2012 IEEE 12th International Conference on Data Mining

GPU-Accelerated Feature Selection for Outlier Detection using the
Local Kernel Density Ratio

Fatemeh Azmandian
ECE Department

Ayse Yilmazer
ECE Department

Jennifer G. Dy
ECE Department

Javed A. Aslam
CCIS Department

David R. Kaeli
ECE Department

Northeastern University Northeastern University Northeastern University Northeastern University Northeastern University

Boston, USA Boston, USA
Jazmandi@ece.neu.edu yilmazer@ece.neu.edu

Abstract—Effective outlier detection requires the data to be
described by features that capture the behavior of normal data
while emphasizing those characteristics of outliers which make
them different than normal data. In this work, we present a
novel non-parametric evaluation criterion for filter-based fea-
ture selection which caters to outlier detection problems. The
proposed method seeks the subset of features that represent
the inherent characteristics of the normal dataset while forcing
outliers to stand out, making them more easily distinguished
by outlier detection algorithms.

Experimental results on real datasets show the advantage of
our feature selection algorithm compared to popular and state-
of-the-art methods. We also show that the proposed algorithm
is able to overcome the small sample space problem and
perform well on highly imbalanced datasets. Furthermore, due
to the highly parallelizable nature of the feature selection, we
implement the algorithm on a graphics processing unit (GPU)
to gain significant speedup over the serial version. The benefits
of the GPU implementation are two-fold, as its performance
scales very well in terms of the number of features, as well as
the number of data points.

Keywords-Feature Selection; Outlier Detection; Imbalanced
Data; GPU Acceleration

I. INTRODUCTION

An integral part of any data mining task is having a good
set of features that can be used to accurately model the
inherent characteristics of the data. In practice, the best set
of features is not known in advance. Therefore, a pool of
candidate features are collected and processed to removed
irrelevant and redundant features. This can improve both
the memory and computational cost of the data mining
algorithm, as well as the accuracy of the learner. Reducing
the space of possible features is done in two ways: feature
transformation and feature (subset) selection. In the former,
the original space of features is transformed into a new
feature space, as in Principal Components Analysis (PCA).

In the latter approach to reducing the size of the feature
space, the original set of features remain unchanged and
a subset of those features are selected. A simple way to
perform feature selection is to use a feature evaluation
function, such as relevance [1], to rank the features on an
individual basis. Then, a subset of the features are selected

1550-4786/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDM.2012.51

Boston, USA
jdy@ece.neu.edu

51

Boston, USA
Jjaa@ccs.neu.edu

Boston, USA
kaeli@ece.neu.edu

by taking the top-ranked features (for example, the top
m features). Another feature selection methodology is to
search the space of feature subsets and select the subset
that optimizes a criterion function. For a dataset with d
features, there are 2¢ possible subsets of features. For even
a moderate value of d, an exhaustive search would be
too computationally expensive, so it is common to use a
greedy search strategy such as sequential forward selection
or backward elimination [2].

In addition to the search strategy, the other important
component of feature selection is the criterion to be opti-
mized. A brute force way to evaluate features is to utilize
the classifier that will ultimately be used. Such a method is
called a wrapper approach [3]. Another, less computationally
expensive, way is to evaluate features based on some crite-
rion function. This is referred to as a filter method. Existing
criteria include measures based on distance, information,
dependency, and consistency [4]. A third approach is to
perform feature selection as part of the learning task, known
as an embedded method, such as a decision tree.

In this work, we present a novel optimization criterion
inspired by outlier detection problems where the data is
highly imbalanced and outliers comprise a small portion of
the dataset. The criterion tries to find the set of features that
maximize the density of normal data points while minimizing
the density of outliers. In other words, it seeks feature subsets
wherein normal data points fall in high-density regions and
outliers fall in low-density regions of the feature space. The
goal is to make outliers stand out more prominently from
normal data points, which allows outlier detection algorithms
to more easily identify them.

Most of the work on dimensionality reduction for out-
lier detection have tackled the problem using a feature
transformation approach. In these methods, a projection of
the feature space is sought which can be used to detect
outliers. While this approach subsumes feature selection
(i.e., projecting onto the original feature axes is equivalent to
selecting a subset of the features), there is a case to be made
for the understandability that comes with feature subset
selection as opposed to linear or non-linear combinations of

IEEE
computer
® psouety

the features. Retaining a subset of the original features goes a
long way towards understanding the nature of the underlying
data and the features that contribute to an outlier’s deviant
behavior. This can be advantageous in domains such as
fraud detection and intrusion detection, in which anomalous
activity can be narrowed down to a subset of the collected
features.

In addition to proposing a feature selection algorithm
that seeks to intrinsically enhance the quality of outlier
detection, an important contribution of this paper is the
implementation of the algorithm on a graphics processing
unit (GPU) and the substantial speedup that is acquired.
GPUs are massively parallel floating point processors at-
tached to dedicated high speed memory, at a fraction of the
cost of traditional parallel processing computers. They are
designed for compute-intensive, highly data-parallel com-
putation and rely on multithreading to provide throughput-
oriented performance. Therefore GPUs are well suited for
data-parallel applications, resulting in large improvements
in running time.

The remainder of the paper is organized as follows. In
section II, we discuss related work and in section III, we
describe the details of our proposed local kernel density
ratio feature selection algorithm. In section IV, we present
the results of our feature selection algorithm on several
real-word datasets, including an analysis of the performance
gained by a GPU-based implementation. Finally, section V
concludes the paper and presents directions for future work.

II. RELATED WORK

Feature selection is a very important and well-studied
problem in data mining. Most of the work have focused
on the area of feature selection for classification and re-
gression [3]-[7], and as far as we know, there has been no
work done to create a feature selection algorithm that caters
specifically to outlier detection problems. In our work, we
propose the first feature selection algorithm that takes the
subsequent task of outlier detection into consideration and
chooses features to intrinsically enhance the identification of
outliers.

Chen et al. [8] developed a ranking-based feature selection
algorithm for classification of high-dimensional datasets that
suffer from the “small sample space” problem and whose
class labels are highly imbalanced — the latter being a
characteristic inherent in outlier detection. Recent work that
look for outliers in high-dimensional datasets deal with the
issue of high dimensionality in different ways. Aggarwal
et al. [9] use an evolutionary search technique to find
multiple lower dimensional projections of the data which
are locally sparse in order to detect outliers. Other methods
perform feature transformation, rather than feature selection,
for outlier detection [10].

There has also been some work done that use the idea
of a ratio of densities to directly perform outlier detection.

52

Hido et al. [11] use the ratio of the density of a data point in
the training set to its density in the test set as a measure of
the degree to which the point is an inlier, as opposed to an
outlier. Their training set consists of only normal points and
the test set consists of both normal points and outliers. To
deal with high-dimensional data, Sugiyama et al. [12] use
a projection matrix to find the low-dimensional subspace in
which the two densities are significantly different from each
other. In [13], the novelty of data points in one distribution
are assessed relative to another distribution based on the
log-likelihood ratio of the two distributions. In our work,
we use a ratio of densities to perform feature selection,
with the distinction that our method uses the notion of local
neighborhoods to measure densities. In the denominator, we
utilize the density of only outliers. This ensures that we pick
features in which outliers become even more conspicuous as
they will be represented in low-density regions of the feature
space. For the outlier detection, we take a one-class learn-
ing approach and distinguish outliers using well-established
methods. In this regard, once features are chosen by our
feature selection technique, the outlier detection algorithms
proposed in [12] and [13] can be used as alternative methods
for identifying outliers. In the next section, we present the
details of our feature selection algorithm.

III. LoCAL KERNEL DENSITY RATIO FEATURE
SELECTION

The inspiration for our feature selection algorithm came
from an approach taken to solve the outlier (or anomaly)
detection problem. Hawkins [14] describes an outlier as “an
observation that deviates so much from other observations
as to arouse suspicion that it was generated by a different
mechanism.” In outlier detection problems, outliers typically
comprise a small portion of the dataset. Examples include
intrusion detection data, where malicious attacks are less
frequent than normal activity, and certain tumor datasets
where patients with a particular type of cancer are few
compared to the number of healthy patients. In some cases,
obtaining samples from the outlier class may be difficult
or expensive, such as a fault detection system where it can
be expensive to obtain outlier data representing the faulty
situations of a machine. Therefore in the outlier detection
domain, learners must deal with highly imbalanced data.
Next, we describe our criterion function for feature selection
which caters to outlier detection problems and is insensitive
to the degree of imbalance in the data as it is based on a
ratio of average normal to outlier densities.

A. Local Kernel Density Ratio Criterion

In our work, we propose a novel feature selection criterion
for outlier detection which tries to find the set of features that
best describes the normal class while ensuring that outliers
“stand out”. While most outlier detection techniques take an
unsupervised approach, it is not uncommon to have samples

that belong to the outlier class. For example, in intrusion
detection there may be many instances of malware attacks
and malicious executions that can provide guidance as to
how normal executions differ from malicious ones. In our
case, we utilize the supervised information to select features
which are intrinsically suitable for outlier detection. Normal
data points come from the same distribution while outliers
can be any point, from a completely different distribution.
Taking advantage of information from both normal and
outlier points (if available) is more powerful than normal
alone. The aim is to have something to compare the normal
distribution against and find out what separates outliers from
the normal data. Let X = [x1, X2, ..., X;,] represent a dataset
with n data points where each data point x € R? has d
features and is associated with a class label y € {—1,+1},
where —1 denotes the normal class and +1 denotes an
outlier.

The Local Outlier Factor (LOF) algorithm [15] solves the
outlier detection problem using a ratio of densities. In the
LOF algorithm, the density of a data point is compared to
that of its neighbors and based on this, the point is assigned
a degree of being an outlier, known as its local outlier factor.
The LOF of a data point is calculated as the average density
of data points within its neighborhood divided by its own
density. When a data point has a low density compared to
points in its neighborhood, it is more likely to be an outlier.
Conversely, outliers should have a lower density compared
to its neighbors. Therefore, it stands to reason that a feature
set which emphasizes this phenomenon would facilitate the
detection of outliers.

To test this hypothesis, we developed a criterion that
measures the quality of features based on the density induced
for normal and outlier data points. More specifically, to max-
imize the density of normal data points while minimizing the
density of outliers, the criterion function takes the ratio of the
two, with a focus on the local neighborhood density of each
data point. To measure density, we make no assumptions
about the form of the underlying distribution of the data.
Instead, we take a non-parametric approach and calculate the
kernel density estimate of the data points with a Gaussian
kernel. The objective is to find the optimal set of features
w* that maximizes the described criterion function 7 (w):

w* = arg max J(w) (D
we{0,1}4
We formally define the criterion function as:
IXill > > K(wox_,wox)
T x_€X_ XENR(x_)
J(w) = 2
|X1+\ > > K(woxy,wox)

x4 €X 4 xENK(x4)

In the above equation, K is a kernel function. In our
experiments, we use the Gaussian (or Radial Basis Function)

53

kernel:

12
K(x,x') = exp <—X x|) 3)

202

The vector w = (w1, wa, ..., wq) is a binary vector signify-
ing which features are selected; for (j = 1,...,d), w; = 1
denotes the presence of feature j and w; = 0 denotes its
absence. We use x_ € X_ and x; € X to represent data
points from the normal and outlier class, respectively. The
parameter k determines the size of the local neighborhood
of a data point, o is the width of the Gaussian kernel,
and the symbol o represents the Hadamard product [16].
The Hadamard (or Schur) product of two matrices is their
element-wise product.

The size of the local neighborhood of a data point x
is determined by the distance to its k*"-nearest neighbor,
referred to as its k-distance. All of the data points whose
distance to x is less than this distance comprise its k-distance
neighborhood, N (x). The k-distance neighborhood of a
data point x is formally defined as follows:

Ni(x) ={x" € X \ x| d(x,x") < k-distance(x)} (4)

where d(x,x’) is the distance between the two points. The
local neighborhood density of a data point x can be thought
of as a measure of the similarity of points within that
neighborhood to x. Since a kernel function can be used as
a measure of the similarity between two data points [17], in
Equation 2 other kernel functions can be used in place of the
Gaussian kernel. We use the Gaussian kernel and effectively
perform kernel density estimation (KDE), also referred to
as the Parzen-Rosenblatt Window method [18], [19]. This
provides a standard, non-parametric notion of density for
the data points.

Our criterion function tries to optimize the ratio of local
kernel density estimates for normal and abnormal points
(outliers). In the numerator, we sum the local kernel density
of all normal data points and in the denominator, we sum
the local kernel density of all outliers. By maximizing the
ratio of the two, the goal is to find the subset of features that
maximizes the density of normal data points and simultane-
ously minimizes the density of outliers. Intuitively, we would
like to find a lower dimensional subspace that corresponds
to a subset of the features wherein normal data points are
in closely compacted regions of the space while outliers are
dispersed, allowing them to be more easily distinguished
as anomalous with respect to the normal data. By using a
local density approach, our criterion can aid outlier detection
algorithms in detecting local, as well as global, outliers [15].
In particular, we are already thinking in terms of local
neighborhoods, as reflected in the KDE calculations. This
notion can be carried over to the outlier detection phase, es-
pecially in the case of a local density-based outlier detection
algorithm such as LOF which calculates the density of each
point within a local neighborhood. This allows the detection

of data points that seem to be outlying when considered
within the scope of their local neighborhood, not just on a
global scale.

To illustrate the advantage of using our proposed criterion
function, we show a simple two-dimensional example in
Figure 1. Assume we have a dataset with two features
and we would like to select the single best feature for
outlier detection. In the figure, we use the symbol X to
represent normal points, + for outliers, and we show the
projections of the data points onto each of the feature axes.
By projecting onto Feature 1, the two classes will have
high separability, yet the outliers will have high density
which makes it difficult for an outlier detection algorithm to
identify them. Projection along Feature 2 gives the normal
points high density and the outliers low density, facilitating
the detection of outliers. A method that tries to best separate
the classes, such as Linear Discriminant Analysis (LDA)
which maximizes the trace of the between-class to within-
class scatter ratio, would fail to select Feature 2 over
Feature 1. Our criterion will correctly select Feature 2 as
it maximizes the density ratio of normal points to outliers.

Normal #
Outlier ¢

i
l & & L] L] * g & ; -
—
0]
=t .
= Projection %
E onto b3 8'
() Feature 2 88 %
(A 8 % 8
8 % 8
8 8'8“
—— % S Ba
rojection onto Feature 1 % 8“
8&*
dhd L] o ochdh SRSEER & o B P
Feature 2
Figure 1. Motivating example of feature selection for outlier detection

B. Forward Search Strategy

Using the described criterion function to evaluate features,
the next component of our feature selection algorithm is its
search strategy. There are many approaches to searching the
space of possible feature subsets, from the naive exhaustive
search to more sophisticated search strategies such as genetic
algorithms. In this work, we apply sequential forward selec-
tion (SFS), also referred to as sequential forward search [20].
This is a greedy search technique that begins with an initially
empty set and adds features one at a time such that the
feature added at each round is the one that best improves
the criterion function. Note that one can utilize other search
strategies, such as backward selection and sequential forward

54

floating search, or applying sparse optimization [6], [21].
For the purposes of this paper, which presents the ability of
the proposed feature selection criterion in enhancing outlier
detection, we find it sufficient to utilize a simple search
strategy that takes feature interaction into account, as in
sequential forward search. We name our proposed method
Local Kernel Density Ratio (LoKDR) feature selection.

LOF has been shown to perform well in detecting outliers
using a ratio of densities. However, it uses a heuristic notion
of density; the density of a data point is the inverse of
the average reachability distance between the point and its
neighbors, which is the maximum of the actual distance be-
tween two points and the k-distance of the latter point [15].
We utilize the success of the main notion in LOF with the
goal of producing a cleaner, simpler model that requires
no heuristics and is based on KDE, which has a solid
statistical foundation. By maximizing the ratio of densities,
we emphasize the differences between outliers and normal
points, enhancing the ability of outlier detection algorithms
to correctly identify outliers.

C. Analysis of Computational Complexity

One of the main components of calculating the criterion
function is the k-nearest neighbor (k-NN) search. A simple
brute force approach is to calculate the distance between all
pairs of points, requiring "(n;l) x O(d) calculations, and
then sort the distances to find the k-nearest neighbors of
each point using n x O(nlogn) comparisons, for a total
computational complexity of O(n?(d+logn)). Other k-NN
algorithms have been proposed to reduce the computation
time, where the main idea is to reduce the number of
distances computed [22]. For example, some algorithms
partition the data points using an indexing structure, such
as a kd-tree, and only compute distances within nearby
volumes [23]. This method has been shown to be faster than
the brute force approach by up to a factor of 10 [24].

Once the £-NNs of a point is found, the k-nearest neigh-
bor distances are used to calculate its kernel density estimate.
These KDE values are then summed up and averaged for the
normal points and outliers (O(n)), after which the ratio is
taken (O(1)). This produces the criterion value for one set
of features. Assuming feature set F; has d; < d features,
the computational complexity of calculating the criterion
function for F; is: O(n?(d; +logn)) + O(n) + O(1) =
O(n?*(d; +1ogn)). Therefore, the run-time of the algorithm
is bounded by the time it takes to perform the k-nearest
neighbor search.

Since there are no dependencies between individual k-NN
queries, the k-nearest neighbor search is highly task-parallel,
as all queries can be performed in a simultaneous manner,
each one independent of any other query. The process is
also known to be data-parallel, meaning the data values
required to calculate pairwise distances are used for several
different calculations. This makes it an excellent candidate

for implementation on a GPU. General purpose computing
on a graphics processing unit (GPGPU) has become a pop-
ular, cost effective approach for high performance parallel
computing. Garcia et al. [24] have shown that implementing
the k-nearest neighbor search on a GPU accelerates the
search by up to a factor of 400 compared to the brute force
CPU-based (serial) implementation.

We build upon this achieved speedup for the k-NN search
and implement our entire feature selection algorithm on a
GPU. In addition to the parallelism that exists during the
k-NN search, we also take advantage of the parallel nature
of the forward feature search technique, i.e., each of the
candidate feature subsets can be evaluated independently.
Thus during each step of the feature search, it possible to
calculate the criterion function for all of the possible feature
subsets (which is at most d) concurrently on a GPU. This,
combined with the parallelism of the k-NN search, enables
the algorithm’s performance to scale efficiently in terms of
both the number of features and the number of data points.
It is interesting to note that in an ideal situation where
all of the k-NN queries and feature subset evaluations are
performed simultaneously, round ¢ of the algorithm would
only require O(d; +n) time, with O(d;) time for a distance
calculation consisting of d; features and O(n) time for
the KDE summation. Since there are at most d rounds
of the algorithm (corresponding to the addition of every
feature), the best-case computational complexity of a parallel
implementation of the LoKDR algorithm is O(d? + nd). In
practice, the forward search is cut off after a certain constant
number of features ¢ << d are selected, yielding a ideal run-
time of O(c(d+n)) = O(d+n), making the algorithm linear
in the size of the features and sample space.

IV. EXPERIMENTAL EVALUATION

In this section, we describe the datasets and outlier detec-
tion algorithms used in this study to evaluate the quality of
features selected by the LoKDR algorithm. We also briefly
describe other feature selection techniques with which we
compare our results. We then present the outlier detection
results for each of the feature selection methods.

A. Datasets

The datasets used to evaluate our feature selection algo-
rithm are shown in Table I. CNS and LYMPH are microarray
gene expression datasets and OVARY and PROST are mass
spectrometry datasets provided by Chen et al. [8]. These
datasets are examples of real-world problems that consist
of a small set of samples and imbalanced class labels.
We also evaluate our feature selection algorithm on the
ARRHY dataset! [25] from the UCI Machine Learning
Repository [26], a dataset which has neither highly im-
balanced data nor a small sample space. The goal is to

!Preprocessing was done to account for missing values, resulting in the
removal of three features and two instances.

55

Name Features | Samples | Description

Central Nervous System Embry-
onal Tumor Data: 60 samples
have medulloblastomas and 30
samples have other tumors or no
cancer.

Lymphoma Data: 58 samples are
diffuse large B-cell lymphomas
and 19 samples are follicular lym-
phomas.

Ovarian Cancer Data: 50 samples
are benign tumors and 16 samples
are malignant tumors.

Prostate Cancer Data: 63 samples
have no evidence of cancer and
26 samples have prostate cancer.
Cardiac Arrhythmia Data: 244
samples are from class 01 and 206
samples are from classes 02-16.

CNS 7129 90

LYMPH 7129 77

OVARY 6000 66

PROST 6000 89

ARRHY 276 450

Table 1
OVERVIEW OF DATASETS

distinguish between the presence and absence of cardiac
arrhythmia, where class 1 is the normal class and classes 2
to 16 are outliers. Table I provides the number of features,
number of samples, and a summary description on each of
these datasets.

B. Outlier Detection Algorithms

For outlier detection, we use one-class classifiers which
are trained on only normal data (inliers). For each data
point, the classifier produces a decision value that represents
its confidence in that point being an outlier. We apply a
threshold on the decision value as a cutoff point for decision
making. A data point is flagged as an outlier if the decision
value exceeds a threshold. Varying the threshold varies the
number of correctly classified outliers (true positives) and
incorrectly classified normal data (false positives). Using
this information, we plot a curve of the true positive rate
versus the false positive rate, known as the Receiver Oper-
ating Characteristic (ROC) curve [27]. In section IV-D, we
perform an evaluation of several feature selection techniques
in terms of the area under the ROC curve (AUC) achieved by
the outlier detection algorithms on different feature subsets
chosen by the feature selection techniques.

The classifiers used to evaluate the feature subsets are
Nearest Neighbor (NN), Local Outlier Factor (LOF), and
One-Class Support Vector Machines (OCSVM). The (one-
class) Nearest Neighbor classifier is a distance-based outlier
detection algorithm wherein a data point’s decision value is
the distance to its nearest neighbor. The greater the distance,
the more likely that point is an outlier. The LOF algorithm
takes a density-based approach to detect outliers; the greater
the density of a point’s nearest neighbors compared to its
own density, the more outlying the data point. The decision
value assigned to a data point is its local outlier factor.

The OCSVM classifier [28] uses a kernel function to map

B ™ ahtn Attt AAnas At ! T T ctsliabtitessiereel ! N
0o Ld 00 flaete™ 0o S
dis of or R
S S “‘ S AV
< 08} < 08 < 08 s
[}] [} [e
(=)} (=) [=)} /
© © © /
© 0.7 @ 0.7) 0.7 -
> > = .
< NN —e— < NN —e— < o NN —e—
06 LOF ---a-- 06 LOF ---a--- 06 it LOF -~ [
OCSVM OCSVM OCSVM
0.5 L L 0.5 L L 0.5 L L
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Number of Features Number of Features Number of Features
(a) LoKDR (b) BAHSIC (c) LASSO
Figure 2. Average AUC results for the NN, LOF, and OCSVM classifiers on the CNS dataset

the data into a feature space H with the goal of capturing
most of the data vectors within a “small” region. It then
tries to separate the mapped vectors from the origin with
a hyperplane that has the maximum margin. The origin
and data points “close enough” to it are assumed to be
outliers. The decision value of a data point is calculated
as: f(x) = > i, a;K(x;,x) — p where o; are the support
vector coefficients, K is a kernel function, and p represents
the margin. The parameter p is effectively the threshold that
determines whether points are “close enough” to the origin
to be considered outliers. For our OCSVM experiments,
we use LIBSVM (version 3.11) [29] with the standard
parameters for one-class SVMs.

C. Feature Selection Algorithms

To compare our results with other popular filter-based fea-
ture selection algorithms, we evaluate the features selected
by RELevance In Estimating Features (RELIEF), Feature
Assessment by Sliding Thresholds (FAST), Least Absolute
Shrinkage and Selection Operator (LASSO), and BAckward
elimination with the Hilbert Schmidt Independence Criterion
(BAHSIC). RELIEF [1] is a filter feature selection method
that evaluates individual features based on how well they
differentiate between neighboring instances from different
classes versus from the same class. We use the Weka
toolbox [30] to select features with RELIEF. FAST [8] is a
feature selection algorithm for small sample and imbalanced
data classification problems. The main idea is to rank
features based on the area under the ROC curve generated
by each feature.

LASSO [6] solves the linear regression problem formula-
tion with an added constraint on the sum of the regression
coefficients. This drives the coefficients of less relevant
features towards zero. We use the logistic regression variant
provided in the GLMNet [31] Matlab toolbox and rank
features based on the absolute value of the coefficients.
BAHSIC [7] uses the backward elimination search strategy
on features evaluated using the Hilbert Schmidt Indepen-
dence Criterion (HSIC). We use the Python code provided
by Song et al. [7] to perform feature selection with BAHSIC.

56

D. Results

For the training phase of the outlier detection algorithms,
we take a one-class (or semi-supervised) learning approach
and train only on normal data points. During testing, both
normal and outlier data points are used to see how well the
model is able to detect outliers. We perform 10-fold cross
validation by dividing the normal data points into ten folds
and training on nine of them while testing on the tenth.
Since no outliers are used during the training phase, we use
all outliers during the testing phases of the cross validation.
In what follows, we present two sets of experiments: in the
first, we evaluate the quality of the solution achieved by our
novel feature selection algorithm compared to other state-
of-the-art methods. In the second set of experiments, we
quantify the speedup obtained with a parallel GPU-based
implementation of the LoKDR feature selection algorithm,
compared to a serial CPU-based implementation.

1) Quality Experiments: We evaluate the quality of the
outlier detection results using the area under the ROC curve
(AUC). The ROC curve is a plot of the true positive rate
(fraction of outliers correctly detected) versus the false
positive rate (fraction of normal points misclassified as
outliers). It represents the behavior of a classifier across a
range of thresholds on the decision values.

For the LoKDR feature selection algorithm, there are two
main parameters that can be tuned: £ which determines
the size of the local neighborhood and o, the Gaussian
kernel width. By varying the value of k in [1,n — 1] and
o in [1, 5], we observed that most of the results were not
drastically sensitive to the choice of these parameters, though
some values produced slightly better results than others. The
benefits of this are two-fold; first, it shows the stability of
the criterion function, as it is not extremely sensitive to these
parameters. Second, with smaller values of k£, we can achieve
similar (if not better) results than larger values, thereby
reducing the computational cost. For our experiments, we
set the values of the parameters based on 10-fold cross
validation on the training set.

The results of our experiments using NN, LOF, and

L 9002222 900989904
g A 3 T4
ITIVT T 0% 0400t ",V M
s 0t : :
o »e
- _
< ' '
(9]
S LoKDR —e— [
) BAHSIC ------ []
z P i RELIEF
06 it LASSO e -
FAST
: : All Features
05 N I I I I I 1
5 10 15 20 25 30
Number of Features
(a) CNS
T T seliesstesesiovesbones)
0.95 I e L g LS o wa]
09 |- ¥ g Ao RO AR ARt ¥ §
§ 0.85 ” 2 ‘ -
Q 08 Fgryiwg i == L KDR]
< 75 Bl o) —e— ||
o 0-75 BAHSIC -------
z 0.7 it RELIEF T
0.65 : : LASSO o ||
) : : FAST
0.6 ; : All Features 7
0.55 1 1 T T T
5 10 15 20 25 30
Number of Features
(c) OVARY
Figure 3.

OCSVM show that in general, the classifiers perform com-
parably across the various feature selection algorithms and
datasets with no clear winner. As an example, in Figure 2 we
present the average area under the curve (AUC) results as
a function of the number of selected features using 10-fold
cross validation for all three outlier detection algorithms on
the CNS dataset with features selected by LoKDR, BAHSIC,
and LASSO. On the x-axis, we vary the number of selected
features and on the y-axis, we plot its corresponding average
AUC.

As the goal is not to compare the outlier detection
algorithms themselves, but rather to compare the proposed
feature selection algorithm (LoKDR) with previous feature
selection methods, for the remaining figures of this section
we shall present the outlier detection results using the
LOF classifier. The other classifiers produce similar results
(cf. [32]). In Figure 3, we show the AUC results of the
feature selection algorithms on the microarray and mass
spectrometry datasets. With a horizontal line, we show
the AUC obtained when using all of the features. This

57

P
O
-
<
(0]
()]
©
) BAHSIC ---a---
z RELIEF N
LASSO -
0.5 FAST o
: — All Features o
0_4 | | I I
5 10 15 20 25
Number of Features
(b) LYMPH
1 - 1
09 T -
2 " ¢
(0] : :
2 0.7 LoKDR —e— [
o . i BAHSIC ---a---
Z 06 [RELIEF N
S : LASSO e
05 te’ i FAST :
: .| All Features
0_4 | | I I
5 10 15 20 25
Number of Features
(d) PROST

Average AUC results for the feature selection algorithms on the microarray and mass spectrometry datasets

displays the importance of performing feature selection, as
all of the feature selection algorithms are able to surpass
the AUC achieved with the entire feature set. The figure
also highlights the strength of the LoKDR algorithm in
selecting features for outlier detection. Across the datasets,
the features chosen by LoKDR enable the outlier detection
algorithm to identify outliers with a high detection rate and
few false positives, as reflected in the high average AUC.
For the CNS, LYMPH, and OVARY datasets, as the number
of selected features increases, the average AUC for LoOKDR
rapidly exceeds that of the other methods. For the PROST
dataset, the performance of LoKDR starts out the strongest
and continues to be competitive with the other methods.

To see how well our feature selection algorithm performs
on a more general dataset that does not have imbalanced
data or a small sample size, we also ran experiments on the
ARRHY dataset and present results in Figure 4. The results
show that while features selected by BAHSIC produce the
highest average AUC for most of the feature subsets, the
LoKDR algorithm still performs well and produces AUC

0.95 T T T T T T T
09 - osemsagaiaassasasticiiiiitisnniing
0.85 [foabirr o T LT g o W wr s
0.8
8 :
2 075 [3
% 0.7 ”, : :
] 7/ : :
g 0.65 13 .
06 K DT BAHSIC |
1 1 L aeett? RELIEF
0.55 [LASSO e H
PR 4 ¢ FAST
0.5 Fogw ‘ | All Features i
0.45 I 1 I I T T T
5 10 15 20 25 30 35 40

Number of Features

Figure 4. Average AUC results on the ARRHY dataset

values that are comparable with those of BAHSIC.

Using the paired Student’s t-test, we confirmed that our
experimental results showing the superiority of LoKDR
over the other feature selection methods are statistically
significant at the 95% confidence level with respect to
all methods, except BAHSIC on the PROST and ARRHY
datasets, where they perform comparably. From our results,
we conclude that the LoKDR feature selection algorithm
chooses features that enable outlier detection algorithms to
do consistently well across all the datasets, from those which
are very high-dimensional with imbalanced class labels and
that suffer from the small sample space problem, to a more
general dataset without these properties.

2) Performance Experiments: We also evaluate the per-
formance of a GPU-based implementation of our proposed
feature selection algorithm as compared to a serial (CPU
only) implementation. The GPU version was written using
NVIDIA’s Compute Unified Device Architecture (CUDA)
and the serial version was written in C. CUDA extends the
C language with new programming constructs and provides
libraries and a platform for the efficient execution of general-
purpose applications on GPUs. Our serial experiments were
run on an Intel Xeon CPU E5405 running at 2.00 GHz. The
GPU used in our experiments is the NVIDIA Tesla M2070
which is based on the NVIDIA Fermi GPU architecture.
Tesla M2070 modules are performance-optimized, high-end
products which offer 6 GB of GDDR5 ECC-protected mem-
ories on board with a 1.566 GHz memory clock and a 384-
bit memory interface. The features supported by a CUDA
hardware are described by the Compute Capability, and
Fermi architectures have the support for CUDA Compute
Capability 2.0.

In Figure 5, we present the performance results. Fig-
ure 5(a) shows the running time (in seconds) of the serial
implementation of LoKDR on all the datasets with increas-
ing number of selected features. From this figure, we see that
the ARRHY dataset requires a longer running time than the

58

microarray and mass spectrometry datasets. Although it has
far fewer features than the other datasets (276 versus 6000
and 7129), its larger sample size increases its runtime more
dramatically than its features. This validates our analysis
that the number of data points has a greater impact on the
computational complexity of the serial implementation than
does the number of features. Another confirmation of this is
found in the running time of LYMPH versus PROST. While
the number of features in LYMPH is greater than PROST,
the number of data points in PROST is greater than LYMPH
which leads to its slightly longer running time.

As we add more features to each dataset, the ARRHY
dataset shows a linear increase in the running time whereas
CNS, LYMPH, OVARY, and PROST show a somewhat
superlinear increase. Contrast this to Figure 5(b), which
presents the running time of the GPU-based implementa-
tion of LoKDR and where ARRHY displays a somewhat
sublinear increase and the results of the other datasets are
more linear. Also in the GPU implementation, the PROST
dataset shows a slightly lower running time compared to
the LYMPH dataset. This can be attributed to the improve-
ment gained from performing k-nearest neighbor queries for
several different data points concurrently on a GPU, which
reduces the running time required for a larger sample size.

An important characteristic of the GPU performance plot
is the drastic improvement in the running time for all of the
datasets, compared to the serial version. To see this more
clearly, in Figure 5(c), we plot the running time of both the
serial and GPU implementations on the ARRHY dataset.
The time it takes to select 40 features goes from over an
hour in the serial vesion to about a minute on the GPU.
This results in a computation time savings of over 98%; in
other words, the GPU-based implementation is over 61.5x
faster than its serial counterpart. Figure 5(d) presents this
improvement in running time, or speedup, for all of the
datasets with increasing number of selected features. As can
be seen in the figure, the speedup grows progressively as
more features are added, exceeding 50x improvement on
all datasets and only going higher from there.

The ARRHY dataset shows the most significant im-
provement for even a small number of features due to the
performance gain of concurrent data point processing on the
GPU. As more features are selected, the cost of performing
distance calculations (and hence k-NN queries) increases, so
there is more performance to be gained when they are done
concurrently. This, coupled with the small sample space of
the microarray and mass spectrometry datasets, means that
more data points can be processed and used to calculate
the optimization criterion within a shorter amount of time,
which is reflected in the large rise in speedup for the CNS,
LYMPH, OVARY, and PROST datasets.

Another observation from the speedup figure is the sim-
ilarity in speedup of the CNS and PROST datasets. These
datasets have comparable sample space sizes and differ in

12000 T T I

ARRHY Serial —e—
10000 H CNS Serial ---4--- f
LYMPH Serial o
OVARY Serial -+ A,'/l
&> || PROST Serial
o 8000 eria -
S ~/
=
o 6000 s =
= ““f L
5 4000 - 4
) _,"j 3 antt
,A'Ak ood
2000 e MRS
JOVE S oo aa
0 ,v_Agng‘:yooo?O“’ '
0 20 40 60 80 100 120
Number of Features
(a) Running time of serial implementation on all datasets
12000 : . .
ARRHY Serial —e—
10000 || ARRHY GPU ---4--- r.»”“,,
O J"/‘
> 8000 -
£ f,,‘
e
o 6000 S
€ 3752 sec T:;,.ﬂ’
5 \
g 4000 l.,/]'-
2000
61 seconds
N 50U T TOUUTVUOTV FVUUVIY SUPUUNN
0 20 40 60 80 100 120

Number of Features

(c) Comparison of serial and GPU implementations on ARRHY dataset

Figure 5.

their feature set sizes, yet the common pattern of their
speedup confirms the ability to benefit from parallel pro-
cessing of data points. As more features are added, their
speedups slowly diverge because PROST has fewer features
and thus requires evaluating fewer candidate subsets during
each subsequent round of the feature selection algorithm.

From these results, it is clearly evident that exploiting
the parallelism that exists in the LoKDR algorithm can
lead to great rewards in terms of computation time. Data
mining problems where adding more features can enhance
the quality of the final solution further add to the appeal
of a GPU-based implementation, with its ability to achieve
vast speedups and performance improvements. The imple-
mentation of our proposed feature selection algorithm for
outlier detection on a GPU gains from its ability to perform
processing on data points and feature subsets concurrently,
allowing the performance to scale nicely with respect to
both.

V. CONCLUSIONS AND FUTURE WORK

In this work, we presented a novel feature selection
criterion catered to outlier detection problems. The proposed

59

160 . .
ARRHY GPU —e—
140 | CNSGPU ----- x”‘,
LYMPH GPU s
120 [OVARY GPU - o
@ PROST GPU o
o 100
£ o
> 80 s
E AA‘A A
= 60 ‘{A,A““
= AA"‘A‘ ooe?
40 LaaA oo®
Aﬁﬁ::A““ 0“"’00000000
20 :“Ai;’.'.o”"
0
0 20 40 60 80 100 120

Number of Features

(b) Running time of GPU implementation on all datasets

100 T T
ARRHY —e—
CNS ——-a--—-
_. 80 H LYMPH
8 OVARY - e
3 PROST i ‘"'““,...::::gsm
E 60 I..‘"%‘ A’AA‘ 1
g X NAAAK" s >.‘.¢00
S 40 R ONO ot
® & st 0”’.‘
g_ foo’“ **
(2] T3 ®
20 "/:v‘
0
20 40 60 80 100 120

Number of Features

(d) Speedup of GPU implementation over serial implementation

Evaluation of serial and GPU implementations of LoKDR feature selection algorithm

method is non-parametric and makes no assumptions about
the distribution of the underlying data other than the fact
that outliers are different than the normal data. It selects
features that best capture the behavior of normal data while
making outliers more distinct from the normal. We applied a
forward search strategy to our feature selection criterion and
compared its ability to detect outliers with other popular fea-
ture selection methods. Experiments on real datasets showed
that our local kernel density ratio (LoKDR) feature selection
algorithm does very well to discern features that facilitate
the detection of outliers. By taking advantage of its parallel
nature in terms of the number of data points and features,
we also achieved great speedups with an implementation on
a graphics processing unit (GPU).

In future work, we will incorporate other search tech-
niques using our novel feature selection criterion. In partic-
ular, the backward search method can reap massive rewards
in terms of running time savings since it begins with all the
features and removes them one by one. This necessitates
a great number of computations for distance calculations
and a GPU implementation can perform them concurrently,
yielding significant speedups.

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

K. Kira and L. A. Rendell, “A practical approach to feature
selection,” in International Conference on Machine Learning
(ICML), 1992, pp. 249-256.

H. Liu and H. Motoda, Feature Selection for Knowledge
Discovery and Data Mining. Kluwer Academic Publishers,
1998.

R. Kohavi and G. H. John, “Wrappers for feature subset
selection,” Artificial Intelligence, vol. 97, no. 1-2, pp. 273—
324, 1997.

M. Dash and H. Liu, “Feature selection for classification,”
Intelligent Data Analysis, vol. 1, pp. 131-156, 1997.

I. Guyon and A. Elisseeff, “An introduction to variable and
feature selection,” Journal of Machine Learning Research,
vol. 3, pp. 1157-1182, 2003.

R. Tibshirani, “Regression shrinkage and selection via the
lasso,” Journal of the Royal Statistical Society, Series B,
vol. 58, pp. 267-288, 1994.

L. Song, J. Bedo, K. M. Borgwardt, A. Gretton, and A. Smola,
“Gene selection via the BAHSIC family of algorithms,”
Bioinformatics, vol. 23, pp. 490-498, 2007.

X.-W. Chen and M. Wasikowski, “FAST: A ROC-based
feature selection metric for small samples and imbalanced
data classification problems,” in KDD, 2008, pp. 124-132.

C. Aggarwal and S. Yu, “An effective and efficient algorithm
for high-dimensional outlier detection,” The VLDB Journal,
vol. 14, pp. 211-221, 2005.

H. V. Nguyen and V. Gopalkrishnan, “Feature extraction
for outlier detection in high-dimensional spaces,” Journal of
Machine Learning Research, vol. 10, pp. 6675, 2010.

S. Hido, Y. Tsuboi, H. Kashima, M. Sugiyama, and
T. Kanamori, “Statistical outlier detection using direct den-
sity ratio estimation,” Knowledge and Information Systems,
vol. 26, no. 2, pp. 309-336, 2011.

M. Sugiyama, M. Yamada, P. von Biinau, T. Suzuki,
T. Kanamori, and M. Kawanabe, “Direct density-ratio estima-
tion with dimensionality reduction via least-squares hetero-
distributional subspace search,” Neural Networks, vol. 24,
no. 2, pp. 183-198, 2011.

A. Smola, L. Song, and C. H. Teo, “Relative Novelty De-
tection,” in Artificial Intelligence and Statistics (AISTATS),
JMLR W&CP 5, 2009.

D. M. Hawkins, Identification of outliers.
Hall, London; New York, 1980.

Chapman and

M. M. Breunig, H. P. Kriegel, R. T. Ng, and J. Sander,
“LOF: Identifying density-based local outliers,” ACM SIG-
MOD Record, vol. 29, no. 2, pp. 93-104, 2000.

R. A. Horn and C. R. Johnson, Matrix Analysis.
University Press, Cambridge; New York, 1985.

Cambridge

60

(17]

(18]

[19]

(20]

[21]

[22]

(23]

[24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

[32]

M.-F. Balcan and A. Blum, “On a theory of learning with
similarity functions,” in International Conference on Machine
Learning (ICML), 2006, pp. 73-80.

E. Parzen, “On Estimation of a Probability Density Function
and Mode,” The Annals of Mathematical Statistics, vol. 33,
no. 3, pp. 1065-1076, 1962.

M. Rosenblatt, “Remarks on Some Nonparametric Estimates
of a Density Function,” The Annals of Mathematical Statis-
tics, vol. 27, no. 3, pp. 832-837, 1956.

P. A. Devijver and J. Kittler, Pattern recognition: A statistical
approach. Prentice Hall, 1982.

M. Masaeli, G. Fung, and J. G. Dy, “From transformation-
based dimensionality reduction to feature selection,” in Inter-
national Conference on Machine Learning (ICML), 2010, pp.
751-758.

Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li,
“Multi-probe LSH: efficient indexing for high-dimensional
similarity search,” in Proceedings of the 33rd International
Conference on Very Large Data Bases, ser. VLDB °07, 2007,
pp- 950-961.

S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and
A. Y. Wu, “An optimal algorithm for approximate nearest
neighbor searching fixed dimensions,” J. ACM, vol. 45, no. 6,
pp- 891-923, Nov. 1998.

V. Garcia, E. Debreuve, and M. Barlaud, “Fast k nearest
neighbor search using gpu,” in CVPR Workshop on Computer
Vision on GPU, Anchorage, Alaska, USA, June 2008.

H. A. Guivenir, B. Acar, G. Demiroz, and A. Cekin, “A super-
vised machine learning algorithm for arrhythmia analysis,” in
Computers in Cardiology Conference, 1998, pp. 433—-436.

A. Frank and A. Asuncion, “UCI machine learning reposi-
tory,” 2010. [Online]. Available: http://archive.ics.uci.edu/ml

T. Fawcett, “An introduction to ROC analysis,” Pattern Recog-
nition Letters, vol. 27, no. 8, pp. 861-874, 2006.

L. M. Manevitz, M. Yousef, N. Cristianini, J. Shawe-Taylor,
and B. Williamson, “One-class svms for document classifi-
cation,” Journal of Machine Learning Research, vol. 2, pp.
139-154, 2001.

C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support
vector machines,” ACM Transactions on Intelligent Systems
and Technology, vol. 2, pp. 1-27, 2011.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten, “The WEKA data mining software: an
update,” SIGKDD Explorations Newsletter, vol. 11, pp. 10—
18, 2009.

J. H. Friedman, T. Hastie, and R. Tibshirani, “Regularization
paths for generalized linear models via coordinate descent,”
Journal of Statistical Software, vol. 33, no. 1, pp. 1-22, 2010.

F. Azmandian, “Learning at the Virtualization Layer: Intru-
sion Detection and Workload Characterization from within the
Virtual Machine Monitor,” Ph.D. dissertation, Northeastern
University, August 2012.

