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Abstract

Influence maximization is the problem of finding a set of influential users in a social network such
that the expected spread of influence under a certain propagation model is maximized. Much of the pre-
vious work has neglected the important distinction between social influence and actual product adoption.
However, as recognized in the management science literature, an individual who gets influenced by social
acquaintances may not necessarily adopt a product (or technology), due, e.g., to monetary concerns.
In this work, we distinguish between influence and adoption by explicitly modeling the states of being
influenced and of adopting a product. We extend the classical Linear Threshold (LT) model to incorpo-
rate prices and valuations, and factor them into users’ decision-making process of adopting a product.
We show that the expected profit function under our proposed model maintains submodularity under
certain conditions, but no longer exhibits monotonicity, unlike the expected influence spread function. To
maximize the expected profit under our extended LT model, we employ an unbudgeted greedy framework
to propose three profit maximization algorithms. The results of our detailed experimental study on three
real-world datasets demonstrate that of the three algorithms, PAGE, which assigns prices dynamically
based on the profit potential of each candidate seed, has the best performance both in the expected profit
achieved and in running time.

1 Introduction

The rapidly increasing popularity of online social networking sites such as Facebook, Google+, and Twitter
has facilitated immense opportunities for large-scale viral marketing. Viral marketing was first introduced to
the data mining community by Domingos and Richardson [7,20]; it is a cost-effective method to promote a new
product (or technology) by giving free or discounted samples to a selected group of influential individuals,
in the hope that through the word-of-mouth effects over the social network, a large number of product
adoptions will occur.

Motivated by viral marketing, influence maximization (InfMax) has emerged as a fundamental problem
concerning the propagation of innovations through social networks. In their seminal paper, Kempe et al. [16]
formulated InfMax as a discrete optimization problem: given a directed graph G = (V,E) (representing
a social network) with pairwise influence weights on edges, and a positive number k, find k individuals or
seeds, such that by activating them initially, the expected spread of influence (or spread for short) in the
network under a certain propagation model is maximized. Two classical propagation models studied in [16]
are the Independent Cascade (IC) and the Linear Threshold (LT) model. In this paper, we focus on the LT
model, the details of which are deferred to Sec. 2.

∗An abbreviated version of this paper appears in the Proceedings of the 12th IEEE International Conference on Data Mining
(ICDM 2012), Brussels, Belgium, December 10 – 13, 2012. The copyright of the conference version belongs to IEEE.
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The expected spread of influence of any set S ⊆ V , denoted by h(S)1, is defined as the expected number
of activated nodes after the diffusion process starting from S quiesces. Under both IC and LT models,
InfMax is NP-hard and the influence function h is monotone and submodular. A set function f : 2X→R
is monotone if f(S) ≤ f(T ) whenever S ⊆ T ⊆ X, where X is the ground set. The function f is submodular
if f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T ) holds for all S ⊆ T ⊆ X and x ∈ X \ T . Submodularity naturally
captures the law of diminishing marginal returns, a fundamental principle in microeconomics. With these
good properties, approximation guarantees can be provided for InfMax [16].

Although InfMax has been studied extensively, a majority of the previous work has focused on the
classical propagation models, namely IC and LT, which do not fully incorporate important monetary aspects
in people’s decision-making process of adopting new products. The importance of such aspects is seen in
actual scenarios and recognized in the management science literature. As real-world examples, until recently,
Apple’s iPhone has seemingly created bigger buzz in social media than any other smartphones. However, its
worldwide market share in 2011 fell behind Nokia, Samsung, and LG2. This is partly due to the fact that
iPhone is pricier both in hardware (if one buys it contract-free and factory-unlocked) and in its monthly rate
plans. On the contrary, the HP TouchPad was shown little interest by the tablet market when it was initially
priced at $499 (16GB). However, it was sold out within a few days after HP dropped the price substantially
to $99 (16GB) 3.

In management science, the adoption of a new product is characterized as a two-step process [15]. In the
first step, “awareness”, an individual gets exposed to the product and becomes familiar with its features. In
the second step, “actual adoption”, a person who is aware of the product will purchase it if her valuation
outweighs the price. Product awareness is modeled as being propagated through the word-of-mouth of existing
adopters, which is indeed articulated by classical propagation models. However, the actual adoption step is
not captured in these classical models and is indeed the gap between these models and that in [15].

In a real marketing scenario, viral or otherwise, products are priced and people have their own valuations
for owning them, both of which are critical in making adoption decisions. Precisely, the valuation of a person
for a certain product is the maximum money she is willing to pay for it; the valuation for not adopting is
defined to be zero [21]. Thus, when a company attempts to maximize its expected profit in a viral marketing
campaign, such monetary factors need to be taken into account. However, in InfMax, only influence weights
and network structures are considered, and the marketing strategies are restricted to binary decisions: for
any node in the network, an InfMax algorithm just decides whether or not it should be seeded.

To address the aforementioned limitations, we propose the problem of profit maximization (ProMax)
over social networks, by incorporating both prices and valuations. ProMax is the problem of finding an
optimal strategy to maximize the expected total profit earned by the end of an influence diffusion process
under a given propagation model. We extend the LT model to propose a new propagation model named the
Linear Threshold model with user Valuations (LT-V), which explicitly introduces the states influenced and
adopting. Every user will be quoted a price by the company, and an influenced user adopts, i.e., transitions
to adopting, only if the price does not exceed her valuation.

As pointed out by Kleinberg and Leighton [17], people typically do not want to reveal their valuations
before the price is quoted for reasons of trust. Moreover, for privacy concerns, after a price is quoted, they
usually only reveal their decision of adoption (i.e., “yes” or “no”), but do not wish to share information
about their true valuations. Thus, following the literature [17, 21], we make the independent private value
(IPV) assumption, under which the valuation of each user is drawn independently at random from a certain
distribution. Such distributions can be learned by a marketing company from historical sales data. Further-
more, our model assumes users to be price-takers who respond myopically to the prices offered to them,
solely based on their privately-held valuations and the price offered.

Since prices and valuations are considered in the optimization, marketing strategies for ProMax require
non-binary decisions: for any node in the network, we (i.e., the system) need to decide whether or not to
seed it, and what price should be quoted. Given this factor, the objective function to optimize in ProMax,

1The standard notation for the influence function is σ [16], but since σ is used for the normal distribution N (µ, σ2) in the
paper, we use h here.

2IDC Worldwide Mobile Phone Tracker, July 28, 2011.
3http://www.pcworld.com/article/237088/hp_drops_touchpad_price_to_spur_sales.html

2

http://www.pcworld.com/article/237088/hp_drops_touchpad_price_to_spur_sales.html


i.e, the expected total profit, is a function of both the seed set and the vector of prices. As we will show in
Secs. 3 and 4, since discounting may be necessary for seeds, the profit function is in general non-monotone.
Also, as we show, the profit function maintains submodularity for any fixed vector of prices, regardless of
the specific forms of valuation distributions.

In light of the above, ProMax is inherently more complex than InfMax, and calls for more sophisticated
algorithms for its solution. As the profit function is in the form of the difference between a monotone
submodular set function and a linear function, we first design an “unbudgeted” greedy (U-Greedy) framework
for seed set selection. In each iteration, it picks the node with the largest expected marginal profit until the
total profit starts to decline. We show that for any fixed price vector, U-Greedy provides quality guarantees
slightly lower than a (1−1/e)-approximation. To obtain complete profit maximization algorithms, we propose
to integrate U-Greedy with three pricing strategies, which leads to three algorithms All-OMP (Optimal Myopic
Prices), FFS (Free-For-Seeds), and PAGE (Price-Aware GrEedy). The first two are baselines and choose prices
in ad hoc ways, while PAGE dynamically determines the optimal price to be offered to each candidate seed in
each round of U-Greedy. Our experimental results on three real-world network datasets illustrate that PAGE
outperforms All-OMP and FFS in terms of expected profit achieved and running time, and is more robust
against various network structures and valuation distributions.

Road-map. Sec. 2 discusses related work. Sec. 3 describes the LT-V model and defines ProMax. Sec. 4
presents our profit maximization algorithms. We discuss experiments in Sec. 5, and present extensions and
conclusions in Sec. 6.

2 Background and Related Work

Domingos and Richardson [7,20] first posed InfMax as a data mining problem. They modeled the problem
using Markov random fields and proposed heuristic solutions. Kempe et al. [16] studied InfMax as a discrete
optimization problem, and utilized submodularity of the spread function h to obtain a greedy (1 − 1/e)-
approximation algorithm using the results in [19] (see Algorithm 1: Greedy). Greedy starts from an empty
set; in each iteration it adds to S the element with the largest marginal gain until |S| = k.

The Linear Threshold Model. We now describe the LT model [16] in detail. In this model, each node
ui chooses an activation threshold θi uniformly at random from [0, 1], representing the minimum weighted
fraction of active in-neighbors necessary so as to activate ui. Each edge (ui, uj) ∈ E is associated with an
influence weight wi,j ; for each uj ∈ V ,

∑
ui∈Nin(uj)

wi,j ≤ 1, where Nin(ui) is the set of in-neighbors of ui
(i.e., the sum of incoming weights does not exceed 1). Time proceeds in discrete steps. At time 0, a seed set
S is activated. At any time t ≥ 1, we activate any inactive ui if the total influence weight from its active
in-neighbors reaches or exceeds θi. Once a node is activated, it stays active. The diffusion process completes
when no more nodes can be activated.

Chen et al. [6] showed that it is #P-hard to compute the exact expected spread of any node set in
general graphs for the LT model. Thus, a common practice is to estimate the spread using Monte-Carlo
(MC) simulations, in which case the approximation ratio of Greedy drops to 1 − 1/e − ε, where ε > 0
depends on the number of MC simulations run [16]. By further exploiting submodularity, [18] proposed the
cost-effective lazy forward (CELF) optimization, which improves the running time of Greedy by up to 700
times.

Recently, Bhagat et al. [2] addressed the difference between product adoption and influence in their LT-C
(Linear Threshold with Colors) model. In LT-C, the extent to which a node is influenced by its neighbors
depends on two factors: influence weights and the opinions of the neighbors. LT-C also features a “tattle”
state for nodes: if an influenced node does not adopt, it may still propagate positive or negative influence to
neighbors. However, unlike us, the LT-C model does not consider monetary aspects in product adoption.

Considerable work has been done on pricing in social networks. Hartline et al. [13] studied optimal
marketing for digital goods in social networks and proposed the influence-and-exploit (IE) framework. In IE,
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Algorithm 1: Greedy (G = (V,E), k, h)

1 S ← ∅;
2 for i = 1→ k do
3 u← arg maxui∈V \S [h(S ∪ {ui})− h(S)];

4 S ← S ∪ {u};
5 Output S;

Inactive Influenced Adopting
price ≤ valuation

price > valuation

inf ≥ threshold  

inf < threshold  

Figure 1: Node states in the LT-V model.

seeds are offered free samples, and the seller can approach other users in a random sequence, bypassing the
network structure. Arthur et al. [1] adopted IE to study a similar problem in which users arrive in a sequence
decided by a cascade model (IC). However, in [1], seeds are given as input (with free samples offered), whereas
in our case, the choice of the seed set and of the prices are driven by profit maximization. These choices are
made by the algorithms. Work in [3, 4] formulated pricing in social networks as simultaneous-move games
and studied equilibria of the games, whereas we focus on stochastic propagation models with social influence.

3 Linear Threshold Model with User Valuations and Its Proper-
ties

In Sec. 3.1, we describe our proposed LT-V model and define the profit maximization problem (ProMax).
We then study a restricted case of ProMax and present theoretical results for it in Sec. 3.2. In Sec. 3.3, we
establish the submodularity result for general ProMax.

3.1 Model and Problem Definition

In the LT-V model, the social network is modeled as a directed graph G = (V,E), in which each node ui ∈ V
is associated with a valuation vi ∈ [0, 1]. Recall that in Sec. 1, we made the IPV assumption under which
valuations are drawn independently at random from some continuous probability distribution assumed known
to the marketing company. Let Fi(x) = Pr[vi ≤ x] be the distribution function of vi, and fi(x) = d

dxFi(x)
be the corresponding density function. The domain of both functions is [0, 1] as we assume both prices and
valuations are in [0, 1]. As in the classical LT model, each node ui has an influence threshold θi chosen
uniformly at random from [0, 1]. Each edge (ui, uj) ∈ E has an influence weight wi,j ∈ [0, 1], such that for
each node uj ,

∑
ui∈Nin(uj)

wi,j ≤ 1. If (ui, uj) 6∈ E, define wi,j = 0. Following [7,20], we assume that there is

a constant acquisition cost ca ∈ [0, 1) for marketing to each seed (e.g., rebates, or costs of mailing ads and
coupons).

Diffusion Dynamics. Fig. 1 presents a state diagram for the LT-V model. At any time step, nodes are
in one of the three states: inactive, influenced, and adopting. A diffusion under the LT-V model proceeds in
discrete time steps. Initially, all nodes are inactive. At time 0, a seed set S is targeted and becomes influenced.
Next, every user ui in the network is offered a price pi by the system. Let p = (p1, . . . , p|V |) ∈ [0, 1]|V | denote
a vector of quoted prices, which remains constant throughout the diffusion. For any ui ∈ S, it gets one
chance to adopt (enters adopting state) at step 0 if pi ≤ vi; otherwise it stays influenced.
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At any time t ≥ 1, an inactive node uj becomes influenced if the total influence from its adopting in-
neighbors reaches its threshold, i.e.,

∑
ui∈Nin(uj)&ui adopting

wi,j ≥ θj . Then, uj will transition to adopting at
t if pj ≤ vj , and will stay influenced otherwise. The model is progressive, meaning that all adopting nodes
remain as adopters and no influenced node will ever become inactive. The diffusion ends if no more nodes
can change states.

Following [15], we assume that only adopting nodes propagate influence, as adopters can release
experience-related product features (e.g., durability, usability), making their recommendations more effective
in removing doubts of inactive users. This distinguishes our model from LT-C [2], and in fact, the extensions
to the LT model employed in LT-C and in LT-V are orthogonal and address different aspects in propagations
of influence and adoption.

Formally, we define π : 2V × [0, 1]|V | → R to be the profit function such that π(S,p) is the expected (total)
profit earned by the end of a diffusion process under the LT-V model, with S as the seed set and p as the
vector of prices. The problem studied in the paper is as follows.

Definition 1 (Profit maximization (ProMax)). Given an instance of the LT-V model consisting of a graph
G = (V,E) with edge weights, find the optimal pair of a seed set S and a price vector p that maximizes the
expected profit π(S,p).

The Virtual Mechanism and Its Truthfulness Guarantee. Recall that users are assumed to be
price-takers making adoption decisions just by comparing the quoted price to their valuation. Thus, it is
natural to ask: would an influenced user be better off by acting strategically, i.e., by not deciding solely by
comparing her true valuation to the price? In other words, for any pricing strategy used by a company, is it
robust against strategic behaviors of users?

In fact, the price-taking procedure in LT-V can be structured as a virtual mechanism that we show is
truthful, and hence the dominant strategy for all users is to use true valuation. It is worth emphasizing that
the mechanism is virtual since in our model, the company needs not to run it and users will not be asked to
declare their valuation.

Definition 2 (The Virtual Mechanism). An influenced user ui declares some valuation to the company;
then ui is sold the product at price pi if pi is no greater than the declared valuation, and not sold otherwise.

Theorem 1 (Truthfulness of the Virtual Mechanism). The mechanism defined in Definition 2 is truthful.
That is, the utility any user ui gets by declaring any number v̂i 6= vi is no greater than that she gets by
declaring vi truthfully.

Proof. Consider the case that the true valuation vi < pi. Then, if reporting vi truthfully, ui will not adopt
pi, and hence her utility is 0. Suppose that ui reports lower (v̂i < vi); she still would not get the product
and the utility is still 0. Suppose otherwise (ui reports higher: v̂i > vi). Then, if v̂i < pi, the situation is
the same, in which ui gets zero utility. If v̂i ≥ pi, then ui ends up paying pi to adopt and having a negative
utility, since vi − pi < 0.

Then, consider the case that vi ≥ pi, in which if ui reports truthfully, she will adopt the product by
paying pi and enjoy a non-negative utility vi − pi. Suppose that ui reports higher (v̂i > vi), then she still
gets to pay pi and has utility vi− pi. Suppose otherwise (ui reports lower: v̂i < vi). Then, if v̂i is still no less
than pi, she still pays pi and has utility vi − pi, while if v̂i happens to be lower than pi, she will not buy it
and has zero utility. And this completes the proof.

3.2 A Restricted Special Case of ProMax under LT-V

To better understand the properties of the LT-V model and the hardness of ProMax, we first study a
special case of the problem. We assume the valuation distributions degenerate to an identical single-point,
i.e., ∀ui ∈ V , vi = p for some p ∈ (0, 1] with probability 1. As mentioned in Sec. 1, this is usually not the
case; the degeneration assumption here is of theoretical interest only.
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For simplicity, we also assume that for every ui ∈ S, the quoted price pi = 04. Since valuation is the
maximum money one is willing to pay for the product, in this case, the optimal pricing strategy is to set
pj = p, ∀uj ∈ V \S. The situation amounts to restricting the marketing strategy to a binary one: free sample
(pi = 0) for seeds and full price for non-seeds (pj = p). Given this pricing strategy, once a node is influenced,
it transitions to adopting with probability 1. Thus, ProMax boils down to a problem to determine a seed
set S, and the profit function π(S,p) reduces to a set function π̂(S), since p is uniquely determined given S:

π̂(S) = p · (hL(S)− |S|)− ca |S|
= p · hL(S)− (p+ ca) |S|, (1)

where hL(S) is the expected number of adopting nodes under the LT-V model by seeding S.
In general, the degenerated profit function π̂ is non-monotone. To see this, let u be any seed that provides

a positive profit. Now, clearly π̂(∅) = 0 < π̂({u}) but π̂(V ) ≤ 0 < π̂({u}), as giving free samples to the whole
network will result in a loss of ca |V | on account of seeding expenses. Since π̂ is non-monotone, unlike InfMax,
it is natural to not use a budget k for the number of seeds, but instead ask for a seed set of any size that
results in the maximum expected profit. In other words, the number of seeds to be chosen, k, is not preset,
but is rather determined by a solution. This restricted case of ProMax is to find S = arg maxT⊂V π̂(T ),
which we show is NP-hard.

Theorem 2. The Restricted ProMax problem (RPM) is NP-hard for the LT-V model.

Proof. Given an instance of the NP-hard Minimum Vertex Cover (MVC) problem, we can construct
an instance of the ProMax problem, such that an optimal solution to the ProMax problem gives an
optimal solution to the MVC problem. Consider an instance of MVC defined by an undirected n-node graph
G = (V,E); we want to find a set S such that |S| = k and k is the smallest number such that G has a vertex
cover (VC) of size k.

The corresponding instance of RPM is as follows: first, we direct all edges in G in both directions to
obtain a directed graph G′ = (V,E′), where E′ is the set of all directed edges. Then, for each ui ∈ V , set
θi = 1; for each (ui, uj) ∈ E, define wi,j = 1/din(uj), where din(uj) is the in-degree of uj in G′. Lastly, set
p = 1 and ca = 0, in which case π̂(S) = hL(S) − |S|. Now, we want show that a set S ⊆ V is a minimum
vertex cover (MVC) of G if and only if S = arg maxT⊆V π̂(T ).

(=⇒). If S is a MVC of G, then in ProMax we choose S as the seed set, so that π̂(S) = n − |S|. This
is optimal, shown by contradiction. Suppose otherwise, i.e., there exists some T ⊆ V , T 6= S, such that
π̂(T ) > π̂(S). For the case of |T | ≥ |S|, we have π̂(T ) = hL(T ) − |T | ≤ hL(T ) − |S|. Since hL(T ) ≤ n,
π̂(T ) ≤ hL(T ) − |S| ≤ n − |S| = π̂(S), which is a contradiction. For the case of |T | < |S|, let |S| − |T | = `.
Thus, π̂(T ) = hL(T )− (|S| − `). Since T is not a VC, hL(S) = n, and it is supposed that π̂(T ) > π̂(S), we
have hL(T ) = n − j, for some j ∈ [1, `). Then, from the way in which influence weights and thresholds are
set up, we know there are exactly j nodes in V \ T that are not activated. Let J be the set containing those
j nodes, and consider the set T ′ = T ∪ J , for which we have π̂(T ′) = n. From the proof of Theorem 2.7
of [16], T ′ is a VC of G. But since |T ′| = |T |+ j < |S|, T ′ is a VC with a strictly smaller size than S, which
gives a contradiction since S is a MVC.

(⇐=). Suppose that S = arg maxT⊆V π̂(T ), but S is not a VC of G (we will consider MVC later). This
implies that there exists at least one edge e ∈ E such that both endpoints of e, denoted by ui and uj , are not
in S. From the way in which influence weights and thresholds are set up in G′, we know both ui and uj are
not activated. Thus, if we add either one of them, say ui, into S, hL(S ∪{ui}) is at least hL(S) + 2, and thus
π̂(S∪{ui})−π̂(S) > 1, which contradicts with the fact that S optimizes π̂. Hence, S must be a VC of G. Now
suppose that in addition S is not a MVC. Then, there must exist some x ∈ S such that the node-set S \ {x}

4Strictly speaking, for the sake of maximizing expected total profit, the seller should also charge price p to all seeds, since
it is assumed that all users have valuation p. In this case, the expected profit function becomes π̂(S) = p · hL(S)− ca|S|, and
the non-monotonicity still holds in general. To see this, consider a social network graph G = (V,E) where |V | = 100, and also
let p = 0.5, ca = 0.1. Suppose that there is a single node v that has expected influence spread of 90, which alone would yield
a profit of 44.9, while if S = V , the expected profit would be 40, which is less than the case when S = {v}. This example
illustrates that the profit function is still non-monotone when all users have the same valuation and are offered the same price.
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Algorithm 2: U-Greedy (G = (V,E), π̂)

1 S ← ∅;
2 while true do
3 u← arg maxui∈V \S [π̂(S ∪ {ui})− π̂(S)];

4 if π̂(S ∪ {u})− π̂(S) > 0 then
5 S ← S ∪ {u};
6 else break;

7 Output S;

is still a VC of G; this means that hL(S \ {x}) = n, too. Thus, π̂(S \ {x}) = n− |S|+ 1 > π̂(S) = n− |S|,
which is a contradiction. Hence, S is indeed a MVC of G.

Now we have shown that an optimal solution to the restricted ProMax problem is an optimal solution
to the Minimum Vertex Cover problem, and vice versa; this completes the proof.

Observe that both components of π̂, hL(S) and −|S|, are submodular, which leads to the submodularity
of π̂ as it is a non-negative linear combination of two submodular functions. However, unlike for InfMax,
the function is non-monotone and we want to find a set S of any size that maximizes π̂(S), so the standard
Greedy is not applicable here. In [8], Feige et al. gave a randomized local search (2/5-approximation) for
maximizing general non-monotone submodular functions. This is applicable to π̂, but have time complexity
O(|V |3|E|/ε), where (1 + ε/|V |2) is the per-step improvement factor in the search. By contrast, the function
π̂ is the difference between a monotone submodular function and a linear function, we propose a greedy
approach (Algorithm 2 U-Greedy) with time complexity O(|V |2|E|) and a better approximation ratio, which
is slightly lower than 1 − 1/e. U-Greedy grows the seed set S in a greedy fashion similar to Greedy, and
terminates when no node can provide positive marginal gain w.r.t. S.

Theorem 3. Given an instance of the restricted ProMax problem under the LT-V model consisting of
a graph G = (V,E) with edge weights and objective function π̂, let Sg ⊆ V be the seed set returned by
Algorithm 2, and S∗ ⊆ V be the optimal solution. Then,

π̂(Sg) ≥ (1− 1/e) · π̂(S∗)−Θ(max{|Sg|, |S∗|}). (2)

Proof. Case (i). If |S∗| ≤ |Sg|, then since hL is monotone and submodular, hL(Sg) ≥ (1 − 1/e) · hL(S∗).
Thus, by the definition of π̂, we have

π̂(Sg) = p · hL(Sg)− (p+ ca) |Sg|
≥ p(1− 1/e) · hL(S∗)− (p+ ca) |Sg|
= (1− 1/e) · π̂(S∗)− (p+ ca) |Sg|+ (1− 1/e)(p+ ca) |S∗|
= (1− 1/e) · π̂(S∗)−Θ(Sg).

Case (ii). If |S∗| > |Sg|, consider a set S′g obtained by running U-Greedy until |S′g| = |S∗|. Clearly, from
case (i), we have π̂(S′g) ≥ (1 − 1/e) · π̂(S∗) − Θ(|S′g|). Due to the fact that |S∗| = |S′g| > |Sg|, and Sg is
obtained by running U-Greedy until no node can provide positive marginal profit, we have π̂(Sg) ≥ π̂(S′g) ≥
(1− 1/e) · π̂(S∗)−Θ(|S∗|). Combining the above two cases gives Eq. (2).

Theorem 3 indicates that the gap between the U-Greedy solution and a (1 − 1/e)-approximation grows
linearly w.r.t. the cardinality of the seed set. Since this cardinality is typically much smaller than the expected
spread, U-Greedy can provides quality guarantees for restricted ProMax with objective function π̂.
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3.3 Properties of the LT-V Model in the General Case

Theorem 2 shows that in a restricted setting where exact valuations are known and the optimal pricing
strategy is trivial, ProMax is still NP-hard. Now we consider the general ProMax described in Sec. 3.1,
and show that for any fixed price vector, the general profit function maintains submodularity (w.r.t. the seed
set) regardless of the specific forms of the valuation distributions.

Given a seed set S and a price vector p, let ap(ui|S,p) denote ui’s adoption probability, defined as the
probability that ui adopts the product by the end of the diffusion started with seed set S and price vector
p. Similarly, let ip(ui|S,p−i) denote ui’s probability of getting influenced under the same initial conditions,
where p−i ∈ [0, 1]|V |−1 is the vector of all prices excluding pi. Also, let π(i)(S,p) be the expected profit
earned from ui. By model definition, for any ui ∈ V \ S, we have ap(ui|S,p) = ip(ui|S,p−i) · (1 − Fi(pi))
and π(i)(S,p) = pi · ap(ui|S,p). If ui ∈ S, ip(ui|S,p−i) = 1 and π(i)(S,p) = pi · (1− Fi(pi))− ca.

By linearity of expectations, we have π(S,p) =
∑

ui∈V π
(i)(S,p). Hence, to analyze the profit function,

we just need to focus on the adoption probability, in which the factor (1 − Fi(pi)) does not depend on S,
but ip(ui|S,p−i) calls for careful analysis, which we will present in the proof of Theorem 4.

Let v = (v1, . . . , v|V |) ∈ [0, 1]|V | be a vector of user valuations, corresponding to random samples drawn
from the various user valuation distributions. We now have:

Theorem 4 (Submodularity). Given an instance of the LT-V model, for any fixed vector p ∈ [0, 1]|V | of
prices, the profit function π(S,p) is submodular w.r.t. S, for an arbitrary vector v of valuation samples.

The proof of submodularity of the influence spread function h in the classical LT model [16] relies on
establishing an equivalence between the LT model and reachability in a family of random graphs generated
as follows: for each node ui ∈ V , select at most one of its incoming edges at random, such that (uj , ui) is
selected with probability wj,i, and no edge is selected with probability 1 −

∑
uj∈Nin(ui)

wj,i. We will use a
similar approach in the proof of Theorem 4.

Proof of Theorem 4. By linearity of expectation as well as the above analysis on adoption probabilities,
π(S,p) =

∑
ui∈V π

(i)(S,p) =
∑

ui∈S [pi(1−Fi(pi))− ca] +
∑

ui 6∈S pi(1−Fi(pi)) · ip(ui|S,p−i). Since the first
sum is linear in S, it suffices to show that ip(ui|S,p−i) is submodular in S, whenever ui 6∈ S.

To encode random events of the LT-V model using the possible world semantics, we do the following.
First, we run a node coloring process on G: for each node ui, if pi ≤ vi, color it black; otherwise color it
white. Meanwhile, we run a live-edge selection process following the aforementioned protocol [16]. Note that
the two processes are orthogonal and independent of each other. Combining the results of both leads to
a colored live-edge graph, which we call a possible world X. Let X be the probability space in which each
sample point specifies one such possible world X.

Next, we define the notion of “black-reachability”. In any possible world X, a node ui is black-reachable
from a node set S if and only if there exists a black node s ∈ S such that ui is reachable from s via a
path consisting entirely of black nodes, except possibly for ui (even if ui is white, it is still considered black-
reachable since here we are interested in the probability of being influenced, not adopting). From the same
argument in the proof of Claim 2.6 of [16], on any black-white colored graph, the following two distributions
over the sets of nodes are the same: (1) the distribution over sets of influenced nodes obtained by running the
LT-V process to completion starting from S; (2) the distribution over sets of nodes that are black-reachable
from S, under the live-edge selection protocol.

Let IX(ui|S) be the indicator set function such that it is 1 if ui is black-reachable from S, and 0 otherwise.
Consider two sets S and T with S ⊆ T ⊆ V , and a node x ∈ V \T . Consider some ui that is black-reachable
from T∪{x} but not from T . This implies (1) ui is not black-reachable from S either (otherwise, ui would also
be black-reachable from T , which is a contradiction); (2) the source of the path that “black-reaches” ui must
be x. Hence, ui is black-reachable from S∪{x}, but not from S, which implies IX(ui|S∪{x})−IX(ui|S) = 1 ≥
1 = IX(ui|T ∪{x})− IX(ui|T ). Thus, IX(ui|S) is submodular. Since ip(ui|S,p−i) =

∑
X∈X Pr[X] · IX(ui|S)

is a nonnegative linear combination of submodular functions, this completes the proof.
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We also remark that in general graphs, given any S and p, it is #P-hard to compute the exact value of
π(S,p) for the LT-V model, just as in the case of computing the exact expected spread of influence for the
LT model. This can be shown using a proof similar to the one for Theorem 1 in [6].

4 Profit Maximization Algorithms

For ProMax, since the expected profit is a function of both the seed set and the vector of prices, a ProMax
algorithm should determine both the seed set and an assignment of prices to nodes to optimize the expected
profit. Accordingly, it has two components: (1). a seed selection procedure that determines S, and (2). a
pricing strategy that determines p. Due to acquisition costs and the possible need for seed-discounting (details
later), π(S,p) is still non-monotone in S and is in the form of the difference between a monotone submodular
function and a linear function. Hence, inspired by the restricted ProMax studied in 3.2, we propose to use
U-Greedy for seed set selection.

We then propose three pricing strategies and integrate them with U-Greedy to obtain three ProMax
algorithms. The first two, All-OMP and FFS, are baselines with simple strategies that set prices of seeds
without considering the network structure and influence spread, while the third one, PAGE, computes optimal
discounts for candidate seeds based on their “profit potential”. Intuitively, it “rewards” seeds with higher
influence spread by giving them a deeper discount to boost their adoption probabilities, and in turn the
adoption probabilities of nodes that may be influenced directly or indirectly by such seeds.

Notice that taking valuations into account when modeling the diffusion process of product adoption makes
a difference for a marketing company. A pricing strategy that does not consider valuations is limited: either
it charges everyone full price (or at best gives full discount to the seeds), or it uses an ad-hoc discount policy
which is necessarily suboptimal. By contrast, PAGE makes full use of valuation information to determine
the best discounts.

4.1 Two Baseline Algorithms: All-OMP and FFS

Recall that in our model, users in the social network are price-takers who myopically respond to the price
offered to them. Thus, given a distribution function Fi of valuation vi, the optimal myopic price (OMP) [13]
can be calculated by:

pmi = arg max
p∈[0,1]

p · (1− Fi(p)). (3)

Offering OMP to a single influenced node ensures that the expected profit earned solely from that node
is the maximum. This gives our first ProMax algorithm, All-OMP, which offers OMP to all nodes regardless
of whether a node is a seed or how influential it is. First, for each ui ∈ V , it calculates pmi using Eq. (3), and
populates all OMPs to form the price vector pm = (pm1 , ..., p

m
|V |). Then, treating pm fixed, it essentially runs

U-Greedy (Algorithm 2) to select the seeds. When the algorithm cannot find a node of which the marginal
profit is positive, it stops.

Notice that Eq. (3) overlooks the network structure and ignores the profit potential of seeds. This may
lead to the sub-optimality of All-OMP in general. Fig 2 illustrates this with an example. Suppose that all
valuations are distributed uniformly in [0, 1] and the acquisition cost ca = 0.001. Hence, pm = (1/2, . . . , 1/2).
Consider seeding node 1: it adopts w.p. 0.5, giving a profit of 0.5 + 5∗0.53−0.001 = 1.124; it does not adopt
w.p. 0.5, resulting in a profit of −0.001. Thus, the expected profit π({1},pm) = 0.5615. However, when
p1 = 3/16, π({1},pm

−1 ⊕ (3/16)) = 0.6615. This shows that for high-influence networks and low acquisition
cost, the profit earned by running All-OMP can be improved by seed-discounting, i.e., lowering prices for
seeds so as to boost their adoption probabilities and thus better leverage their influence over the network.

5We use p−i ⊕ x to denote a vector sharing all values with p except that the i-th coordinate is replaced by x, e.g., if
p = (0.2, 0.3, 0.4), then p−1 ⊕ 0.5 = (0.5, 0.3, 0.4).
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Algorithm 3: All-OMP (G = (V,E), π, Fi(∀ui ∈ V ))

1 S ← ∅; pm ← 0;
2 foreach ui ∈ V do
3 pm[i]← pmi = arg maxp∈[0,1] p · (1− Fi(p));

4 while true do
5 u← arg maxui∈V \S [π(S ∪ {ui},pm)− π(S,pm)];

6 if π(S ∪ {u},pm)− π(S,pm) > 0 then S ← S ∪ {u};
7 else break;

8 Output S,pm;

1

6

2 3

4 5

0.50.5

0.5 0.5
0.5

Figure 2: An example graph.

Algorithm 4: FFS (G = (V,E), π, Fi(∀ui ∈ V ))

1 S ← ∅; pf ← 0;
2 foreach ui ∈ V do
3 pf [i]← pmi = arg maxp∈[0,1] p · (1− Fi(p));

4 while true do

5 u← arg maxui∈V \S [π(S ∪ {ui},pf
−i ⊕ 0)− π(S,pf )];

6 if π(S ∪ {u},pf
−u ⊕ 0)− π(S,pf ) > 0 then

7 S ← S ∪ {u}; pf ← pf
−u ⊕ 0;

8 else break;

9 Output S,pf ;

The intuition is that the profit loss over seeds (stemming from the discount) can potentially be compensated
and even surpassed by the profit gain over non-seeds: more seeds may adopt as a result of the discount and
the probabilities of non-seeds getting influenced will go up as more seeds adopt.

Generally speaking, there exists a trade-off between the immediate (myopic) profit earned from seeds and
the potentially more profit earned from non-seeds. Favoring the latter, we propose our second algorithm FFS
(Free-For-Seeds) which gives a full discount to seeds and charges non-seeds the OMP. FFS first calculates
pm = (pm1 , ..., p

m
|V |) using Eq. (3). Then it runs U-Greedy: in each iteration, it adds to S the node which

provides the largest marginal profit when a full discount (i.e., price 0) is given. For all seeds added, their
prices remain 0; the algorithm ends when no node can provide positive marginal profit.

Since FFS has a completely opposite attitude towards seed-discounting compared to All-OMP, intuitively,
it should be suitable for high-influence networks and low acquisition costs, but it may be overly aggressive
for low-influence networks and high acquisition costs. For example, in Fig 2, the FFS profit by seeding node
1 is 0.625, better than the All-OMP profit 0.5615. But if all influence weights are 0.01 instead of 0.5, and
ca = 0.01, All-OMP gives a profit of 0.246, while FFS gives only 0.0025.
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4.2 The PAGE Algorithm

Both All-OMP and FFS are easy for marketing companies to operate, but they are not balanced and are
not robust against different input instances as illustrated above by examples. To achieve more balance, we
propose the PAGE (for Price-Aware GrEedy) algorithm (Algorithm 5). PAGE also employs U-Greedy to select
seeds. It initializes all seed prices to their OMP values (Step 3). In each round, it calculates the best price
for each candidate seed such that its marginal profit (MP) w.r.t. the chosen S and p is maximized (Step
7); then it picks the node with the largest maximum MP (Step 8). It stops when it cannot find a seed with
a positive MP (Step 11). For all non-seed nodes, PAGE still charges OMP. We next explain the details of
determining the best price for a candidate seed.

Given a seed set S, consider an arbitrary candidate seed ui ∈ V \S, with its price pi to be determined. The
marginal profit (MP ) that ui provides w.r.t. S with pi is MP (ui) = π(S ∪ {ui},p−i ⊕ pi)− π(S,p−i ⊕ pmi ),
where p−i is fixed. The key task in PAGE is to find pi such that MP (ui) is maximized. Since π(S,p−i⊕ pmi )
does not involve ui and pi, it suffices to find pi that maximizes π(S ∪ {ui},p−i ⊕ pi).

Seeding ui at a certain price pi results in two possible worlds: world X
(i)
1 with Pr[X

(i)
1 ] = 1− Fi(pi), in

which ui adopts, and world X
(i)
0 with Pr[X

(i)
0 ] = Fi(pi), in which ui does not adopt. In world X

(i)
1 , the profit

earned from ui is pi− ca and let the expected profit earned from other nodes be Y1. Similarly, in world X
(i)
0 ,

the profit from ui is −ca and let the expected profit from other nodes be Y0. Notice that Y1 depends on the
influence of ui but Y0 does not. Putting it all together, the quantity of π(S∪{ui},p−i⊕pi) can be expressed
as a function of pi as follows:

gi(pi) = (1− Fi(pi)) · (pi + Y1) + Fi(pi) · Y0 − ca . (4)

Similarly to the expected spread of influence in InfMax, the exact values of Y1 and Y0 cannot be computed
in PTIME (due to #P-hardness [6]), but sufficiently accurate estimations can be obtained by Monte Carlo
(MC) simulations.

Finding p∗i = arg maxpi∈[0,1] gi(pi) now depends on the specific form of the distribution function Fi. We

consider two kinds of distributions: the normal distribution, for which vi ∼ N (µ, σ2), ∀ui ∈ V , and the
uniform distribution, for which vi ∼ U(0, 1), ∀ui ∈ V . The choice of the normal distribution is supported
by evidence from real-world data from Epinions.com (see Sec. 5), and also work in [14]. When sales data
are not available, it is common to consider the uniform distribution with support [0, 1] to account for our
complete lack of knowledge [3, 21].

The Normal Distribution Case. For normal distribution, assume that vi ∼ N (µ, σ2) for some µ and σ,
then ∀pi ∈ [0, 1],

Fi(pi) =
1

2

[
1 + erf

(
pi − µ√

2σ

)]
,

where erf(·) is the error function, defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt.

Plugging Fi(·) back into Eq. (4), one cannot obtain an analytical solution for p∗i , as erf(x) has no closed-form
expression. Thus, we turn to numerical methods to approximately find p∗i . Specifically, we use the golden
section search algorithm, a technique that finds the extremum of a unimodal function by iteratively shrinking
the interval inside which the extremum is known to exist [9]. In our case, the search algorithm starts with
the interval [0, 1], and we set the stopping criteria to be that the size of the interval which contains pi is
strictly smaller than 10−8.

The Uniform Distribution Case. The uniform distribution has easier calculations and analytical solu-
tions. If vi ∼ U(0, 1), then ∀pi ∈ [0, 1], Fi(pi) = pi, and plugging it back to Eq. (4) gives

gi(pi) = −p2i + (1− Y1 + Y0) · pi + Y1 − ca.
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Algorithm 5: PAGE (G = (V,E), π, Fi(∀ui ∈ V ))

1 S ← ∅; p← 0;
2 foreach ui ∈ V do
3 p[i]← pmi = arg maxp∈[0,1] p · (1− Fi(p));

4 while true do
5 foreach ui ∈ V \ S do
6 Estimate the value of Y0 and Y1 by MC simulations;
7 p∗i ← arg maxpi∈[0,1] gi(pi); normalize if needed;

8 u← arg maxui∈V \S gi(p
∗
i );

9 if π(S ∪ {ui},p−i ⊕ p∗i )− π(S,p−i ⊕ pmi ) > 0 then
10 S ← S ∪ {ui}; p← p−i ⊕ p∗i ;
11 else break;

12 Output S,p;

Table 1: Statistics of Network Data.

Dataset Epinions Flixster NetHEPT

Number of nodes 11K 7.6K 15K
Number of edges 119K 50K 62K
Average out-degree 10.7 6.5 4.12
Maximum out-degree 1208 197 64
#Connected components 4603 761 1781
Largest component size 5933 2861 6794

Hence, the optimal price

p∗i =
(1 + Y1 − Y0)

2
.

For both normal and uniform distributions, if p∗i > 1 or p∗i < 0, it is normalized back to 1 or 0, respectively.
Also note that the above solution framework applies to any probability distribution that vi may follow, as
long as an analytical or numerical solution can be found for p∗i .

To conclude this section, steps 5-8 in Algorithm 5 (and also the U-Greedy seed selection procedure in
All-OMP and FFS) can be accelerated by the CELF optimization [18], or the more recent CELF++ [11]. The
adaptation is straightforward and the details can be found in [18] and [11].

5 Empirical Evaluations

We conduct experiments on real-world network datasets to evaluate our proposed baselines and the PAGE
algorithm. In all these algorithms, a key step is to compute the marginal profit of a candidate seed. As
mentioned in Sec. 3, computing the exact expected profit is intractable for the LT-V model. Thus, we
estimate the expected profit with Monte Carlo (MC) simulations. Following [16], we run 10,000 simulations
for this purpose. This is an expensive step and as for InfMax, it limits the size of networks on which we can
run these simulations. For the same reason, the CELF optimization is used in all algorithms as a heuristic.
All implementations are in C++ and all experiments were run on a server with 2.50GHz eight-core Intel
Xeon E5420 CPU, 16GB RAM, and Windows Server 2008 R2.
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5.1 Dataset Preparations

Network Data. We use three network datasets whose statistics are summarized in Table 1. They include:
(a) Epinions [20], a who-trust-whom network extracted from review site Epinions.com: an edge (ui, uj) is
present if uj has expressed her trust in ui’s reviews; (b) Flixster6, a friendship network from social movie
site Flixster.com: if ui and uj are friends, we have edges in both directions; (c) NetHEPT (standard for
InfMax [5, 6, 12, 16])7, a co-authorship network extracted from the High Energy Physics Theory section of
arXiv.org: if ui and uj have co-authored papers, we have edges in both directions. The raw data of Epinions
and Flixster contain 76K users, 509K edges and 1M users, 28M edges, respectively. We use the METIS graph
partition software8 to extract a subgraph for both networks, to ensure that MC simulations can finish in a
reasonable amount of time.
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Figure 3: Distribution of influence weights in Flixster

Influence Weights. We use two methods, Weighted Distribution (WD) and Trivalency (TV), to assign in-
fluence weights to edges. For WD, wi,j = Ai,j/Nj , where Ai,j is the number of actions ui and uj both perform,
and Nj is a normalization factor, i.e., the number of actions performed by uj , to ensure

∑
ui∈Nin(uj)

wi,j ≤ 1.
In Flixster, Ai,j is the number of movies uj rated after ui; in NetHEPT, Ai,j is the number of papers ui
and uj co-authored; in Epinions, since no action data is available, we use wi,j = 1/din(uj) as an approx-
imation. For TV, wi,j is selected uniformly at random from {0.001, 0.01, 0.1}, and is normalized to ensure∑

ui∈Nin(uj)
wi,j ≤ 1. Fig. 3 illustrates the distribution of weights for Flixster; it shows that influence is

higher in WD graphs than in TV graphs.

Valuation Distributions. As mentioned in Sec. 1, valuations are difficult to obtain directly from users,
and we have to estimate the distribution using historical sales data. In an Epinions.com review, a user
provides an integer rating from 1 to 5, and may optionally report the price she paid in US dollars (see,
e.g., http://tinyurl.com/773to53). If a review contains both price and rating, we can combine them to
approximately estimate the valuation of that user, as in such systems, ratings are seen as people’s utility for
a good, and utility is the difference of valuation and price [21].

We observed that most products have only a limited number (< 100) of reviews, and thus a single product
may not provide enough samples. To circumvent this difficulty, we acquired all reviews for the popular Canon
EOS 300D, 350D, and 400D cameras. Given that these cameras followed a sequential release within a short

6http://www2.cs.sfu.ca/~sja25/personal/datasets/. Ratings timestamped.
7http://research.microsoft.com/en-us/people/weic/projects.aspx
8http://glaros.dtc.umn.edu/gkhome/views/metis
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time span (three years), we treated them as having similar monetary values to consumers. After removing
reviews without prices reported, we are left with 276 samples. Next, we transform prices and ratings to
obtain estimated valuations as follows:

valuation = price ∗ (1 + rating / 5).

We then normalize the results into [0, 1] and fit the data to a normal distribution N (µ, σ2) with µ = 0.53
and σ = 0.14 estimated by maximum likelihood estimation (MLE). Fig. 4(a) plots the histogram of the
normalized valuations; Fig. 4(b) presents the CDFs of our empirical data and N (0.53, 0.142). To test the
goodness of fit, we compute the Kolmogorov-Smirnov (K-S) statistic [10] of the two distributions, which is
defined as the maximum difference between the two CDFs; in our case, the K-S statistic is 0.1064. As can
be seen from Fig. 4(b), N (0.53, 0.142) is indeed a good fit for the estimated valuations of the three Canon
EOS cameras on Epinions.com.

Since there are no price data to be collected in Flixster and NetHEPT, we use N (0.53, 0.142) in the
simulations for all datasets. In addition, for completeness, we also test with the uniform distribution over
[0, 1], i.e., U(0, 1), as it is commonly assumed in the literature [3, 21].
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Figure 4: Statistics of Valuations (Epinions.com)

5.2 Experimental Results

We compare PAGE, All-OMP, and FFS in terms of the expected profit achieved, price assignments, and
running time. Although all algorithms employ U-Greedy which does not terminate until the marginal profit
starts decreasing, for uniformity, we report simulation results up to 100 seeds.

Expected Profit Achieved. The quality of outputs (seed sets and price vectors) of All-OMP, FFS, and
PAGE for general ProMax are evaluated based on the expected profit achieved. Fig. 5, 6, and 7 illustrate the
results on Epinions, Flixster, and NetHEPT, respectively. On each network, both valuation distributions are
tested in four settings: WD weights with ca = 0.1 and 0.001; TV weights with ca = 0.1 and 0.001. As prices
and valuations are in [0, 1], we use 0.1 to simulate high acquisition costs and 0.001 for low costs. Except
for NETHEPT-TV with ca = 0.1 (Fig. 7c) and 0.001 (Fig. 7d), FFS is better than All-OMP; this indicates
that only in NetHEPT-TV, influence is low enough so that giving free samples blindly to all seeds do impair
profits.

In all test cases, PAGE performed consistently better than FFS and All-OMP. The margin between PAGE
and FFS is higher in TV graphs (by, e.g., 15% on Epinions-TV with N (0.53, 0.142), ca = 0.1) than that
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Figure 5: Expected profit achieved (Y-axis) on Epinions graphs w.r.t. |S| (X-axis). (N)/(U) denotes nor-
mal/uniform distribution.

in WD graphs (by, e.g., 2.1% on Epinions-WD with N (0.53, 0.142), ca = 0.1), as higher influence in WD
graphs can potentially bring more compensations for profit loss in seeds for FFS. Also, the expected profit
of all algorithms under N (0.53, 0.142) is higher than that under U(0, 1), since adoption probabilities under
N (0.53, 0.142) are higher.

Price Assignments. For N (0.53, 0.142) and U(0, 1), the OMP is 0.41 and 0.5, respectively. Fig. 8 demon-
strates the prices offered to each seed by All-OMP, FFS, and PAGE on Epinions-TV with N (0.53, 0.142)9.
All-OMP and FFS assigns 0.41 and 0 for all seeds, respectively, For PAGE, as the seed set grows, price tends
to increase, reflecting the intuition that discount is proportional to the influence (profit potential) of seeds,
as they are added in a greedy fashion and those added later have diminishing profit potential.

Algorithm
Epinions-WD Flixster-WD NetHEPT-WD
N U N U N U

All-OMP 6.7 2.3 3.0 1.0 2.6 2.2
FFS 6.3 2.1 2.8 1.0 2.7 2
PAGE 4.8 1.3 2.3 0.5 1.0 0.9

Table 2: Running time in hours (WD weights, ca = 0.1)

Running Time. Tables 2 and 3 present the running time of all algorithms on the three networks with
WD weights and TV weights, respectively10. As adoption probabilities under N (0.53, 0.142) are higher, all

9Similar results can be seen in other cases, which we omit here.
10The results for ca = 0.001 are similar, which are omitted here.
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Figure 6: Expected profit achieved (Y-axis) on Flixster graphs w.r.t. |S| (X-axis). (N)/(U) denotes nor-
mal/uniform distribution.

Algorithm
Epinions-TV Flixster-TV NetHEPT-TV
N U N U N U

All-OMP 5.1 2.4 1.4 1.0 2.3 2.1
FFS 5.5 2.5 1.5 0.8 2.2 1.8
PAGE 4.0 1.0 0.9 0.4 0.8 0.5

Table 3: Running time in hours (TV weights, ca = 0.1)

algorithms ran longer with the normal distribution on all graphs. Similarly, as influence in WD graphs are
higher, the running time on them is longer than that on TV graphs.

All-OMP and FFS have roughly the same running time. More interestingly, PAGE is faster than both
baselines in all cases. The observation is that in each round of U-Greedy, PAGE maximizes the marginal
profit for each candidate seed in the priority queue maintained by CELF. Thus, heuristically, the lazy-
forward procedure in CELF (see [18]) has a better chance to return the best candidate seed sooner for
PAGE. All-OMP and FFS also benefit from CELF, but since the marginal profits of candidate seeds are often
suboptimal, elements in the CELF queue tend to be clustered, and thus the lazy-forward is not as effective.
Besides, for PAGE under N (0.53, 0.142), the golden section search usually converges in less than 40 iterations
with stopping criteria 10−8 (defined in Sec. 4.2); thus the extra overhead it brings is negligible compared to
MC simulations.

To conclude, our empirical results on three real-world datasets with two different valuation distributions
demonstrate that the PAGE algorithm consistently outperforms baselines All-OMP and FFS in both expected
profit achieved and running time. It is also the most robust (against various inputs) among all algorithms.
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Figure 7: Expected profit achieved (Y-axis) on NetHEPT graphs w.r.t. |S| (X-axis). (N)/(U) denotes nor-
mal/uniform distribution.
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6 Conclusions and Discussions

In this work, we extend the classical LT model by incorporating prices and valuations to capture monetary
aspects in product adoption, which we distinguish from social influence. We study the profit maximization
(ProMax) problem under our proposed LT-V model, and prove NP-hardness and submodularity results.
We propose the PAGE algorithm which dynamically determines the prices for nodes based on their profit
potential. Our experimental results show that PAGE outperforms the baselines in all aspects evaluated.
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For future work, first, the added ingredients for LT-V can be used to extend models like IC [16] and
LT-C [2]. Second, the current algorithms cannot scale to larger graphs due to expensive MC simulations. To
achieve scalability, we can replace the MC simulations with fast heuristics for the LT model, e.g., LDAG [6]
and SimPath [12].

Another extension is to consider users’ spontaneous interests in product adoption, and incorporate it into
the LT-V model for profit maximization. Due to personal demand, a user may have spontaneous interests
in a certain product even when no neighbor in the network has adopted. To model this, each node ui is
associated with a “network-less” probability δi [7]. An inactive node becomes influenced when the sum of
δi and the total influence from its adopting neighbors are at least θi. A marketing company can thus wait
for spontaneous adopters to emerge first and propagate their adoption (for ` time steps, where ` is the
diameter of G), and then deploy a viral marketing campaign to maximize the expected profit. Our analysis
and solution framework (Secs. 3, 4) can be naturally applied to this setting.

In addition, it is interesting to look into more sophisticated methodologies to acquire knowledge on user
valuations, e.g., by leveraging users full previous transaction history, as well as look at real datasets besides
Epinions.com.
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