
Clustering on Multiple Incomplete Datasets
via Collective Kernel Learning

Weixiang Shao
Department of Computer Science
University of Illinois at Chicago

Chicago, Illinois 60607-7053
Email: wshao4@uic.edu

Xiaoxiao Shi
Department of Computer Science
University of Illinois at Chicago

Chicago, Illinois 60607-7053
Email: xshi9@uic.edu

Philip S. Yu
Department of Computer Science
University of Illinois at Chicago

Chicago, Illinois 60607-7053
Email: psyu@uic.edu

Abstract—Multiple datasets containing different types of fea-
tures may be available for a given task. For instance, users’
profiles can be used to group users for recommendation systems.
In addition, a model can also use users’ historical behaviors and
credit history to group users. Each dataset contains different
information and suffices for learning. A number of clustering
algorithms on multiple datasets were proposed during the past
few years. These algorithms assume that at least one dataset is
complete. So far as we know, all the previous methods will not be
applicable if there is no complete dataset available. However, in
reality, there are many situations where no dataset is complete.
As in building a recommendation system, some new users may
not have profile or historical behaviors, while some may not
have credit history. Hence, no available dataset is complete. In
order to solve this problem, we propose an approach called
Collective Kernel Learning to infer hidden sample similarity from
multiple incomplete datasets. The idea is to collectively completes
the kernel matrices of incomplete datasets by optimizing the
alignment of shared instances of the datasets. Furthermore, a
clustering algorithm is proposed based on the kernel matrix. The
experiments on both synthetic and real datasets demonstrate the
effectiveness of the proposed approach. The proposed clustering
algorithm outperforms the comparison algorithms by as much as
two times in normalized mutual information.

I. INTRODUCTION

In many real world data mining problems, the same in-
stance may appear in different datasets with different represen-
tations. Different datasets may emphasize different aspects of
instances. An example is grouping the users in an user-oriented
recommendation system. For this task, related datasets can be
(1) user profile database (as shown in Fig. 1a), (2) users’ log
data (as shown in Fig. 1b), and (3) users’ credit score (as shown
in Fig. 1c). Learning with such type of data is commonly
referred to as multiview learning [1], [2]. Although there are
some previous works on multiple datasets, all of them assume
the completeness of the different datasets. As far as we know,
even the most recently work requires at least one dataset is
complete [3]. However, in the real world applications, there are
many situations in which complete datasets are not available.
For instance, in Fig. 1a, User3 does not complete her profile.
However, she has browsing log recorded by the browser. In
Fig. 1b, checks and crosses indicates whether user visited
the website recently. From the figure, we can see that User2
and User4 do not have browsing behavior history. This may
because that they are new users to the system or they refuse
to share the historical behaviors with the system. In Fig. 1c,
only User1 and User2 have credit scores in the system. In the

situation as shown in Fig. 1, all the previous method will not
be applicable. It is very important to find an approach that can
work for incomplete datasets.

In order to deal with the incompleteness of the datasets, it is
a natural way to complete the original datasets first. However, it
is very hard and time-consuming to directly predict the missing
features in each dataset especially if there are large number
of missing features. Instead, we propose an approach called
Collective Kernel Learning (CoKL). This approach iteratively
completes the kernel matrix of each dataset using the kernel of
other datasets. Basically, CoKL is based on aligning the sim-
ilarities between examples across all datasets. The completed
kernel matrices can be used in any kernel based clustering al-
gorithms. In this paper, we also propose a clustering algorithm
based on CoKL and Kernel Canonical Correlation Analysis
(KCCA). The proposed clustering algorithm first uses CoKL
to complete the kernel matrices. Based on the completed kernel
matrices, KCCA could find the projections that maximize
the correlations between the datasets. Then we can perform
any standard clustering algorithms on the projected space.
As compared with previous papers, this paper has several
advantages:

1) The proposed clustering algorithm can be used in
situations even when all the datasets are incomplete,
in which the other methods are not applicable.

2) Collective kernel learning does not require predicting
the missing features in the incomplete datasets using
complex method. Predicting the missing features may
be very time-consuming when there are large number
of missing features. Instead, we construct the full ker-
nel matrices corresponding to the incomplete datasets
iteratively using the shared examples between differ-
ent datasets. We only need to give initial values to
the missing features in the incomplete datasets to get
initial kernel matrices for incomplete datasets.

In order to evaluate the quality of CoKL and the proposed
clustering algorithm that uses CoKL and KCCA, we conduct
several experiments on the UCI seeds data [4] and handwritten
Dutch numbers recognition data [5]. The proposed clustering
algorithm outperforms the comparison algorithms by as much
as two times in normalized mutual information. The experi-
ment on the convergence of CoKL shows that CoKL converges
quickly in all the experiment settings (less than 10 iterations).
Further experiment shows that the number of iterations needed

ar
X

iv
:1

31
0.

11
77

v2
 [

cs
.L

G
]

 6
 M

ay
 2

01
6

Name Age Country
User1 Bob 31 USA
User2 Angeli 21 USA
User3 ? ? ?
User4 Tom 40 Canada

(a) User profile. User3 doesn’t complete her profile.

User1
User2 ? ? ?
User3
User4 ? ? ?

(b) Browsing behaviors. User2 and User4 are new users, thus no
browsing behaviors are available.

Credit Score
User1 Fair
User2 Good
User3 ?
User4 ?

(c) Credit scores. No credit scores for
User3 and User4.

Fig. 1: Different datasets for grouping the users in the recommendation systems.

to convergence does not change too much for different missing
rates.

The rest of this paper is organized as follows: In the next
section, we will describe the formulation of the problem. In
section III, we will describe the proposed collective kernel
learning. CCA and KCCA are introduced and the clustering
algorithm using CoKL and KCCA is described in section IV.
Experiment settings and result analysis are described in section
V. The results on different data settings show that the proposed
clustering algorithm outperforms the comparison algorithms.

II. PROBLEM FOMULATION

Before we describe the formulation of the problem, we
summarize some notations used in this paper in Table I.

Given two related datasets X and Y , we assume both of
these two related datasets are incomplete. The features for
dataset X are available for only a subset of the total examples,
and the features for dataset Y are available for another subset
of the total examples. We also assume these two datasets can
cover all the examples, i.e., here are no examples that are
missing in both datasets. The goal is to derive a clustering
solution S based on both datasets. Since both datasets are
incomplete, we denote C = {(x1, y1), ..., (xc, yc)} as the set
of examples with features present in both X and Y , M1 =
{xc+1, ..., xc+m1} as the set of examples with features only
present in dataset X , and M2 = {xc+m1+1, ..., xc+m1+m2

}
as the set of examples with feature only present in dataset Y .
So we can rewrite examples in these two datasets as:

X =

 Xc

Xm1

Xm2
=?

 Y =

 Yc
Ym1

=?

Ym2

 .

Then we can denote Kx, a (c+m1 +m2)× (c+m1 +m2)
matrix, as kernel matrix defined over all the examples using
features from dataset X . The corresponding graph Laplacian
[6], [7] is defined as Lx = Dx−Kx, where Dx is the diagonal
matrix consisting of the row sums of Kx along it’s diagonals.
Likewise, for dataset Y , we denote the kernel matrix by Ky ,
and the corresponding graph Laplacian by Ly = Dy − Ky .
However, since features for both X and Y are only available
for a subset of the total examples, only 4 subblock of the
full kernel matrix Kx (Ky) with size c× c, c×m1, m1 × c,
m1 ×m1 (c× c, c×m2, m2 × c, m2 ×m2) will be available

(see Equation 1).

Kx =

 Kcc
x Kcm1

x Kcm2
x =?

(Kcm1
x)T Km1m1

x Km1m2
x =?

(Kcm2
x)T =? (Km1m2

x)T =? Km2m2
x =?


Ky =

 Kcc
y Kcm1

y =? Kcm2
y

(Kcm1
y)T =? Km1m1

y =? Km1m2
y =?

(Kcm2
y)T (Km1m2

y)T =? Km2m2
y


(1)

In order to apply any kernel approach for clustering, one must
first build the full kernel matrix Kx and Ky . To achieve this
goal, we borrow the idea from Laplacian regularization [8]–
[10]. In other words, we first generate the graph Laplacian
Lx for the kernel matrix Kx. Then tr(LxKy) reflects the
“inconsistence” of the kernel matrix Ky when we “explain”
it with the graph Laplacian Lx from Kx. In this paper, tr
denotes the matrix trace. Under the assumption that Kx and
Ky should contain consensus information, we should minimize
the “inconsistence” tr(LxKy), and similarly for tr(LyKx).
More formally, the objective can be written as follows:

min
Ky�0

tr(LxKy) (2)

min
Kx�0

tr(LyKx) (3)

s.t. Ky(i1, j1) = k(yi1 , yj1),

where i1 and j1 are instances in dataset Y.
Kx(i2, j2) = k(xi2 , xj2),

where i2 and j2 are instances in dataset X.

Here, k(yi1 , yj1) is the kernel similarity between two
examples yi1 and yi2 in dataset Y , and k(xi2 , xj2) is the kernel
similarity between two examples xi1 and xi2 in dataset X . The
objective functions above optimize the alignment between Kx

and Ky , given the known part of Kx and Ky . Now we only
need to solve the above optimization problems.

III. COLLECTIVE KERNEL LEARNING

To construct the full kernel matrices for incomplete
datasets, we need to solve the optimization problems in
Equations 2 and 3. However, optimizing Equation 2 requires
the completeness of Kx, and optimizing Equation 3 requires
the completeness of Ky . Since both datasets are incomplete,
none of Kx and Ky is complete. We could not just solve
these optimization problems directly. However, we could use
collective kernel learning to approximately solve the problem.

TABLE I: Notations used in this paper.

Notation Description
X and Y Incomplete datasets

C = {(x1, x2), ..., (xc, yc)}
The set of examples with features present in both X and Y .
c is the set size.

M1 = {xc+1, ..., xc+m1
} The set of examples with features only present in dataset X .

m1 is the set size.

M2 = {yc+m1+1, ..., yc+m1+m2
} The set of examples with features only present in dataset Y .

m2 is the set size.
Kx A full kernel matrix of data set X with dimension (c+m1 +m2)× (c+m1 +m2).
Ky A full kernel matrix of data set Y with dimension (c+m1 +m2)× (c+m1 +m2).
k(xi, xj) The kernel similarity between two examples xi and xi

Lx = Dx −Kx
The graph Laplacian of Kernel Kx, where Dx is the diagonal matrix
consisting of the row sums of Kx.

Ly = Dy −Ky
The graph Laplacian of Kernel Ky , where Dy is the diagonal matrix
consisting of the row sums of Ky .

wx = Xα
The projection directions for X in CCA problem.
Here, α is a vector of size N

wy = Y β
The projection directions for Y in CCA problem.
Here, β is a vector of size N

φ The mapping function that maps a lower dimension data into higher dimension space.

We can first fix one of the kernel matrix, say fix Kx by
giving the missing features in dataset X initial guesses to
construct the initial full kernel matrix Kx. Then we can
optimize Ky by solving one of the two optimization problems
minKy�0 tr(LxKy). Using the completed kernel matrix Ky ,
we can optimize Kx by solving minKx�0 tr(LyKx). This
optimization process can continue until it converges.

Without loosing generality, we first fix Kx (filling the
missing features in X with average values for continuous
features and majority values for discrete features) and use Kx

to solve the optimization problem in Equation 2. Since both
the kernel matrices Kx and Ky should satisfy the positive
semi-definite constraint, we can express Ky as AAT (or Kx

as BBT), where A (or B) is a matrix of real numbers. Let us

write A as A =

 Ac
Am1

Am2

, and Lx as:

Lx =

 Lccx Lcm1
x Lcm2

x

(Lcm1
x)T Lm1m1

x Lm1m2
x

(Lcm2
x)T (Lm1m2

x)T Lm2m2
x

 .

Using these and the property of trace, we can rewrite Equation
2 as follows:

min
A
tr
(
LxAAT

)
= min

A
tr
(
ATLxA

)
= min
Ac,Am1

,Am2

tr


 Ac
Am1

Am2

T

×

 Lccx Lcm1
x Lcm2

x

(Lcm1
x)T Lm1m1

x Lm1m2
x

(Lcm2
x)T (Lm1m2

x)T Lm2m2
x

×
 Ac
Am1

Am2

 .

(4)

Expanding the above, and using the fact that Ac and Am2

are constant (since AcATc = Kcc
y and Am2

ATm2
= Km2m2

y are

constant), we get:

min
Am1

tr(ATc Lccx Ac +ATm1
(Lcm1

x)TAc +ATm2
(Lcm2

x)TAc+

ATc Lcm1
x Am1 +ATm1

Lm1m1
x Am1 +ATm2

(Lm1m2
x)TAm1+

ATc Lcm2
x Am2 +ATm1

Lm1m2
x Am2 +ATm1

Lm2m2
x Am2).

Since for any matrix X , tr(X) = tr(XT), we can simplify
the above as:

min
Am1

tr(AcA
T
c Lccx) + 2tr(Am1

AcTLcm1
x)+

2tr(Am2
ATc Lcm2

x) + 2tr(Am2
ATm1
Lm1m2
x)+

tr(Am1
ATm1
Lm1m1
x) + tr(Am2

ATm2
Lm2m2
x).

Using the fact that AcATc = Kcc
y and Am2

ATm2
= Km2m2

y
are constant, we can further simplify the above by removing
tr(AcA

T
c Lccx) and tr(Am2

ATm2
Lm2m2
x):

min
Am1

2tr(Am1
ATc Lcm1

x) + 2tr(Am2
ATc Lcm2

x)+

2tr(Am2A
T
m1
Lm1m2
x) + tr(Am1A

T
m1
Lm1m1
x).

Taking derivative w.r.t. Am1
and setting it to zero, we get:

2(Lcm1
x)TAc + 2Lm1m2

x Am2
+ 2Lm1m1

x Am1
= 0.

Solve the equation, we get:

Am1
= −(Lm1m1

x)−1
(
(Lcm1

x)TAc − Lm1m2
x Am2

)
. (5)

Thus

A =

 Ac
Am1

Am2


=

 Ac

−(Lm1m1
x)−1

(
(Lcm1

x)TAc − Lm1m2
x Am2

)
Am2

 .

Then using Ky = AAT , AcATc = Kcc
y , AcATm2

= Kcm2
y ,

Am2
Am2

= Km2m2
y , we get:

Ky =

 Kcc
y Kcm1

y Kcm2
y

(Kcm1
y)T Km1m1

y Km1m2
y

(Kcm2
y)T (Km1m2

y)T Km2m2
y

, (6)

where

Kcm1
y = −(Kcc

y Lcm1
x + Lcm2

x (Lm1m2
x)T)((Lm1m1

x)−1)T

Km1m1
y = (Lm1m1

x)−1((Lcm1
x)TKcc

y

+ Lm1m2
x (Kcm2

y)TLcm1
x + (Lcm1

x)TKcm2
y (Lm1m2

x)T

+ Lm1m2
x Km2m2

y (Lm1m2
x)T)((Lm1m1

x)−1)T

Km1m2
y = −(Lm1m1

x)−1((Lcm1
x)TKcm2

y + Lm1m2
x Km2m2

y).

Similarly, fix Ky , solving the optimization in Equation 3,
we get:

Kx =

 Kcc
x Kcm1

x Kcm2
x

(Kcm1
x)T Km1m1

x Km1m2
x

(Kcm2
x)T (Km1m2

x)T Km2m2
x

,
where

Kcm2
x = −(Kcc

x Lcm2
y + Lcm1

y (Lm2m1
y)T)((Lm2m2

y)−1)T

Km2m2
x = (Lm2m2

y)−1((Lcm2
y)TKcc

x

+ Lm2m1
y (Kcm1

x)TLcm2
y + (Lcm2

y)TKcm1
x (Lm2m1

y)T

+ Lm2m1
y Km1m1

x (Lm2m1
y)T)((Lm2m2

y)−1)T

Km2m1
x = −(Lm2m2

y)−1((Lcm2
y)TKcm1

x + Lm2m1
y Km1m1

x).

So we can iteratively solve the optimization problems in Equa-
tions 2 and 3 until it gets convergence. The whole algorithm
is shown in Algorithm 1.

Although Algorithm 1 is for two incomplete datasets, it
is important to note that the generalization can be easily
done. By completing the kernel matrices in a cyclic iteration,
Algorithm 1 can be easily generalized to more than two
incomplete datasets . Assume we have k incomplete datasets
X1, ..., Xk. We first complete the kernel matrix K2 using
the initial kernel matrix K1 by Equation 6. We can continue
completing kernel matrix Ki+1 using kernel matrix Ki by
Equation 6, until we complete Kk. After using Kk to complete
K1, we can start another iteration cycle from K1 to Kk, until
it converges.

IV. CLUSTERING ALGORITHM BASED ON COLLECTIVE
KERNEL LEARNING AND KCCA

In this section, we propose a clustering algorithm based
on collective kernel learning and kernel canonical correlation
analysis.

A. CCA and Kernel CCA

Canonical Correlation Analysis (CCA) [11] is a technique
for modeling the relationships between two (or more) sets of
variables. CCA computes a low-dimensional shared embedding
of both sets of variables such that the correlations among the
variables between the two sets is maximized in the embedded
space. Given two column vectors X = (x1, ..., xn) and
Y = (y1, ..., ym) of random variables with finite second
moments, canonical correlation analysis seeks vectors a and
b such that the random variables a′X and b′Y maximize the
correlation ρ = cor(a′X, b′Y). CCA has been applied with
great success in the past on a variety of learning problems deal-
ing with multi-modal data or multi view data [12]. Canonical
Correlation Analysis is a linear feature extraction algorithm.

Algorithm 1 Collective Kernel Learning (CoKL)

Input: Incomplete Datasets X and Y
Output: The full kernel matrices Kx and Ky

1: Give initial values to the missing features in the two
dataset.

2: Calculate the kernel matrices Kx and Ky .
3: Lx ← Dx −Kx

4: Ly ← DY −Ky

5: repeat
6:

A←

 Ac

−(Lm1m1
x)−1

(
(Lcm1

x)TAc − Lm1m2
x Am2

)
Am2


7: Calculate the new full kernel matrix K ′y using A.
8:

B ←

 Bc
Bm1

−(Lm2m2
y)−1

(
(Lcm2

y)TBc − Lm2m1
y Bm1

)


9: Calculate the new full kernel matrix K ′x using B.
10: Kx ← K ′x.
11: Ky ← K ′y .
12: until Convergence

However, in real world applications, the data usually exhibit
nonlinearities, and therefor a linear projection like CCA may
not be able to capture the properties of the data. To deal with
the nonlinearities, kernel method has been successfully used in
many applications (e.g. Support Vector Machines and Kernel
Principal Component Analysis). [13], [14] apply the kernel
method to CCA, which first maps each D dimensional data
point x to a higher dimensional space F defined by a mapping
function φ whose range is in an inner product space, then
applies linear CCA in the feature space F . More formally,
to get the kernel formulation of CCA, we can switch to the
dual representation by expressing the projection directions as
wx = Xα and wy = Y β, where α and β are vectors of size
N. Then the correlation coefficient between X and Y can be
written as:

ρ = max
α,β

αTXTXY TY β√
αTXTXXTXα× βTY TY Y TY β

. (7)

Using the fact that Kx = XTX and Ky = Y TY are the
kernel matrices for X and Y , kernel CCA aims to solving the
following problem:

ρ = max
α,β

αTKxKyβ√
αTK2

xα× βTK2
yβ

(8)

s.t. αTK2
xα = 1 and βTK2

yβ = 1.

Unlike the linear CCA doing an eigen-decomposition of the
covariance matrix, Kernel CCA works by using the kernel
metrices Kx and Ky . The eigenvalue problem for kernel CCA

is: (
0 KxKy

KxKy 0

)(
α

β

)
= λ

(
K2
x 0

0 K2
y

)(
α

β

)
. (9)

B. A Clustering Algorithm with Collective Kernel Learning
and KCCA

In this section, we will describe a clustering algorithm
based on collective kernel learning and KCCA. Given two
incomplete datasets X and Y , the goal is to derive a clustering
solution S based on the information contains in both datasets.
The algorithm is shown in Algorithm 2.

Algorithm 2 Clustering using Collective Kernel Learning and
KCCA
Input: Incomplete Datasets X and Y .
Output: The clustering solution S.

[Kx,Ky] = CoKL(X,Y).
[Xp, Yp] = KCCA(Kx,Ky). {Xp and Yp are the projected
datasets.}
if The feature space is still too large then
Xp = PCA(Xp).
Yp = PCA(Yp).

end if
Apply k-means to the projected datasets Xp and Yp.

We first apply the collective kernel learning to complete
the two full kernel matrices. Then we use Kernel CCA to find
the projected feature space, in which the correlation of the two
datasets is maximized, and get the projected two datasets. In
case that the dimension of the projected feature space is still to
large for clustering, we apply Principal Component Analysis
(PCA) to the projected datasets if needed. The clustering
solution S can be acquired using any standard clustering
algorithm, like k-means.

V. EXPERIMENTS AND RESULTS

In this section, we analyze the proposed clustering algo-
rithm on two sets of datasets.

A. Comparison Approaches

Since there was no previous method that can be directly
used to handle the same problem, we compared the proposed
algorithm with a straightforward strategy. The comparison
strategy is to first fill the missing features with average
values for continuous features and majority values for discrete
features, and then concatenate all features together, referred as
Concat. In other words, given two incomplete datasets X and
Y , we just fill the missing features and get Xc and Yc. The
concatenated features can be represented as follows:

FXY = [XT
c , Y

T
c]T . (10)

So any traditional clustering algorithm can be applied on the
concatenated datasets to obtain a solution. Another comparison
Approach is the algorithms in [3] referred as MVC. This algo-
rithm assumes at least one dataset is complete. To apply this
algorithm to the incomplete datasets, we complete one dataset

with average values for continuous features and majority
values for discrete features, leaving other datasets incomplete.
Although the proposed clustering algorithm could work with
any standard clustering algorithm, in all the experiments, we
use k-means as the clustering algorithm for convenience.

To test the effectiveness of KCCA, we compare the
proposed algorithm (CoKL+KCCA) with Kernel Addi-
tion/Production + Spectral Clustering referred as CoKL-KA-
SC and CoKL-KP-SC. CoKL-KA-SC is combining different
kernels from CoKL by adding them, and then running standard
spectral clustering on the corresponding Laplacian. As sug-
gested in [15], [16], even this seemingly simple approach often
leads to near optimal results as compared to more sophisticated
approaches for classication. CoKL-KP-SC is multiplying the
corresponding entries of kernels after CoKL and applying stan-
dard spectral clustering on the resultant Laplacian. To be fair,
we also compare the proposed algorithm (CoKL+KCCA) with
concatenated standard k-means and KCCA on the complete
dataset referred as Comp-Concat and Comp-KCCA.

B. Evaluation Strategy

In order to evaluate the quality of the proposed cluster-
ing algorithm, we use normalized mutual information (NMI)
and the average purity. Note that NMI equals to zero when
clustering algorithm is random, and it is close to one when
the clustering result is good. Average purity is also close to
one when the clustering result is good. Note that k-means
is sensitive to initial seed selection. Hence, we run k-means
30 times on each parameter setting, and report the averaged
NMI and purity with mean value and standard deviation. All
the datasets we use in the experiments are complete, but we
randomly delete some of the instances in datasets. It is also
important to note that the missing rate for each dataset is equal,
i.e., two datasets have the same number of missing instances.
Since all the original datasets are complete, to generate a
missing rate of 60% on a pair of datasets, we randomly select
60% of the instances and delete them alternately from one of
the datasets. This will make all the datasets have equal missing
rate. We test the performance of the proposed algorithm for
different total missing rates (from 10% to 90%).

C. UCI Seeds Datasets

The first dataset contains 210 instances with 7 features.
Each instance represents a seed belonging to one of the
three different varieties of wheat. A soft X-ray technique and
GRAINS package are used to construct all seven, real-valued
attributes. The aim is to cluster the seeds. In order to test the
performance of the proposed algorithm, we randomly split the
feature set into two disjoint parts, which represent two datasets.
Then we randomly delete the instances in both of the datasets
to make them incomplete. As mentioned before, we run the
proposed algorithm for different total missing rates (from 10%
to 90%). The results average over 30 runs are presented in
Fig. 2 and Fig. 3.

Fig. 2 compares CoKL+KCCA with Concat, MVC, and
two algorithms on complete data (Comp-Concat and Comp-
KCCA). Fig. 3 compares different algorithms combined with
CoKL on incomplete data (CoKL+KCCA, CoKL-KA-SC and
CoKL-KP-SC). As it can be observed in Fig. 2, the proposed

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Missing Rate

N
M

I

CoKL−KCCA

Joined

MVC

Comp−Joined

Comp−KCCA

(a) NMI for seeds dataset on different missing rates.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.4

0.5

0.6

0.7

0.8

0.9

1

Missing Rate

P
u

ri
ty

CoKL−KCCA

Joined

MVC

Comp−Joined

Comp−KCCA

(b) Average purity for seeds dataset on different missing rates.

Fig. 2: The performance of seeds dataset on different missing rates.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Missing Rate

N
M

I

CoKL−KCCA
CoKL−KA−SC
CoKL−KP−SC

(a) NMI for seeds dataset on different missing rates.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Missing Rate

P
u

ri
ty

CoKL−KCCA

CoKL−KA−SC

CoKL−KP−SC

(b) Average purity for seeds dataset on different missing rates.

Fig. 3: The performance of CoKL with different algorithms on different missing rates.

algorithm, clustering with CoKL and KCCA, outperforms the
two comparison methods (Concat and MVC) substantially for
all the missing rates in both NMI and average purity. For
example, when the missing rate is 0.7, the NMI obtained
from CoKL+KCCA is about 0.7, while that of the comparison
methods is only about 0.3. The average purity obtained from
CoKL+KCCA is about 0.85, while that of the comparison
methods is only less than 0.65. Even when the missing rate
is 0.9, the NMI obtained from CoKL+KCCA is still 0.43,
which is much larger than that of the comparison methods. Of
course, the result of proposed algorithm is not as good as the
results of algorithms running on complete dataset. However,
it is important to note that in Fig. 2b the proposed algorithm
is very closed to the algorithms running on complete dataset
in average purity. From Fig. 3, it can be easily observed
that CoKL+KCCA outperforms CoKL-KA-SC and CoKL-
KP-SC almost everywhere, which shows the effectiveness of
KCCA. These results shows that CoKL+KCCA performs not
only better than the intuitive strategy which directly uses the
concatenated features, but also better than the latest method
MVC.

D. Handwritten Dutch Numbers Recognition

This dataset contains 2000 handwritten numerals (”0”-
”9”) extracted from a collection of Dutch utility maps [5].
The handwritten numbers are scanned and digitized as binary
images. The following feature spaces (datasets) with different
vector-based features is available for the numbers: (1) 76
Fourier coefficients of the character shapes, (2) 216 profile
correlations, (3) 240 pixel averages in 2 × 3 windows, and
(4) 47 Zernike moments. All these features are conventional
vector-based features but in different feature spaces. The aim
is to cluster the numbers. We test the proposed algorithm on
two incomplete datasets, so among this 4 different datasets, we
can have 6 different combinations. For each pair of datasets,
we randomly delete the instances in both of the datasets. As
mentioned before, we run the proposed algorithm for different
total missing rates (from 10% to 90%). The results of all the
6 different combinations average over 10 runs are presented in
Fig. 4 and Fig. 5.

Fig. 4 compares CoKL+KCCA with Concat, MVC, and
two algorithms on complete data (Comp-Concat and Comp-
KCCA). Fig. 5 compares different algorithms combined with

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Missing rate

N
M

I

CoKL−KCCA

Joined

MVC

Comp−Concat

Comp−KCCA

(a) Fourier coefficients and pixel averages

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Missing rate

N
M

I

CoKL−KCCA

Joined

MVC

Comp−Concat

Comp−KCCA

(b) Fourier coefficients and Zernike moments

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Missing rate

N
M

I

CoKL−KCCA

Concat

MVC

Comp−Concat

Comp−KCCA

(c) Pixel averages and Zernike moments

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Missing rate

N
M

I

CoKL−KCCA

Joined

MVC

Comp−Concat

Comp−KCCA

(d) Profile correlations and Fourier coefficients

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Missing rate

N
M

I

CoKL−KCCA

Concat

MVC

Comp−Concat

Comp−KCCA

(e) Profile correlations and Zernike moments

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Missing rate

N
M

I

CoKL−KCCA

Concat

MVC

Comp−Concat

Comp−KCCA

(f) Profile correlations and Pixel averages

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Missing rate

P
u
ri
ty

CoKL−KCCA

Concat

MVC

Comp−Concat

Comp−KCCA

(g) Fourier coefficients and Pixel averages

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Missing rate

P
u
ri
ty

CoKL−KCCA

Concat

MVC

Comp−Concat

Comp−KCCA

(h) Fourier coefficients and Zernike moments

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Missing rate
P

u
ri
ty

CoKL−KCCA

Concat

MVC

Comp−Concat

Comp−KCCA

(i) Pixel averages and Zernike moments

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Missing rate

P
u
ri
ty

CoKL−KCCA

Concat

MVC

Comp−Concat

Comp−KCCA

(j) Profile correlations and Fourier coefficients

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Missing rate

P
u
ri
ty

CoKL−KCCA

Concat

MVC

Comp−Concat

Comp−KCCA

(k) Profile correlations and Zernike moments

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Missing rate

P
u
ri
ty

CoKL−KCCA

Concat

MVC

Comp−Concat

Comp−KCCA

(l) Profile correlations and Pixel averages

Fig. 4: NMI and average purity on 6 pairs of handwritten Dutch numbers datasets

CoKL on incomplete data (CoKL+KCCA, CoKL-KA-SC and
CoKL-KP-SC). As it can be observed, the proposed algo-
rithm, clustering with CoKL and KCCA, outperforms the two
comparison methods (Concat and MVC) substantially for all
the six pairs of datasets in both NMI and average purity.
Taking the pair Fourier coefficients dataset and pixel average
dataset (Fig. 4a and Fig. 4g) as example, the NMI obtained
from CoKL+KCCA is 0.63 at missing rate 0.7, while that
of the comparison methods is only about 0.45. The purity
obtained from CoKL+KCCA is about 0.7 at missing rate 0.7,
while that of the comparison methods is less than 0.5. One
interesting result is that CoKL+KCCA is even better than
Comp-Concat for some settings like Fig. 4b and Fig 4c. The

reason is because even with complete dataset, the correlations
among the two dataset may not be significant. However, the
correlations among the projected spaces between the two sets
is maximized when apply KCCA. So CoKL+KCCA could
be better than Comp-Concat for some settings but is worse
than Comp-KCCA for almost every setting. From Fig. 5g-
5l, it can be easily observed that CoKL+KCCA outperforms
CoKL-KA-SC and CoKL-KP-SC for most of the cases, which
shows the effectiveness of KCCA. These results shows that on
incomplete datasets, CoKL+KCCA performs not only better
than the intuitive strategy Concat and advanced method MVC,
but even better than some simple algorithms on complete
datasets.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Missing rate

N
M

I

CoKL−KCCA

CoKL−KA−SC

CoKL−KP−SC

(a) Fourier coefficients and pixel averages

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Missing rate

N
M

I

CoKL−KCCA
CoKL−KA−SC
CoKL−KP−SC

(b) Fourier coefficients and zernike moments

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Missing rate

N
M

I

CoKL−KCCA

CoKL−KA−SC

CoKL−KP−SC

(c) Pixel averages and zernike moments

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Missing rate

N
M

I

CoKL−KCCA
CoKL−KA−SC
CoKL−KP−SC

(d) Profile correlations and fourier coefficients

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Missing rate

N
M

I

CoKL−KCCA

CoKL−KA−SC

CoKL−KP−SC

(e) Profile correlations and zernike moments

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Missing rate

N
M

I

CoKL−KCCA

CoKL−KA−SC

CoKL−KP−SC

(f) Profile correlations and pixel averages

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Missing rate

P
u
ri
ty

CoKL−KCCA

CoKL−KA−SC

CoKL−KP−SC

(g) Fourier coefficients and pixel averages

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Missing rate

P
u
ri
ty

CoKL−KCCA

CoKL−KA−SC

CoKL−KP−SC

(h) Fourier coefficients and zernike moments

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Missing rate
P

u
ri
ty

CoKL−KCCA

CoKL−KA−SC

CoKL−KP−SC

(i) Pixel averages and zernike moments

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Missing rate

P
u
ri
ty

CoKL−KCCA

CoKL−KA−SC

CoKL−KP−SC

(j) Profile correlations and fourier coefficients

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Missing rate

P
u
ri
ty

CoKL−KCCA

CoKL−KA−SC

CoKL−KP−SC

(k) Profile correlations and zernike moments

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Missing rate

P
u
ri
ty

CoKL−KCCA

CoKL−KA−SC

CoKL−KP−SC

(l) Profile correlations and pixel averages

Fig. 5: The performance of different algorithms combined with CoKL on 6 pairs of handwritten Dutch numbers datasets

E. Discussion

In this section, we aim at analyzing CoKL more in detail
in order to answer the following three questions:

1) Can we find any patterns and properties of CoKL
compared with other approach?

2) How does the result of clustering using
CoKL+KCCA look like geometrically?

3) How does the missing rate affect the convergence
rate?

From Fig. 2 and Fig. 4, we can find the following pat-
terns/properties. First, for a small missing rate like 10%, The

performance of CoKL+KCCA and MVC are almost the same,
but both better than the intuitive strategy Concat. Second, as
missing rate goes larger, the performance of all these three
methods decline. The performance of CoKL+KCCA drops
slower than MVC. Third, when the missing rate is 0.9, the
performance of all these three methods get to the lowest point.
CoKL+KCCA and MVC may be worse than the intuitive
strategy which directly uses the concatenated features.

These patterns and properties make sense. At small missing
rate, there is only small amount of instances missing in
datasets. The difference between CoKL+KCCA and MVC is
really small. As the missing rate goes larger, the information

−4 −3 −2 −1 0 1 2 3 4
−2

−1

0

1

2

(a) Seeds dataset 1

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
−5

0

5

(b) Seeds dataset 2

−5 −4 −3 −2 −1 0 1 2 3
−4

−2

0

2

4

(c) Projected data after convergence

Fig. 6: The projected data: �, x, o are three different classes.

contained in the missing instances become more and more.
The information that all these three methods could obtain
become less and less. That would explain the performance
drop for all these three methods. MVC assumes one dataset
is complete and only completes the other kernel matrix once,
while CoKL takes advantage of the common examples in two
datasets and collectively complete the kernel matrices of the
datasets. So CoKL+KCCA can get more information from the
incomplete datasets. Thus, CoKL+KCCA performs better than
MVC. However, when the missing rate is too large, say 0.9,
the portion of useful information in the initial kernel matrices
(filling the datasets with average/majority values) is so small
and biased that CoKL and MVC may be misled by the small
portion of examples. Thus, the performance of CoKL+KCCA
and MVC may be slightly worse than the intuitive strategy at
a large missing rate.

In order to compare the data point before and after
CoKL+KCCA clustering, we project the UCI seeds data be-
fore CoKL+KCCA and the data after CoKL+KCCA into 2
dimensions (See Fig. 6). The black square, red circle and blue
cross represent three different classes. Specifically, Fig. 6a and
Fig. 6b are the projected data points from two incomplete
seeds datasets (with missing rate 90%). It is important to
note that since both the datasets are incomplete, we first
use naive filling strategy (using average value for continuous
features and majority value for discrete features) to complete
the datasets in order to get initial kernel matrices. Then we
apply KCCA on both the initial kernel matrices before CoKL
and the complete kernel matrices after CoKL. The shown
dimensions are generated by applying PCA on the results of
KCCA. As compared with Fig. 6(a) and Fig. 6(b), it can be
clearly observed in Fig. 6(c) that the data is more separable
after CoKL.

In order to show how the missing rate affects the conver-
gence rate, we record the number of iterations to convergence
for different missing rates. Since we have six pairs of datasets
for the handwritten Dutch numbers recognition experiment, we
take the average number of iterations to converge of the six
pairs. The result is shown in Fig 7. As it can be observed,
CoKL takes less than 10 iterations to converge for different
experiments and different missing rates. From the figures, we
can also conclude that as the missing rate becomes larger,

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

9

10

11

Missing rate

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n

Seeds dataset

Dutch number datasets

Fig. 7: The average number of iterations to converge for
different missing rates.

i.e., more instances missing from the datasets, the number of
iterations needed to get convergence become slightly larger.
In fact, the number of iterations needed to get convergence
grows really slowly. For the smaller dataset, UCI seeds dataset,
it is almost constant. For the handwritten Dutch numbers
recognition experiment, it grows linearly w.r.t. the missing rate
with a very small increase rate.

VI. RELATED WORK

There are several areas of related works upon which the
proposed model is built. First, multi-view learning [1], [16]–
[20], is proposed to learn from instances which have multiple
representations in different feature space. For example, [2]
developed and studied partitioning and agglomerative, hier-
archical multi-view clustering algorithms for text data. [16],
[21] are among the first works proposed to solve the multi-
view clustering problem via spectral projection. [17] proposed
a novel approach to use mapping function to make the clusters
from different pattern spaces comparable and hence an optimal
cluster can be learned from the multiple patterns of multiple
views. Linked Matrix Factorization [22] is proposed to explore
clustering of a set of entities given multiple graphs. It is among
the first works proposed to solve the special case that each view
is a graph. Recently, heterogeneous learning [23] is proposed
to perform clustering where some of the views are graphs
and some contain vector-based features, however the focus is
different from ours.

Another area of related work is learning with incomplete
data [3], [24]–[28]. For example, both of [26] and [27] use
fuzzy c-means algorithm to cluster incomplete data. [24] is
among the first works for learning from incomplete data
using EM algorithm for density estimates of mixture models.
[27] uses a simple triangle inequality-based approximation
scheme and applies non-Euclidean relational fuzzy c-means
algorithm, while [26] takes advantage of the robustness of
kernel fuzzy c-means algorithm. However, the focus of these
works is different from ours. Recently, [3] proposed a novel
kernel based approach which allows clustering algorithms to
be applicable when only one (the primary) view is complete,
and the other views are incomplete.

There are some differences between our work and the
previous approaches. First, so far as we know, all of the
previous works could not deal with incomplete datasets or
at least requires one primary dataset to be complete. CoKL
works for problems where even no complete datasets are
available, which could not be solved by the previous works.
Second, CoKL completes the kernel matrices collectively and
efficiently. CoKL converges really fast, and the number of
iterations needed to get convergence does not change too much
for different missing rates.

VII. CONCLUSION

In this paper, we study the problem of clustering for
multiple incomplete datasets. We propose a CoKL principle
to deal with the incompleteness of the datasets by collec-
tively completing the kernel matrices of the datasets using
the common instances in different datasets. An optimization
problem is derived from the CoKL principle to optimize the
alignment of incomplete kernel matrices, and an approxima-
tion solution is obtained by iteratively solving a constrained
optimization problem. Furthermore, we propose a clustering
algorithm using CoKL and KCCA. By applying KCCA after
CoKL, the proposed algorithm could maximize the correlation
between the projected feature spaces, which will increase the
performance of clustering compared with other methods. Two
sets of experiments were performed to evaluate the cluster-
ing algorithm. It can be clearly observed that the proposed
algorithm outperforms the comparison algorithms by as much
as twice in NMI. We also analyze the efficiency of CoKL,
i.e., the number of iterations needed to get convergence. The
result shows CoKL converges very fast (at most 10 iterations).
The result on different missing rates shows that the number of
iterations needed to get convergence grows linearly with the
missing rate at a very small increase rate.

Acknowledgement This work is supported in part by
NSF through grants CNS-1115234, DBI-0960443, and OISE-
1129076, US Department of Army through grant W911NF-
12-1-0066, and Huawei Grant.

REFERENCES

[1] A. Blum and T. Mitchell, “Combining labeled and unlabeled data
with co-training,” in Proceedings of the eleventh annual conference on
Computational learning theory, ser. COLT’ 98. New York, NY, USA:
ACM, 1998, pp. 92–100.

[2] S. Bickel and T. Scheffer, “Multi-view clustering,” in ICDM. IEEE
Computer Society, 2004, pp. 19–26.

[3] A. Trivedi, P. Rai, H. Daumé III, and S. DuVall, “Multiview clustering
with incomplete views,” in NIPS 2010: Workshop on Machine Learning
for Social Computing, Whistler, Canada, 2010.

[4] M. Charytanowicz, J. Niewczas, P. Kulczycki, P. A. Kowalski,
S. Lukasik, and S. Zak. Seeds data set. [Online]. Available:
http://archive.ics.uci.edu/ml/datasets/seeds

[5] R. P. Duin. Handwritten-numerals-dataset. [Online]. Available: http:
//archive.ics.uci.edu/ml/datasets/multiple+features

[6] R. Merris, “Laplacian matrices of graphs: a survey,” Linear Algebra
and Its Applications, vol. 197-198, pp. 143–176, 1994.

[7] D. A. Spielman, “Algorithms, graph theory, and linear equations in
laplacian matrices,” 2001.

[8] A. J. Smola and R. Kondor, “Kernels and regularization on graphs,”
in COLT, ser. Lecture Notes in Computer Science, B. Schölkopf and
M. K. Warmuth, Eds., vol. 2777. Springer, 2003, pp. 144–158.

[9] R. K. Ando and T. Zhang, “Learning on graph with laplacian regu-
larization,” in Advances in Neural Information Processing Systems 19,
B. Schölkopf, J. Platt, and T. Hoffman, Eds. Cambridge, MA: MIT
Press, 2007, pp. 25–32.

[10] X.-M. WU, A. M.-C. So, Z. Li, and S.-Y. R. Li, “Fast graph laplacian
regularized kernel learning via semidefinite-quadratic-linear program-
ming,” in Advances in Neural Information Processing Systems 22,
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta,
Eds., 2009, pp. 1964–1972.

[11] R. A. Johnson and D. W. Wichern, Eds., Applied multivariate statistical
analysis. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1988.

[12] K. Chaudhuri, S. M. Kakade, K. Livescu, and K. Sridharan, “Multi-
view clustering via canonical correlation analysis,” in Proceedings of
the 26th Annual International Conference on Machine Learning, ser.
ICML ’09. New York, NY, USA: ACM, 2009, pp. 129–136.

[13] P. L. Lai and C. Fyfe, “Kernel and nonlinear canonical correlation
analysis,” International Journal of Neural Systems, vol. 10, no. 05, pp.
365–377, 2000.

[14] S. Akaho, “A kernel method for canonical correlation analysis,” arXiv
preprint cs/0609071, no. 4, pp. 1–7, 2006.

[15] C. Cortes, M. Mohri, and A. Rostamizadeh, “Learning non-linear
combinations of kernels,” in Advances in Neural Information Processing
Systems 22, Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams,
and A. Culotta, Eds., 2009, pp. 396–404.

[16] A. Kumar, P. Rai, and H. D. III, “Co-regularized multi-view spectral
clustering,” in Advances in Neural Information Processing Systems 24,
J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger,
Eds., 2011, pp. 1413–1421.

[17] B. Long, P. S. Yu, and Z. M. Zhang, “A general model for multiple
view unsupervised learning,” in SDM. SIAM, 2008, pp. 822–833.

[18] K. Nigam and R. Ghani, “Analyzing the effectiveness and applicability
of co-training,” in Proceedings of the ninth international conference on
Information and knowledge management, ser. CIKM ’00. New York,
NY, USA: ACM, 2000, pp. 86–93.

[19] H.-P. Kriegel, P. Kunath, A. Pryakhin, and M. Schubert, “Muse: Multi-
represented similarity estimation,” in Proceedings of the 2008 IEEE
24th International Conference on Data Engineering, ser. ICDE ’08.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 1340–1342.

[20] D. R. Hardoon, S. R. Szedmak, and J. R. Shawe-taylor, “Canonical
correlation analysis: An overview with application to learning methods,”
Neural Comput., vol. 16, no. 12, pp. 2639–2664, Dec. 2004.

[21] A. Kumar and H. D. III, “A co-training approach for multi-view spectral
clustering,” in Proceedings of the 28th International Conference on Ma-
chine Learning (ICML-11), ser. ICML ’11, L. Getoor and T. Scheffer,
Eds. New York, NY, USA: ACM, June 2011, pp. 393–400.

[22] W. Tang, Z. Lu, and I. S. Dhillon, “Clustering with multiple graphs,” in
ICDM 2009, The Ninth IEEE International Conference on Data Mining,
Miami, Florida, USA, 6-9 December 2009, W. Wang, H. Kargupta,
S. Ranka, P. S. Yu, and X. Wu, Eds. IEEE Computer Society, 2009,
pp. 1016–1021.

[23] X. Shi and P. S. Yu, “Dimensionality reduction on heterogeneous feature
space,” in ICDM 2012, The Ninth IEEE International Conference
on Data Mining, Brussels, Belgium, December 10-13, 2012. IEEE
Computer Society, 2012, pp. 635–644.

[24] Z. Ghahramani and M. I. Jordan, “Supervised learning from incomplete
data via an em approach,” in Advances in Neural Information Process-
ing Systems 6. Morgan Kaufmann, 1994, pp. 120–127.

[25] ——, “Learning from incomplete data,” 1995.
[26] D.-Q. Zhang and S.-C. Chen, “Clustering incomplete data using kernel-

based fuzzy c-means algorithm,” Neural Process. Lett., vol. 18, no. 3,
pp. 155–162, Dec. 2003.

[27] R. J. Hathaway and J. C. Bezdek, “Clustering incomplete relational data
using the non-euclidean relational fuzzy c-means algorithm,” Pattern
Recogn. Lett., vol. 23, no. 1-3, pp. 151–160, Jan. 2002.

[28] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” JOURNAL OF THE
ROYAL STATISTICAL SOCIETY, SERIES B, vol. 39, no. 1, pp. 1–38,
1977.

http://archive.ics.uci.edu/ml/datasets/seeds
http://archive.ics.uci.edu/ml/datasets/multiple+features
http://archive.ics.uci.edu/ml/datasets/multiple+features

	I Introduction
	II Problem Fomulation
	III Collective Kernel Learning
	IV Clustering Algorithm Based on Collective Kernel Learning and KCCA
	IV-A CCA and Kernel CCA
	IV-B A Clustering Algorithm with Collective Kernel Learning and KCCA

	V Experiments and Results
	V-A Comparison Approaches
	V-B Evaluation Strategy
	V-C UCI Seeds Datasets
	V-D Handwritten Dutch Numbers Recognition
	V-E Discussion

	VI Related Work
	VII Conclusion
	References

