/phrases). That is, the model learns a
low-dimensional topic decomposition of the video database
simultaneously with a built-in generalized linear model to
predict the tags based on the topic profile. Performing these
tasks jointly helps the model to learn topics which are useful
in discriminating actions rather than merely providing a good
generative model of the video. Additionally, we generalize the
notion of joint generative modeling of data and tags via topics
to include tags which depend on an unknown subset of the
topics. The partitioning of the topic space into background
dimensions — which explain away visual data unsupported by
tags — and salient dimensions — which are predictive of tags
— is learned automatically. This feature enables us to cope
with data where visual evidence corresponding to the tags may
include only a small portion of the total video volume.

A. Related work

There is now a fairly extensive literature [1] on video
activity recognition and detection including approaches based
on techniques such as dynamic Bayesian networks (DBNs)



Figure 1.
weak compared to ongoing background activity. Dots denote detected interest
points which may be relevant (dots) or irrelevant (crosses) to the punching or
waving actions.

Example video frames in which actions of interest are visually

[28], support vector machines (SVMs) [23], branch and bound
[30], [7], random forests / hough transforms [29], constellation
models [9], [20] and topic models [21]. We do not review
activity recognition in detail here except to point out that most
approaches requires at least segmented or strongly labeled
training data. Specifically visual features corresponding to a
single activity label are assumed to dominate each training
instance (video clip). That is, training video must be chosen
or temporally segmented such that each clip contains exactly
one interesting action; and chosen or spatially segmented such
that background features are minimized. This assumption is
unrealistic for most videos of human activities in a uncon-
strained social environments.! To our knowledge this study
is the first attempt to learn automatic association of semantic
tags of human activities from multi-label and non-segmented
video data.

In other domains such static image annotation [6], there
has been recent success in learning to predict multiple tags
from each instance. This is variously known as annotation,
tagging, attribute learning or multi-label learning [24], [6].
Topic models [26], [16], [22] based on CorrLDA [4] have
been shown to be suited for this task, typically by learning a
multinomial distribution over tags conditional on each topic.
However, this approach limits annotation accuracy because (i)
using a single multinomial output at test time predicts tags
competitively [8] and (ii) being additive in their predictions,
topics can not provide negative information about a particular
anti-correlated action. In general, image annotation models are
not suitable for addressing our problem because human activity
tags are sparse, and there is more uninteresting background
activity to deal with, i.e. not all topics learned can be attributed
to human actions of interest in video.

Other approaches include multiple Bernoulli models [8]
and SVMs [6], [19]. One issue [24] for annotation models
is whether tags are predicted independently [8], a simpler task
but ignoring any correlation between tags, or jointly [32], a
harder task but exploiting more information. In our model,
although each tag is predicted independently for computational
efficiency and robustness, inter-tag correlation is still exploited

'We note that one apparently similar prior action recognition study [9]
learns from “unsegmented” video, but for the single label case, and in the
simplistic Weizmann dataset [2] without background activity. It is therefore
effectively segmented in our context.

because predictions are made based on the shared low dimen-
sional topic space.

Our work builds on the class of models known as topic
models (such as latent Dirichlet allocation (LDA) [5]), which
provide a generative model for discrete data in terms of a lower
dimensional mixture of latent topics. Recent LDA variants
have included supervised response variables [3], [14], [31].
However, these have thus far been restricted to single label
tasks. CorrLDA [4] adds a simple mechanism for multi-label
annotation to LDA, and we will compare against it explicitly.
None of these models deals with the strong irrelevant data
problem posed by video data studied here.

One interesting debate in the literature is the difference, if
any, between “tags” and “classes”, and what that implies for
how they should each be modeled. Typically the class of an
instance summarizes the entire instance while tags refer to
a subset of the instance (e.g., in image domain an image of
class snow-boarding may have tags snow, mountain, sky, trees,
person) [26]. For this reason tags are typically modeled more
simply (e.g., topic conditional multinomial [26], [16], [22]),
while classes have more complex models (e.g., the root of a
Bayesian Network [16], or topic conditional classifier [26]). In
our case the actions corresponding to tags are potentially quite
complex (similarly to [30], [29], [7], [28], [21]). However, the
unbounded temporal extent of video means many can also
occur in a single instance. That is, although we are formally
solving an annotation problem, our tags have the complexity of
full classes as considered by previous action recognition work
([301, [29], [7], [28], [21]). In contrast to existing annotation
models [4], [26], [16], we therefore learn a full generalized
linear model to predict tags (activities) from topics.

Most learning methods are challenged by large amounts
of irrelevant data. Standard supervised classification typically
overcomes the problem with a separate feature selection step
[12], although it may also be solved generatively by modeling
both the relevant and irrelevant data [13]. Existing multi-
label/annotation methods assume that tags are dense enough
that most data is supported by a tag [4], [26], [16], [22],
[32], [19], [8]. Solving a multi-label task in an irrelevant
data context is particularly challenging because each pixel
needs to be disambiguated between both association with each
known class and an arbitrarily complex background process,
which can be more dominant. Similarly to [13], our approach
is to model all the data via topics, while learning which
subset of the topics is predictive of the tags. However [13]
only addresses standard single label learning, and requires a
pre-specified partition of topics into relevant and background
categories. In contrast, we address multi-label learning and our
relevance learning flexibly allocates topics in any proportion
to a foreground or background partition according to the data.

II. METHODS

A. Preprocessing and Representation

Topic models requires a discrete bag of visual words repre-
sentation of video. To extract suitable and informative features,
we apply the space-time interest point detector [15] to discover



interest points in each video 57 = 1...N,. After applying
k-means vector quantization to the interest point descriptors,
each video in the dataset X = {x; };Vzl is represented by a bag

of N; discrete codewords x; = {x;; }fv:Jl We use a codebook
size of N,, = 2000.

B. VIT Generative Model

In this section we describe our VIT model (Fig. 2(a)) in
detail. In VTT each video j contains a bag of visual words
{x”}i\;’l and tags {ylj}ivzyl to be modeled (Fig. 2, shaded
nodes). All N, tag variables are considered to be binary and
conditionally independent given their latent parents. Visual
words and tags are correlated between and across modalities
by virtue of being generated via the lower dimensional space
of shared latent topics z;. Each topic k = 1... N, represents a
component of a visible action in the video database, and may
be shared between actions with related structure or allocated
uniquely to an action as suggested by the data. The tags are
assumed to be relevant to an unknown subset of these topics
which is to be discovered.

The generative process is as follows: The activity dis-
tribution in video j is uniquely defined by Dirichlet topic
proportions ¢;. From these proportions, the topic z;; for each
visual word (i,7) is independently generated by a multino-
mial distribution z;; ~ p(z;]0;). The visual word itself is
finally generated from the multinomial of it’s associated topic,
x;; ~ p(zi;|®, z;). The separation of topics correspond-
ing to salient activities supported by tags, and non-salient
background activities is generated by sampling independently
a binary mask variable r; ~ p(rg|y) for each topic k.
Finally, based on the latent topics and their relevance, each
tag y;; is generated independently according to a Bernoulli
distribution y;; ~ p(yi;|z;,r, W). Learning the parameters of
this distribution will identify the relation between topics and
tags. The complete generative model is specified by:

(¢k|/3) Dir(¢y; B),
jla) = Dir(6;; ),
(z”|0 ) = Multi(z;;;6;),
p(wijlzij, @) = Multi(z;; (bzij)a
p(rely) = Bem(rg|y),
p(wilA) = N(w|0,N),
p(yijlr, z;, W) Bern(yi;]p15),
py = 1/ (1 + eXD(-W?%)) :

where the NV, length deterministic vector z represents the em-
pirical topic proportions in z; and Z®r indicates the selection
of dimensions in z according to true elements of binary vector
r. The full joint distribution of observed O = {x;,y; }" 5= 8 and
latent variables {H = {z;,0, }] 1> { Pk rk}k 1 {wl}l
given parameters P = {a, 3,7, )\} of our model is:
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Figure 2. Graphical model representation of (a) our VIT model and
(b) CorrLDA [4]. Shaded nodes are observed for training. For testing y is
unobserved.
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Parameters o« and [ represent our prior belief about the
proportions of the topics in the dataset, and the sparsity of
visual words within each topic. w; represents the mapping
between latent topics and tag [.  represents our prior belief
about the proportion of topics in the dataset which are salient
(supported by tags).

To train our model, we provide a corpus of processed videos
X and associated tags Y. Learning the hidden variables and
parameters from the training set corresponds to: discovering
a lower dimensional representation of the video and tags
(vectors z; and 6;), learning to predict each tag y in the
vocabulary (vectors w;), and learning which aspects the video
representation are salient for tagging (vector r). Once learned,
we test our model by providing a new video x* without
associated tags, for which the model infers the latent topics
z*, and predicts the new tags y*.

C. Model Learning, Inference and Testing

1) Inference: Exact probabilistic learning in VTT is in-
tractable, so in this section we derive a stochastic expectation
maximization (EM) algorithm based on Gibbs sampling and
iterative conditional modes (ICM) [10] for approximate learn-
ing in our model. As for standard LDA [5], we analytically
integrate out the conjugate-prior Dirichlet parameters ¢ and ©.
A standard EM approach to learning would then be to alternate
inference of latent variables p(Z, W,r|X,Y, a, 3,7, A) with
parameter estimation



{a, 8,72}« argmax Y p(Z,W,r[X,Y,q,8,7,3)
Z,W,r

np(X, Y, Z, W, r|la, 5,7, \)
In our case, we resort to Gibbs sampling and ICM to es-
timate the posterior p(Z, W,r|X,Y,«,3,7,)\). For Gibbs
sampling, we need the posterior of each hidden variable
conditioned on all the other variables. It will first be useful
to denote the likelihood £; = p(y;|z;,r, W) of a document’s

tag set {ylj}fiyl as:

N,

Y
£; = J[Bem(yy; (1 +exp(—w/
=1
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The update for each latent topic z;; is then

NH. @

p(zlj|zflja r, Wa X7 Y)
o< p(yjlzg, v, W)p(zi;|Z, X —i;)p(2i5|Z—i5),
_ o Ml 4B ntos 3)
Zx n:};z” + B Zz nzjlj ta,
where we have dropped conditioning on the parameters for
clarity. The update (3) contains three terms which reflect: the
predictive fit of the topics to the tags, the fit to the visual
words, and to the topic prior. Here —¢j means “excluding item
(4,4)”. nz}7 indicates the counts of topic z being associated
with word = excluding (i, j) and n,;” indicates the counts of
topic z in document j.
Since the dimension of the weight vector w depends on the
relevance variable r, they must be updated together. We have

p(re, Wlr_, Y, Z) «

N, Ny
= H Ly H exp —Awi wy. (4
j=1 1

p(Y|Z, W, r)p(ri|r—)p(W),

For efficiency, we take a hybrid Gibbs and ICM approach,
sampling the relevance variable 7:

1
e o~ ?Ef”’ (5)

and updating W to its MAP value. To maximize W we obtain
the gradient of (4) with respect to each parameter vector w; :

Vo, Inp(Y|Z, v, W)p(W) = (1 — pij)Z; — 2Awy. (6)
J

w; is then optimized by a fast L-BGFS gradient based opti-
mizer [17]. We note that with this approach, while the updates
(5) and (6) for r and W are costly, they are only performed
O(N,) times per Gibbs sweep. The O(N;) per Gibbs sweep
topic updates (3) are the dominant computational cost for VIT
as for most topic models.

2) Learning: Model parameters {c, 3,~} are updated by
Gibbs-EM (i.e, EM updates using the approximate posterior
obtained by averaging the latent variable samples obtained
over a certain lag) resulting in the same updates as in [13],
[25]. The weight prior (regularization) parameter A is also
updated periodically by internal 3-fold cross-validation. The
number of topics, N, is the only manually set parameter in
our model. However, we emphasize that it is not important to
tune, because good results can always obtained by setting a
large number of topics and allowing hyperparameter learning
of vector ¢ to reduce the weight of unused topics [25]. At
the end of the training phase, point estimates of the word-
topic parameters d are computed as the mean of their Dirichlet

posteriors ¢, = ZanLJr iy [11]. The current tag-topic weights
xk

W, relevance variables £ and topic hyperparameters & are also
stored. We simulate a batch of N, independent Markov chains
and store these parameters for the last sample of the chain.
We observed this approach to obtain statistically independent
samples to be more efficient than taking repeated samples from
the same chain, while also being more amenable to parallelism.
3) Testing: To use the learned model to annotate a new
video x*, the predictive tag distribution p(y*|x*,X,Y) =
> p(y*z", X, Y)p(z*|x*, X, Y) is of required. To approx-
imate this, we again simulate a batch of s = 1... N, Markov
chains, each initialized with the corresponding parameter
vector {é, W, # &}, obtained from training. Only (3) is
iterated to infer the topic posterior for the test document
p(z*|x*, {&, W, 1, ®},). Samples of the test document topic
profiles z? drawn from these distributions are used to approx-
imate the final tag distribution for the test document as

Py XX Y) ~ ) p(ytlar, W) %)

III. EXPERIMENTS
A. Ilustrative Example

First, let us apply our proposed VIT model to a simulated
dataset. This serves three purposes: to illustrate the mechanism
of our model; to validate its correct behaviour on data which is
non-trivial but with known ground-truth; and to provide insight
into its properties compared to other models as a function of
background noise which we can control precisely here. The
experiment is illustrated in Fig. 3. To generate training data,
we defined nine tags and associated visual patterns (Fig. 3(a))
and six irrelevant background patterns (Fig. 3(b)). For each
instance, two tags were randomly selected and their patterns
used to as priors to generate half of the words for the instance,
and the remaining half of the words were generated from
the background patterns in random proportions. The resulting
dataset is illustrated in Fig. 3(c). Although this is synthetic
data, it is still visually quite challenging to distinguish any
structure in Fig. 3(c). We generated 200 such images with 25
words each and associated lists of relevant tags, and trained
a VIT model with N, = 16 topics. The model learned an
appropriate latent representation and associated partitioning:
a set of twelve relevant topics — axis aligned bars in various
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Figure 4. VTT model performance as a function of the fraction of words
generated from the irrelevant background distribution.

positions (Fig. 3(d)), which can be composed to express the
visual patterns of each tags; and a set of four irrelevant
topics — various diagonal bars (Fig. 3(e)), which explain the
remaining non-tagged background components of the data.
Note that partitioning of the topics and the proportions of
the partitioning (Fig. 3(d) vs (e)) were learned automatically.
Despite the noise in each sample (Fig. 3(c)), reconstructing
the implicit internal pattern learned by the model for each
tag by visualizing ®w; (Fig. 3(f)) shows a fair match to the
original definitions (Fig. 3(a)). Note that in this dataset each
relevant topic (Fig. 3(d)) is shared between three tag patterns
(Fig. 3(f)), and it is a particular combination of topics — as
learned by w; — that defines a tag. Fig. 3(g) illustrates the
learned model being used to correctly label a test image with
its relevant tags.

Finally, we quantified the performance of our model at
annotating test images with the nine tags as a function of the
fraction of words generated by irrelevant patterns (Fig. 3(b)).
The results (Fig. 4) verify that performance decays much more
slowly for VTT than the standard multi-label SVM approach
([6], Sec. III-C) to learning annotations. This property of our
model will be important to obtain good performance with the
real world video data studied next.

B. Video Datasets

In this study we experiment with three video datasets of
increasing challenge level>. KTH: The KTH action dataset
[23] is aimed at action classification and exhibits one person
performing a single action in each video. It is fairly clean
and simple, however due to its relatively large size (600
videos of 25 people performing six action categories) and
extensive prior study, we consider it here. To render the dataset
suitable for multi-label learning, we concatenate pairs and
triples of randomly chosen videos and tag them with the
labels of the action categories of the component clips. This
results in 291 two-action videos or 196 three action videos.
MSR: The MSR dataset [30] is aimed at action detection,
and exhibits multiple people performing three actions in more
crowded and busy scenes. This dataset is interesting because
of the realistic and challenging levels of background noise,
but limited in only exhibiting three actions in total (punching,
waving and clapping). In its original form each video clip has

2To be made available at http://www.eecs.qmul.ac.uk/~tmh/datasets/

the full set of three actions, which is unsuitable for any multi-
label learning approach. We therefore convert the dataset for
annotation learning by randomly cropping the videos in time
such that only two salient actions occur in each video. This
results in 102 two-action videos. CPSM: The CPSM “sports
minute” dataset is a new dataset collected by us from youtube
containing two years worth news highlights about college
sports. There are 74 videos in total with 10 different sports
(Table. I). This is a real world dataset, so the proportions of
each activity and number of labels per clip are variable.

C. Experimental Conditions

We compare the performance of our model against two
existing approaches: multi-label SVM [6] and CorrLDA [4].

e ML-SVM: A simple approach to multi-label classifica-
tion is to decompose the problem into N, independent
binary single-label SVM problems of learning to separate
instances with and without each tag. This simplistic
approach ignores the correlation between tags, but it
often performs well in practice [6]. We took care to
obtain the best performance by optimizing the SVM
kernel choice and hyper-parameters by cross-validation,
and compensating for imbalanced data by appropriate
asymmetric weighting of the cost parameter.

o CorrLDA: Correspondence LDA (Fig. 2(b)) learns a set of
topic-conditional multinomial distributions for generating
tags. This idea has been used successfully by various
image annotation studies: [4], [16], [26]. The important
assumption here is that a tag corresponds to (is generated
by) the topic of a single visual word. This is in contrast
to VIT where the entire profile of topics is potentially
used to determine the tag.

To quantify the performance of the models, we take two
approaches: an annotation approach, in which the accuracy
of predicted annotations for test videos is evaluated; and an
information retrieval approach, in which test videos relevant to
a specified tag are retrieved, and the relevance of the retrieved
videos is evaluated. For annotation, we consider two standard
measures: hamming accuracy and the F-measure® between the
estimated and true tag list. These measures can be generated
from annotations obtained from ranking (asking the model to
return the top-N) most likely tags — most useful if there are a
fixed number of tags per video; or by detecting tags surpassing
a certain probability threshold which is varied obtain an
accuracy-threshold curve and F-measure-threshold curve. For
information retrieval, we use the F-measure evaluated as a
function of the number of videos retrieved.

We train each model on 2/3s of the data and test on the
remaining 1/3s of the data. For VTT, we use N, = 32
topics. To train VTT, we simulate 3 Markov chains with 100
iterations of burn in, followed by 100 iterations where hyper-
parameters are updated every 5 iterations. For testing, we
run 100 iterations before drawing the samples z? used for
prediction in (7).

3Defined as F = 2Xx Precision X Recall

Precision+ Recall with a range of 0 to 1.
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(c) Sample Data
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Figure 3.
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Illustration of how our VIT model works via a synthetic data example. Prototype (a) relevant and (b) irrelevant attributes are used to generate (c)

sample data. The learned latent representation induces a partition into (d) relevant and (e) irrelevant topics. (f) Internal representation of the learned salient

attributes. (g) Correctly annotating a test image with tags.

Activities

Labels per Clip

Swim | Football | Soccer [ Tennis | Volleyball | Running [ Baseball [ Golf | Basketball [ Wrestling

T[2]3]4]5]6

[Clips [ 6 [ 37 [ 27 | 1 [ 26 | 8 [ 3 [ 4 1 3 [ 28 T[4Ja2r[3[13]2]T1]
Table I
CPSM DATASET DETAILS
D. Results [ [ [ VIT [ MLSVM [ CorrLDA ]
Tags/Video Eval FM | Acc | FM | Acc | FM | Acc
2 A-Rank2 | 81 85 84 87 73 79
1) KTH: Table II shows the average test performance on the ) AAUC T 61 1 75 71 [ 81 | 3 | 6
KTH dataset for each model rounded to the nearest percentage 3 ARank3 | 76 | 76 [ 63 | 63 | 70 [ 70
point. The AUC rows indicate scores obtained by varying the 3 A-AUC | 59 | 64 | 47 | 57 | 16 | 52

tag detection threshold and evaluating the area under the F-
measure curve. The Rank-N rows indicate scores obtained by
assigning the top-N most likely tags. Note that Rank 2 chance
is 55% for accuracy and 33% for F-measure.

For the easier case of two tags per video, ML-SVM slightly
outperforms VTT. However, for the harder case of three tags
per video where the multi-label ambiguity is greater, VIT
performs best by a larger margin. We note that for the KTH
dataset, single label learning and classification performance
reported in the literature [27] is around 90% when using
the same features and SVM classifier used here. The slightly
lower scores here reflect the more challenging nature of the
multi-label learning problem and the more stringent AUC
evaluation criterion. CorrLDA [4] is generally the worst for
each experiment. It performs relatively well at ranking tags
(Rank-N rows), but very poorly at actually detecting them
reliably (AUC rows). This is expected because CorrLDA’s
single multinomial output predicts tags competitively, which
disadvantages it at tag detection.

Table 11
KTH DATASET ANNOTATION PERFORMANCE. RESULTS IN TERMS OF
AVERAGE F-MEASURE AND HAMMING ACCURACY.

2) MSR: The average test performance on the MSR dataset
for each model is shown in Table III. We note that the perfor-
mance of all models is much worse than for the KTH dataset.
For the tag ranking task, performance is not far above chance
baseline (55% for accuracy, 66% for F-measure). This reflects
two key challenge factors: the reduced amount of training data
available for this dataset, and the huge amount of irrelevant
background activity in this dataset (Fig. 1). By evaluating the
ground truth detection cuboids provided by [30], we observed
that only 5-50% of the visual words in each video are even
within the bounding box of the target activities. This joint
uncertainty in both relevance to the problem, and which words
are related to which tag render this task very challenging. Our



VIT | MLSVM | CorLDA |

Eval FM | Acc | FM | Acc | FM | Acc
A-Rank2 | 69 65 59 54 68 63
A-AUC 63 59 57 55 30 45
IR-AUC 60 - 50 - 57 -

Table IIT
MSR DATASET ANNOTATION PERFORMANCE. RESULTS FOR ANNOTATION
AND RETRIEVAL IN TERMS OF AVERAGE F-MEASURE AND HAMMING
ACCURACY.

Figure 5.
Ilustration by plotting visual words in the sample frame assigned to the
background topic.

Examples of background topics learned in the MSR dataset.

model is better able to deal with this challenging data due
to its automatic partitioning of background and foreground
topics which help to explain away the irrelevant data. Fig. 5
illustrates this for the MSR dataset, showing interest points
allocated to two background topics, which roughly correspond
to explaining the image-plane movement of indoor lighting
sources and edges in outdoor forests in response to camera
motion. These effects are uncorrelated to interesting activities
and so are allocated correctly by the model to background
topics. We also evaluated an information retrieval task, (IR-
AUC row) for which VTT also performs best.

3) CPSM: Finally, quantitative performance for the most
realistic and challenging CPSM dataset is shown in Table IV,
and a breakdown by individual activities is given in Fig. 6. For
VTT and ML-SVM models, annotation performance is good
for seven of the ten classes, and very poor for swimming,
running and golf. This is largely due to the fact that the latter
three types are the activities with the least representation in
the dataset (see Table I), so evidently there was not enough
data to learn a good model in these cases. Again, CorrLDA
performs competitively at ranking and information retrieval
(Table IV, A-Rank2 and IR-AUC rows), but fails at actually
reliably annotating individual clips (Table IV, A-AUC). This
is important because actual annotation rather than ranking
is arguably the more relevant measure of performance for
many important applications (e.g., automatic tagging on video
sharing sites or home media systems).

To demonstrate the challenging nature of this dataset and the
output that our model is capable of producing, Fig. 7 illustrates
a set of three videos with perfectly successful annotations
and two additional videos with a false positive and a false
negative. Note that un-tagged but common elements such as
news readers are explained away by background topics in VTT.

VIT | MLSVM | CorLDA |

Eval FM | Acc | FM | Acc | FM | Acc
A-AUC 60 80 57 76 17 72
A-Rank2 | 83 84 83 84 81 83
IR-AUC 48 - 47 - 50 -

Table IV
CPSM ANNOTATION PERFORMANCE. RESULTS FOR ANNOTATION AND
RETRIEVAL IN TERMS OF AVERAGE F-MEASURE AND HAMMING

ACCURACY.
Accuracy F-Measure
1 1
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0.4 | Hl 0.4
I V7T

02 C_IML-SVM 02

I CorrlDA I I I I

I W WO WO W [ |

o

Sw Fo So Te VBRunBB Go BB Wr Sw Fo So Te VBRunBB Go BB Wr

Figure 6. CPSM Annotation Performance. AUC breakdown by activity class.

We note that in terms of the learned mapping W between
topics and annotation tags, individual topics can be shared
between tags or allocated uniquely to a specific tag. To illus-
trate this, Fig. 8(a) shows a learned foreground topic broadly
representing “running people at medium viewing distance”
which has been discovered and is shared (significant positive
weight in multiple w;) between soccer, American football and
running activities. In contrast, Fig. 8(b) illustrates a learned
foreground topic specifically representing the stereotyped mo-
tion of a baseball pitcher, which has been allocated solely to
the baseball activity (only positive weight in w; for baseball).

IV. DISCUSSION

We have introduced a powerful solution to the topical
problem of learning to annotate realistic videos with tags
representing human activities. This approach generalizes ex-
isting supervised topic models [3], [4] to address the chal-
lenging problem of multi-label learning in the presence of
background noise. Learning the latent topics jointly with a tag
annotation model induces more discriminative representations
to be formed than in a purely unsupervised topic model of
video data. Topics can be shared between multiple activities or
allocated specifically to single activities as required. In contrast
to additive annotation models such as [4], [16], [26], topics
in VTT can also provide specific negative information about
particular tags with which they are unlikely to be associated.

Relevance detection is modeled internally in the latent
space of the VIT model. This is in contrast to traditional
supervised learning where feature selection is often treated
as an independent and suboptimal wrapper process around a
black box learner [12]. Performing feature selection in the
latent space is also much more computationally efficient than
the conventional approach of searching for a good subset
of dimensions in the (much larger) original input space. In
summary, our model searches directly and jointly for a low



Figure 7.

Tags: American Football, Soccer, Volleyball.

Tags: Basketball, Wrestling

Tags: Tennis, Baseball

Tags: American Football, Volleyball, Swimming

Tags: Wrestling, Baseball,

are shown.

dimensional representation of videos and tags; a partitioning of
relevant vs irrelevant latent topics and a predictive mapping for
tag annotation. Positive results on three datasets of increasing
challenge level support the value of this contribution.
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