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Abstract—Novelty, or abnormality, detection aims to identify
patterns within data streams that do not conform to expected
behaviour. This paper introduces a novelty detection technique
using a combination of Gaussian Processes and extreme value
theory to identify anomalous behaviour in streaming data.
The proposed combination of continuous and count stochastic
processes is a principled approach towards dynamic extreme
value modelling that accounts for the dynamics in the time
series, the streaming nature of its observation as well as its
sampling process. The approach is tested on both synthetic
and real data, showing itself to be effective in our primary
application of maritime vessel track analysis.
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I. INTRODUCTION

The global picture of maritime traffic is large and com-
plex, consisting of dense volumes of (mostly legal) ship
traffic. Techniques that identify illegal traffic could help to
reduce the impact from smuggling, terrorism, illegal fishing
etc. In the past, surveillance of such traffic has suffered due
to a lack of data. However since the advent of electronic
tracking the amount of available data has grown beyond an
analyst’s ability to process without some form of automation.
One part of the analyst’s workload lies in the detection of
anomalous behaviour in otherwise normal appearing tracks.
Our goal is to detect anomalous vessels using an automated
approach. In this paper we exploit techniques from the field
of anomaly detection, particularly extreme value theory to
identify potential deviations from normal behaviour. The
latter is modelled using a non-parametric Bayesian approach,
namely sequential Gaussian Process regression.

An anomaly has many different interpretations depending
on the context in which it is used, i.e. it may refer to a
data point arising from: a different distribution, measurement
error, population variability or execution error. However,
fundamentally an anomaly is a data point which stands out
in contrast to the other data points around it [1]. It is the task
of anomaly detection to infer whether this data point deviates
significantly given the intrinsic variability of the population
of normal data. An effective technique should therefore be
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capable of recognising and modelling data points that occur
due to such anomalous events and distinguish these from
outliers associated with the tails of the reference distribution
of non-anomalous data.

This paper applies extreme value statistics to identify
likely anomalous samples which are extreme values. The
probability distribution governing these extreme values is
sequentially updated to enable context sensitive decisions.
This is achieved by means of linking this distribution to
a sequential Gaussian Process model which regresses the
vessel’s track and forecasts a distribution over future data.
This paper begins by providing a brief overview of existing
approaches to maritime situational awareness, followed by
a description of our methods. An application to synthetic
data is included to provide insights into the workings of the
approach. An application to real vessel tracks extracted from
their GPS co-ordinates is then presented.

II. CURRENT TECHNIQUES

The field of marine anomaly detection has employed a
variety of methods including Neural Networks [2], Bayesian
Networks [3], Support Vector Machines [4], GPs [5] and
Kalman filters [6]. Common between all methods are two
main tasks; creating a model of normality (free from the
presence of anomalies), and using a metric from this model
which (allowing for some quantifiable variability) identifies a
point as an anomaly. These tasks are inherent within the two
main uses for the detection of anomalies; accommodation
and discordancy. Accommodation is the task in which the
goal is create a model of normality that does not include
anomalous observations. Whereas discordancy tests provide
a metric indicator of a point being an anomaly. Both have
different aims but within each is some model of normality,
and a measure of deviation.

Assessing the performance of these different methods is
a difficult task as there exist no established benchmarks of
what are considered as marine anomalies, therefore hinder-
ing comparison [7]. This implies that a data set can be
considered under a variety of contexts, leading to different
types of anomalies being identified on the same input data.



For example a time series analysis of a vessel track, where
the previous location and the dynamics of the vessel are
considered, could highlight sudden changes in the vessel
dynamics; a sudden change possibly indicative of evasive
manoeuvring. Such a time series model has the advantage
that it can be used in online analysis, but it may miss patterns
when the data set is considered simultaneously [3]. Other
indications of anomalous behaviour within the data could be
deviations from standard route, unexpected port arrival, close
approach and zone entry [8]. Even when a particular marine
anomaly has been selected for identification, the data needs
to be considered in the context of external variables, for
example the class of vessel, time of day, tidal status. Since
these may have to be taken into account when analysing the
data as the form of the anomaly may vary.

Critical to marine anomaly detection is an interpretation
of the data that allows the salient features of the desired
anomaly to be identified [9]. Models for different kinds
of anomalies may need to be combined or considered
to increase the certainty of an anomaly being detected.
For example a model identifying anomalous vessel speeds
could be combined with a model of anomalous zone en-
tries (anomalous spatial locations). Vessels identified as
demonstrating anomalous speeds may be pleasure craft in
a known unrestricted speed location, giving false positives
if simply considered only on the basis of the speed model.
Conversely a vessel entering a port at high speed may be
highly anomalous behaviour.

III. THE GAUSSIAN PROCESS-EXTREME VALUE
(GP-EVT) APPROACH

The approach we detail in this paper develops methods
for the two main underlying tasks within anomaly detection;
modelling normality and subsequently using a cost function
to identify points as anomalous. We construct a model of
normality using Gaussian Processes (GPs) which allows us
to capture the dynamics of vessels in a non-anomaly data
set without prescribing a particular parametric form (such as
is required for Markov state models, for example). The GP
provides a sequentially updated posterior distribution over
unseen data, which we link to an extreme value distribu-
tion to provide a robust and adaptive metric for anomaly
detection.

A. Gaussian Processes

In order to model the vessel track we use a Gaussian Pro-
cess. It provides a mechanism which we use to continuously
predict vessel locations at any future time point, including a
measure of uncertainty about the vessel location. The GP
is a stochastic process [10] that expresses the dependent
variable, y, in terms of an independent variable z, via a
function f(x). This function we can see as a draw from a
probability distribution over functions,

y = f(z) ~ GP(m(x), k(z,z)), (1

where m(z) describes the mean function of the distri-
bution and £ is a covariance function which describes the
information coupling between two values of the independent
variable as a function of the distance of their respective
inputs. This covariance function thus encodes our beliefs
and assumptions about the function that we wish to model
[10]. Valid covariance functions can take a variety of forms
which we quantify empirically in this paper. Denoting
r = |z, — x4| as the (Euclidean) distance between two
independent variable points, x,, and z,, we consider three
covariance functions: the squared exponential
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The above selection was driven by prior knowledge about
typical vessel trajectories. For example, periodic kernels
[10] were excluded from the set of covariance functions
as the data in our feature space is not periodic. Hence,
our choice was restricted to covariance functions capable of
reflecting the physical properties of shipping vessels, such
as smoothness and differentiability.

We also assume that the observations are corrupted by
additive i.i.d Gaussian noise with variance component €2.
Thus, the full covariance function is given as

V(wp, 2q) = k(xp, 74) + 626(|373p — x4|), (%)

where ¢ is the Kronecker delta, which is one if p = ¢ and
zero otherwise.

The hyperparameters oy, A and e are referred to, re-
spectively, as the amplitude, output and noise scale. They
encode the characteristics of the track and so depend on the
dynamics of the vessel. A vessel undertaking manoeuvring
will not exhibit the same smooth track characteristics as one
exhibiting regular motion. Thus, the hyperparameters need
to be learnt from an anomaly free training data set which
consist of n observations, D = {(z;,y;)|i = 1,...,n}. The
x; and y; points represent the independent and dependent
variable values respectively.

The nature of the Gaussian Process is such that, condi-
tional on observed data, predictions can be made about the
function values, f(x,) at any location x,. The distribution



of these values at point z, is Gaussian with mean and
covariance, given as

f*|x*7x,y~N(f*,Var[f*]). (6)

This gives rise to the following predictive equations for GP
regression, for which we assume the mean function m to be
Zero,

Fo=m(a.) + k(. 2.) TV (2,2) 7y — m(z)),

Var[f,| =k(z., z,) — k(z,2.) "V (z,2) " k(z, z,). @

B. Sequential Gaussian Process Updates

In real world problems we receive data sequentially and
the total data set can grow to arbitrarily large size. If we
were to continue to update our beliefs in the light of new
observations we could naively repeat the matrix inversion
in Equation 7 with every observation. This inversion is
expensive as its computational complexity grows as O(n?)
in the number of samples, i.e. the dimension of the matrix,
V' above. Closer inspection however, reveals that covariance
matrix V' is changed only in the addition of some new rows
and columns. Hence, it is possible to reformulate the matrix
inversion as a sequential Cholesky decomposition [11].

We decompose a matrix into the product of a lower
triangular matrix, R, and its conjugate transpose

V(z,z) £ R(z,z)" R(z, ). (8)

Based on this decomposition, the predictive distribution is
given as

fo =m(z,) + b;z*awV(az*, Ty),
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When we receive new data, the V' matrix is changed only
in the addition of some new rows and columns, i.e.
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Consequently the Cholesky decomposition can also be com-
puted iteratively [11] as

R n—1,L1ln— S
R(I1:n7x1:n) — ( (xl. 6 T 1) U) , (12)

where
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With this Cholesky update expressed iteratively the predic-
tive distribution, Equation 9, can also be expressed iteratively

by expressing the vector a, in Equation 10, via the simple
update rule
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This avoids the computationally expensive matrix inver-
sion, in Equation 7, and allows the Cholesky factor to be
expressed as an efficient update rule. We now consider
a principled means of determining whether a new data
point should be updated into the model of normal system
behaviour.

C. Extreme Value Theory

Extreme value theory has previously been used to create
a novelty detection threshold, [12], [13], beyond which
we can quantify a value as having not arisen from the
underlying distribution. The theory itself focuses on the
statistical behaviour of M, = max{Xy,...,X,} where
X1,...,X, is a sequence of independent random variables
with a distribution function F'. In theory the distribution of
M, can be derived exactly for all values of n, i.e.

Pr{iM, <z} =Pr{X; <z....X, <z}
=Pr{X; <z} x...x Pr{X, <z} (15
—(F)".

In practice the distribution function F' is unknown and
extreme value theory allows us to approximate this dis-
tribution. It states that the entire range of possible limit
distributions for M, is given by one of three types of
cumulative distribution function, I, I1 and III, known as
the Gumbel, Fréchet and Weibull, respectively, and given as

I1:G(z) = eXP{—eXp [_ (z;b)” (16)
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Each family has a scale and location parameter, a and b
respectively. Additionally the Fréchet and Weibull families
have a shape parameter « [14]. Although we have three
models to choose from, the underlying target distribution,
F, in our case is assumed to be Gaussian, due to the
modelling constraints imposed by the GP. The extreme value
probability is then restricted to the analytical form of the
Gumbel distribution.



Assuming that some “normal” data is identically and inde-
pendently Gaussian distributed, one can obtain the extreme
quantiles by inverting Equation 16

zp = b— alog (—log (p)). (19)

The value of p acts as a novelty threshold, below which a
test point is classified “abnormal”. The parameters a and b
require estimation and typically depend on the sample size
n of the data set. As proposed in [12], we make use of
decoupled estimators for a and b given, respectively as

(2log ()
(2log (n))? —

a = 5 (20)
log (log (n) + log (2m))
2(2log (n))?

D. Gaussian Process Extreme Value Theory

b =

2y

In much of the existing work on novelty detection using
extreme value methods, the work has focused on non-
sequential conditions, or more precisely, on a fixed training
dataset. While the extreme value will adequately account for
the changes in our belief about the location of extreme events
for a fixed sample size, the framework is rarely extended to
account for dynamic changes in the underlying generating
distribution and changes in the sample size.

In this work we model the typical system dynamics
using Gaussian Process (GP) regression. At some arbitrary
point in the future, say x., we can interrogate the GP and
compute the predictive (Gaussian) distribution at that point,
conditional on the trajectory’s past samples. This predictive
distribution, which now features a context (time) dependent
mean, f*, and variance, Var[f,|, allows rescaling of the
extreme event quantile e,

e = fo +/Var[fi]zp. (22)

and so reflect temporal changes in the statistics of the base
distribution.

In order to estimate the number of data points n(xz,) at
each z, in Equation 9, a Gaussian kernel smoother is applied
to compute the predicted number of points at x,, using

n(z,) = Z% (za524), (23)

where ¢, (z.; x;) is a (non-normalised Gaussian) radial basis

function
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x; is the most recent observation and | - | denotes the
Euclidean distance. The kernel width & is set to be equal to
twice the length scale A in Equations 2, 3 and 4, depending
on the choice of kernels used to model the vessel tracks.
This coupling of A to the GP regression models ensures that
tracks with long correlation lengths and smaller sampling
rates will feature the same sensitivity to outliers as tracks

with short correlation lengths and high sampling rates. Also,
the coupling ensures that the smoothing of the sampling
processes does not come at a cost of an additional parameter
which would require additional estimation or ad hoc choice.

With the expected number of observations obtained by
Equation 23, the extreme value distribution parameters can
be updated in a timely fashion to reflect also the dynamics
of the sampling process. Thus, the scaling (Equation 20),
and location (Equation 21), parameters can be estimated,
using the predicted number of data points, n, contributing
information at the location of interest x, [15], by

a = (2log (n(z.)))"* (24)
and
log (log n(x.)) + log (27)
2 (21og (n(.)))*
for a fixed novelty detection threshold, p, which in this work
is set to 0.95.

To reiterate, the GP provides a mechanism to predict the
distribution of future mean values and to adjust the scaling
of the extreme value quantile. Also, the kernel smoothing
approach to the sampling process provides an estimate of
the future sample size. Their combination is used for novelty
detection. If the new data point value falls within a novelty
measure of the predicted value then the new data point is
included in the model update. The key advantage of using
our approach is thus the incorporation of future uncertainty
in both sampling and observation processes to provide the
means for a more accurate novelty detection algorithm. The
graphical model representation of the complete model is
shown in Figure 1.

b= (2log (n(z.)))? — (25)

IV. APPLICATION

We demonstrate the efficacy of the approach presented
in the previous section by application to synthetic data and
real data. We use synthetic data to illustrate some of the
features of our method, and provide a real world example
of its application to vessel tracks.

A. Synthetic Data Illustration

Synthetic data was generated from the Matérn% kernel,

Equation 3, with parameters set to g = 1, A = 2 and
o = 0.01. Anomalies were generated by offsetting randomly
selected samples that were previously drawn from the GP
by a fixed offset value, making the point anomalous with
respect to surrounding points. The GP predictive distribution
was calculated for 1000 samples within the windowed region
of track, the window ending at the time period for the new
observed sample. A fixed kernel width was used in order to
estimate n at each z,.

GP extreme value theory was then applied, each new
data point was considered with respect to the previously
learnt underlying function. If the new point falls within the
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(a) The sequential GP-EVT stopped at a region of high observation density. The estimate of the number of data points which contribute to
the GP inference has increased significantly, as indicated by the observation density shown in the middle plot. Consequently the location of
the extreme value distributions, illustrated by the continuous lines in the bottom plot, move away from the posterior predictive distributions
(dashed line).
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(b) The sequential GP-EVT (continuous line, upper plot), stopped at a region of very low observation density. The predictive distribution,
(dashed line) is an accurate representation of the true distribution (continuous line). This is due to the relationship between the observation
density and the location and scaling of the extreme value distribution, expressed in Equations 24 and 25.

Figure 2: Simulation of the effect of varying observation density on the extreme value distribution and hence the anomaly
detection. Both plots show a snapshot from the last observed sample. In 2a the observation rate is high, while in 2b the
observation rate is low. The observation density affects the location of the probability density function of the extreme value
distribution f.(y) (blue lines, lower plot), relative to the predicted Gaussian PDF f(y) (red dashed line, lower plot), drifting
closer to the base distribution as the number density of points decreases.



Figure 1: A graphical model representation of the GP-EVT
model. At the centre is the Gaussian Process (GP) which
models the track’s dynamics. It has fixed hyper-parameters
shown as grey nodes to the left. Also shown is the estimate
of the sample size, n. The extreme value percentile is a
deterministic node, shown as a square box, which depends
upon p, the novelty level, and sample size n.

predictive uncertainty of the next data point it is included
in the sequential update otherwise it will be excluded. An
example of such an update step is shown in Figure 3. The
new data point falls outside the EVT bound, Equation 22,
and so has been excluded. Notice, that if a data point has
not been observed for a period, the predictive uncertainty
grows, allowing for the possibility of a dynamic change in
the underlying base function and the new data point to be
included in the update. In this manner anomalous points
within the data can be clearly identified while perfectly
accommodating for the dynamics of the underlying function
and the irregular nature of its observation. An intuitive
illustration of how the irregularity of observed data points
effects the scaling of the extreme value distribution, and
hence our novelty bounds is given in Figure 2.

B. Vessel Track Anomaly Detection

The methodology was also applied to real world vessel
track data. The data consists of a set of GPS coordinates
which were collected from marinetraffic.com. In order to
detect changes in the ship dynamics the data had to be
converted to a appropriate feature space that provides a
means of identifying such deviations. This feature space we
describe next.

Feature Extraction: In order to convert data to a
sufficient feature space representation we consider the first

(a) The GP predicts forward to the new artificially perturbed data
point, and by using GP-EVT the new observation is classified as
an anomaly.

(b) GP predicts forward after detecting and excluding the artificial
anomaly. The uncertainty bounds continue to increase (until they
reach their maximum as set by the prior distribution). The subse-
quent observations fall well within the error bound and so will be
included in the next update.

Figure 3: Simulation of the GP prediction and anomaly
detection. The continuous line shows the predicted mean
function and the grey areas show the EVT bound of the GP
predictive distribution for p = 0.95. The bound is open to
the right and widening until the next observation has been
included. Once it has, the standard deviation bound of the GP
is updated and results in the familiar pointed elliptical shape,
as seen between time steps 4 and 9. The dashed line shows
the error bound produced if we consider the 95% bound
from the mean function (1.64 standard deviations from the
mean).

received data point as the beginning of the vessel track. We
relate all subsequent data points to it by computing both the
distance and time taken from this originating sample point.
In order to take into account the approximated spherical
geometry of the earth’s surface we calculate this distance
by application of the Haversine formula

A =cospscospy

2
AG = arctan <\/si]r12 (Aj) + Asin? (A;\)) (26)

where ¢, and ¢; are the latitude of two points and A
and A¢ are their differences in longitude and latitude
respectively. This choice of feature space has the advantage
of converting the GPS information into a 1D feature vector,
reducing the computational demands of processing the data.
Also, the arc length between points d for a sphere of radius
r and Ag given in radians by

d=rAé. 27)




Choice of Covariance Functions: The choice of covari-
ance function is crucial in the methods ability to provide
the most accurate representation of the vessel dynamics. To
determine the optimal covariance function we investigated
the performance of the the standard squared exponential
kernel, in Equation 2, Matérn%, in Equation 3, and the
Matérn% kernel, Equation 4. Clean, i.e. anomaly free training
data, was extracted from the training corpus and the GP
kernel function parameters were estimated by maximising
the marginal likelihood of the data [10]. The so obtained
scores were standardised to the training data length and are
shown in Table 1.

Matérn % Matérn % SE

0.3348 0.3323 0.3334

Table I: Table of likelihood scores for the Matérn3, Matérn3
and standard squared exponential kernels.

The results suggest almost comparable performance, in
terms of goodness of fit, of all three tested covariance
functions. However, as shown in Figure 4, there is a sub-
stantial difference in the robustness. The Matém% kernel
frequently finds poorer fits to the data. The squared expo-
nential performs in the middle range, occasionally finding
worse solutions than the Matérn% kernel but better than the
Matérn% kernel.

0.6f 1
0.5F + 1
°
S 04r 1 1
£ i +
g (— %
=1 03F % 4
g
|
0.2f + |
0.1f i ]
of + i
Matern 1/2 Matern 3/2 Squared exponential

Figure 4: Log scores for the different covariance functions
applied to each track.

Vessel Track Modelling: The methodology was also
applied to real world vessel track data. The Matérn %

kernel was chosen to model the underlying dynamics using

hyperparameters learnt from anomaly free training data,
which were chosen to be sufficiently long enough so that
the underlying dynamics of the vessels could be captured.

Figure 5 shows an example vessel track without outly-
ing points. The track is from a dredger which follows a
smooth trajectory and does not make any sudden changes
in acceleration. Shown in Figure 5b are the sequential EVT
bounds sea-sawing until the next observation arrives. All
observations fall well inside the predictive boundary of
the GP-EVT bound and, consequently, no anomalies are
detected.

Figure 6 shows an example of a vessel track with some
points which our model labels as anomalies. As can be seen
in Figure 6a, the vessel remains within a confined area and
there are short sudden movements, Figure 6b. These are
marked as anomalies and are perhaps the result of the vessel
drifting, manoeuvring or being moored. Figure 6¢ also shows
an enlarged section of the sequential computation of the EVT
bound and makes clear the non-linear relationship between
the GP standard deviation bound and the actually computed
EVT bound which includes essential parameters such as the
number of predicted observations.

V. COMPARISON OF GP-EVT WITH A TRADITIONAL
KALMAN FILTER APPROACH

In this section we compare a traditional approach to
anomaly detection with our Gaussian process and EVT
approach. The traditional approach uses a Kalman filter
(KF) to model the normal behaviour of the ship and then
determines that the data is anomalous if it is more than a
fixed number of standard deviations from the mean [16]
(typically 3 to 5 standard deviations). This approach to
anomaly detection is called the gating approach. Further,
the KF approach requires a process model of the normal
behaviour of the ship. Typically, a near constant velocity
model is chosen to model the continuous trajectory without
imposing any excessive smoothness on the trajectory [17].
We compare our outlined approach to a KF which uses the
constant velocity model. This provides a fair comparison
as both Matérn% and constant velocity model are second
order differentiable. We further investigate both a traditional
KF using the standard deviation gating approach to exclude
anomalies and a KF which uses the EVT in a manner similar
to the GP. In so doing, we are able to compare both models
of normal ship behaviour (namely the Matém% and the
near constant velocity model) and also both approaches to
detecting and excluding anomalies (namely, the EVT and
standard deviation gating approaches). When using the KF
the mean and standard deviation were predicted forward to
the same time step as the new observation. If the point
lies within a pre-chosen confidence region (defined as a
multiple of the standard deviation about the mean) it is
included in the update. This was repeated for a range of
confidence regions defined by different multiples of the



(a) A plot of the GPS track in which there were no detected
anomalies.
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(b) Sequential predictions applied to feature extracted data, also
showing that all data points fall within the EVT bound.

Figure 5: Sequential GP-EVT method applied to a dredging
vessel operating off the coast of France near Le Havre.

standard deviation. ROC curves were plotted for the results.
The resulting area under curve which compares the KF
using the near constant velocity model (with and without
EVT) against the GP using a Matérn% model (again with
and without the EVT) are shown in Table II. We note that
both the KF and GP performance is significantly improved
using the EVT as opposed to gating. This is due to the fact
that the gating approach uses a fixed threshold which does
not take into account the density of observations i.e as we
observe more samples we gain a better understanding of

(a) A plot of the GPS track in which there were several detected
anomalies.
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(b) Sequential predictions applied to feature extracted data, also
showing some data points that fall outside the GP-EVT bound.
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(c) Magnified section of the plot in Figure 6b. The GP-EVT bound
has predicted forward to the new data point and included the point
in the update.

Figure 6: Sequential GP-EVT method applied to a small
vessel operating off the coast of France near Cherbourg and
whose track suggests unusual navigation behaviour.



the true distribution of values. The EVT, however, uses a
dynamic threshold which takes into account the density of
observations therefore better utilises available information to
adjust the threshold.

GP-EVT GP KF-EVT KF

0.8032 0.7889 0.6545 0.6119

Table II: AUC for KF using the near constant velocity model
(with and without EVT) and GP using a Matérn% model
(again with and without the EVT).

Although the results indicate a significant improvement
of our model over the KF approach this is a limitation of
the near constant velocity model used and not a critique of
KF based methods. We note that the Matérn% GP model
can be efficiently implemented within the KF as a Markov
process model [18]. Thus, it is possible to match the AUC
of the KF approach and GP approach by replacing the near
constant velocity model in the KF by the Markovianised
Matérn model as described in [18]. However the results
illustrate the significant improvement obtained using EVT as
opposed to a simple gating mechanism based on the number
of standard deviations between a datum and the expected
position of the ship.

VI. CONCLUSION

Extreme value theory has proven to be an extremely
successful framework for anomaly detection. Unlike novelty
detection based directly on the sample distribution, extreme
value distributions capture our beliefs that extreme events
should become more extreme if large numbers of measure-
ments are expected and vice versa. Such detection, however,
has to be dynamic, context sensitive and timely if it is to
be useful for marine tracking. Extreme value distributions
alone are not readily adapted to perform this task.

In this paper we present an alternative to endowing
extreme value distributions directly with dynamic properties.
Our approach simultaneously models the dynamic properties
of the underlying extreme value generative distribution and
the dynamic properties of the data sampling process. To
our knowledge this is the first time that extreme value
distributions have been made dynamic through the use of
Gaussian Processes.

Our approach offers several advantages. Gaussian Pro-
cesses provide a flexible, non-parametric and intuitive tool
to describe typical vessel dynamics. Also, measurement and
prediction is performed in continuous time thus allowing
on-demand anomaly detection. The sequential update of
the Gaussian Process covariance matrix bypasses the need
for inverting massive matrices and substantially reduces the
computational burdens for which GPs are well known.

Our empirical experiments on vessel data suggest that
the method is capable of detecting anomalies that resemble
mooring or drifting, and unexpected departures from regular
movements. The sample size prediction plays the important
role of adapting the observation process in time. As the
effective sample size reduces, the extreme value distribution
approaches the regular Gaussian distribution, as Equation 15
suggests. With increasing density of observations, however,
the extreme value distribution diverges and EVT bound
increases. Although, the choice of Gaussian Process kernel
function becomes less critical with increasing amounts of
data, for smaller sample sizes, the kernel function is critical
and our empirical results have shown that the Matérn%
kernel outperforms the near constant velocity model.

VII. FUTURE WORK

The representative choice of distance as the dependent
variable feature for anomaly detection is open to discus-
sion. While it provides a single dimension and, thus, fast
estimation it does fail to capture some aspects of ship
tracks. To capture such features the GPS coordinates can be
simultaneously modelled with a bivariate Gaussian Process
and extrema modelling.

The training using typical vessel tracks will be extended
to shipping lanes and vessel types. This allows anomaly
detection not just on the basis of individual points but entire
tracks and so offers the possibility of preventing accidents
such as that of the MS Costa Concordia early in 2012.
Kernel-regression based prediction of the sample size can
be readily extended using Poisson Processes.
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