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Abstract—With the increasing number of mobile Apps de-
veloped, they are now closely integrated into daily life. Inthis
paper, we develop a framework to predict mobile Apps that
are most likely to be used regarding the current device stats
of a smartphone. Such an Apps usage prediction framework
is a crucial prerequisite for fast App launching, intelligent
user experience, and power management of smartphones. By
analyzing real App usage log data, we discover two kinds
of features: The Explicit Feature (EF) from sensing reading
of built-in sensors, and the Implicit Feature (IF) from App
usage relations. The IF feature is derived by constructing e
proposed App Usage Graph (abbreviated as AUG) that models
App usage transitions. In light of AUG, we are able to discove
usage relations among Apps. Since users may have different
usage behaviors on their smartphones, we further propose @n
personalized feature selection algorithm. We explore mimium
description length (MDL) from the training data and select
those features which need less length to describe the tramg
data. The personalized feature selection can successfutigduce
the log size and the prediction time. Finally, we adopt the
kNN classification model to predict Apps usage. Note that
through the features selected by the proposed personalized
feature selection algorithm, we only need to keep these faaes,
which in turn reduces the prediction time and avoids the cure
of dimensionality when using the kNN classifier. We conduct
a comprehensive experimental study based on a real mobile
App usage dataset. The results demonstrate the effectivese
of the proposed framework and show the predictive capabiliy
for App usage prediction.

Keywords-Mobile Application; Usage Prediction; Classifica-
tion; Apps;

I. INTRODUCTION

day. In addition, the launch delay of Apps becomes longer
as their functionality becomes more complicated. [Ih [7],
the authors investigated the launch delay of Apps. Even
simple Apps (e.g., weather report) need 10 seconds, while
complicated Apps (e.g., games) need more than 20 seconds
to reach a playable state. Although some Apps could load
stale content first and fetch new data simultaneously, they
still need several seconds to complete loading.

To ease the inconvenience of searching for Apps [8],
[9] and to reduce the delay in launching Apps [7], one
possible way is to predict which Apps will be used before
the user actually needs them. Although both the iOS and
Android systems list the most recently used (MRU) Apps
to help users relaunch Apps, this method only works for
those Apps which would be immediately relaunched within
a short period. Another common method is to predict the
most frequently used (MFU) Apps. However, when a user
has a lot of frequently used Apps, the MFU method has very
poor accuracy. In our experiments, these two methods are
the baseline methods for comparison.

Recently, some research works have addressed the Apps
usage prediction problems![71./[8].1[9]. Inl[8], a temporal
profile is built to represent the usage history of an App. The
temporal profile records the usage time and usage period of
the App. Then, when a query time is given, the usage prob-
ability of each App could be calculated through comparing
the difference between the temporal profile and the query
time. However, since they only consider the periodicity
feature of Apps, some Apps with no significant periods

With the increasing number of smartphones, mobile apcannot be predicted by their temporal profiles. [In [7], the

plications (Apps) have been developed rapidly to satisfyauthors adopted three features to predict Apps usage: time,
users’ needs[[1],[12],L13],[14]. Users can easily downloadlocation, and used Apps. Based on those three features, they
and install Apps on their smartphones to facilitate theilyda designed and built a system to remedy slow App launches.
lives. For example, users use their smartphones for Weblowever, they always use these three features to predict
browsing, shopping and socializingl [5],! [6]. By analyzing different users’ usage, which is impractical as users could
the collected real Apps usage log data, the average numbbave different usage behavior. For example, the location
of Apps in a user's smartphone is around 56. For soménformation could be less useful for those users who have
users, the number of Apps is up to 150. As many Apps ardower mobility. We claim that the features which are able
installed on a smartphone, users need to spend more tinte accurately predict Apps usage are different for diffeéren
swiping screens and finding the Apps they want to use. Frormasers and different Apps. The authors [in [9] collected 37
our observation, each user has on average 40 launches dertures from accelerometer, Wi-Fi signal strength, Ipatte


http://arxiv.org/abs/1309.7982v1

tween camera and Facebook use depends on different users
Sensors Xper reare and different usage behaviors. To model the usage relation
Feature ) - ) .
Selection weighted directed graph, is proposed. The weight on each
edge is formulated as an exponential distribution to dbscri
Prycyeeh e feature of each training instance is derived by traversieg t
AUG. Consequently, the implicit feature of each testingecas
Figure 1. Overview of KNN-based App Prediction framework. With both explicit and implicit features, KAP adopts
a kNN classification model to predict Apps usage which
|eV€|, et.C., and proposed a Naive BayeS C!aSSification rdethqhe proposed KAP framework Outperforms both baseline
to predict Apps usage. However, a Naive Bayes classifimethods and achieves accuracy of 95%. We also show that
the conditional probability, which does not always hold. efficient and effective. In addition, the implicit featurs i
Therefore, the system would fail to predict Apps if there yseful for improving the prediction accuracy of KAP.
dataset. In addition, they still apply all the same featuresnarized as follows.
to each user, instead of selecting personalized features fo | \we address the problem of Apps usage prediction by
In this paper, we adopt the concept of minimum de-  sers’ Apps usage behavior, and propose the concept of
scription length (MDL) to select personalized features for explicit and implicit features for Apps usage prediction.
data could be reduced. The overall framework is shown  featyres from the AUG graph for training and testing
in Figure[1. KAP investigates features from both explicit purposes respectively.
readings from built-in hardware sensors, such as GPS, time, i, which one could explore MDL to determine a
these correlations, the implicit feature is representethas « A comprehensive performance evaluation is conducted
transition probability among Apps. on real datasets, and our proposed framework outper-
hardware sensors: 1) device sensors, such as free space, freThe rest of this paper is organized as follows. Sedfibn I
ram, and battery level, 2) environmental sensors, such 3§ estigates the related works which discuss the convealio
acceleration, speed, heading, and location. We claim thahoquces the explicit and implicit features. Sectionl IV
the usage of different Apps is related to different types Ofyresents the mechanism of personalized feature selection.
the explicit feature is that it reduces the effect of noistada ents. Finally, this paper is concluded with Secfion VI.
and also saves power and storage consumption for logging
For the implicit feature, we calculate the transition prob- To the best of our knowledge, the prediction problem
ability for each App. However, the previous works [7]] [9] of Apps usage in this paper is quite different from the
duration between Apps. We claim that the length betweethistory to model users’ behavior, but on personalizingadri
Apps usage means different things. For example, users maypes of features including hardware and software sensors
to Facebook. However, some users may upload picturedifferent features for different users to satisfy their gesa
immediately, while others would upload them when theybehavior. Although there have been many research works

Personaized ™ among Apps, an Apps Usage Graph (AUG), which is a
v the historical usage durations. Based on AUG, the implicit
is derived by an iterative refinement process.
is represented as class labels. In the experimental study,
cation method needs sufficient training data to calculatghe personalized sensor selection for the explicit featsire
are not exactly the same instances existing in the training The major contributions of this research work are sum-
different users with different usage behaviors. discovering different feature sets to fulfill different
different users and propose a kNN-based App Prediction , \ve estimate the distribution of the transition probability
features need to be collected. Therefore, the size of the log Ty algorithms are proposed to extract the implicit
and implicit aspects. The explicit feature is a set of sensor , \ve propose a personalized feature selection algorithm
is referred to as the correlations of Apps usage. To capture  accyracy of the predictions.
For the explicit feature, we focus on three types of forms the state-of-the-art methods [9].
time, GSM signal, and Wi-Fi signal, and 3) personal SeNnsOrsyrediction problem and Apps usage prediction. Sedfion 111
sensors. Obviously, the advantages of selecting sensprs fgection[] conducts extensive and comprehensive experi-
data and performing the prediction. Il. RELATED WORKS
only take the usage order into account, and not the timeonventional works. We focus on not only analysing usage
take pictures via a camera App and upload those pictureattached to smartphones. The proposed algorithm selects
have a Wi-Fi connection. Therefore, the time duration be-ssolving the prediction problem in different domains, sush a



Table |

music items or playlist prediction [10], dynamic preferenc HARDWARE SENSORS FOR THE EXPLICIT EEATURE
prediction [11], [12], location prediction [13] [14][ 115
social links prediction[[16], 7], and so on, the prediatio Sensors Contextual Information
methods are only based on analysing the usage history. tggﬁj‘;“ede
In [18], the author selected features from multiple data Location Altitude
streams, but the goal is to solve the communication problem Location Cluster
in a distributed system. Time gguro(f’fv\?:é’k

Currently, only a few studies discuss mobile Apps usage Ba%;ery Tovel
prediction. Although the authors in [19] adopted location Battery Charging status
and time information to improve the accuracy of Apps Avg. and std. dev. ofx, y, z}
usage prediction, the total number of Apps is only 15. Accelerometer /s'\gg:('jerat'on changes
Concurrently, in[[20], the authors stated that the predlicti Heading
accuracy could achieve 98.9%, but they still only focus on Wi-Fi Signal  Received signal
predicting 9 Apps from a set of 15. In][7], the authors GSM Signal F?fenzl aséf’;?tgach .
solved the prediction problem through multiple features System Free RpAM
from 1) location, 2) temporal burst, and 3) trigger/follawe
relation. However, they did not analyze the importance of 1
each feature. Therefore, for different users, they alwaes u o8 L ,

the same three features to predict their Apps usage.|In [9],
the authors investigated all possible sensors attached to a
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smartphone and adopted a Naive Bayes classification to 02l i
predict the Apps usage. However, collecting all possible o ol
sensors is inefficient and impractical. Moreover, the usefu Messe”“"*;ig;i::jﬂ Browser
sensors for different users could vary according to users’ Device wm Personal #rt
usage behavior. We claim that for different users, we need Environmental ===

to use different sets of features to predict their usagehib t (a) Userq

paper, we collect only the subset of all features which are 1

personalized for different users. o0s - i

This paper is the first research work which discusses how
to select suitable sensors and features for different users
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predict their Apps usage. Through the personalized feature 02k ,
selection, we could perform more accurate predictions for 0 1 K

varied types of usage bahavior, reduce the dimensionality Messe”ge’;‘l’“”::;fn Browser

of the feature space, and further save energy and storage Device £==31 Personal &
consumption. In addition, the proposed KAP framework Envronmental ===

derives the implicit feature by modelling the usage tramisit (b) Users

among Apps.

Figure 2. Varied recalls of predicting Apps usage via défartypes of
sensors for different users.

I11. EXPLICIT AND IMPLICIT FEATURES
In this paper, we separate the features into two main . . .
categories: the explicit feature and the implicit featufee ~ of sensors resp_ec_uvely to predict their Apps usage. Figure
explicit feature represents the sensor readings which arghows the prediction recall of "Messenger”, "Contacts'dan
explicitly readable and observable. The implicit featuse i "Browser” for the two users. As can be seen in Figure 2,

the Apps usage relations. personal sensors would be a good explicit feature for pre-
o . dicting usery’s Apps usage, while environmental sensors are
A. Explicit Feature Collection good forusers. The reason is thatser, probably needs a

Tablell shows the hardware sensors we use for the explicVi-Fi signal to access the Internet.
feature. As different models of smartphones could have
different sets of hardware sensors, we only list the mosB-
common ones whose readings are easy to record. It is totally The implicit feature formulates the usage transitions
free to add or remove any hardware sensors here. among Apps in a usage session. As mentionedlin [7], users

To show the prediction ability of different types of mobile use a series of Apps, called a usage session, to complete a
sensors, we randomly select two users from the collectedpecific task. For example, one user could use "Maps” when
dataset and perform KNN classification via the three typesravelling to a sightseeing spot, then use camera to take pho

Implicit Feature Extraction
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Figure 4. An example of the Apps Usage Graph (AUG).
Figure 3. The PDF of the duration of two consecutive App ldugsc

a = p(AO) is derived by assigning: = 0 in Equation[1,
tos, and upload those photos to Facebook. Thus, the seriesid could be calculated by0), the real probability derived

of using "Maps”, "Camera” and "Facebook” is called a us- from the training data. Then3 is solved by minimizing
age session, denoted as ”Mé;ég”Camera”‘s—%”Facebook”, the difference between the estimated probabitity) and

whered, andd, represent the transition intervals. the real probabilityp(i) as shown in Equation] 2 for every
The implicit feature of "Facebook” in this usage session islntefva[ Z _ .
thus < parr(81), por (81 + 02), prr(c0) >, wherepap(-), Empirically, we do not need to fit every interval when

pcr(-), andprr(-) are probability models which represent obtaining the exponential model. For example, in Fiddre 3,
the probability of using "Maps”, "Camera” and "Facebook” only the first 5 intervals already cover more than 75% of the
respectively before using "Facebook” with the transitiontraining data. Therefore, we can iteratively add one irgerv
interval as the random variable. Note that because theréntil the data coverage reaches a given threshold. We will
is no "Facebook” to "Facebook” in this usage session, thediscuss the impact of the data coverage threshold in the
transition interval is thus set teo and then the probability experiments section.
would be 0. .

The probability model could be estimated from a user’s p(z) = aexpfﬁz (1)
historical usage trace. In this section, we introduce ansApp
Usage Graph (AUG) which models the transition probability

among Apps for a single user. For training purposes, the B = argminz |p(2-) —p(i)|

implicit features for the training usage sessions are ddriv 8 P

by traversing the AUG. However, for testing purposes, since _ . 0 —Bi . /- 2
we do not know which is the App to be invoked, the arg;mn;m ) exp p(0) )

derivation of the implicit feature for the training usage ) )

session cannot be utilized directly. Therefore, an iteeati _ FOF €xample, Figurgl4 shows an AUG with three Apps.
refinement algorithm is proposed to estimate both the nex"om Figure_#, the probability of two consecug\g/e usages of
App and its implicit feature simultaneously. The following App1 with an int?{vw of 0.3 minutes (i.eApp1 — App1)
paragraphs will illustrate the details of the AUG constimet  is 0.4, andApp; — App; is 0.2. Although AUG only takes
and the implicit feature derivation for both the trainingdan two consecutive Apps into account, suchpas andp.s, the
testing usage sessions. probability of p,3, could be calculated by;s x pas.

1) Apps Usage Graph (AUG)or each user, we construct  2) Implicit Features for Training:For each training case,
an Apps Usage Graph (AUG) to describe the transitiorthe implicit features are derived by looking up the AUG.
probability among Apps. An AUG is a directed graph whereSuppose the currently used App (i.e., class labelljig,,
each node is an App, the direction of an edge between twithe implicit feature is thus< p';, py,, ..., p,; >, Wherepj,
nodes represents the usage order, and the weight on eatgpresents the probability of transiting frodpp; to any
edge is a probability distribution of the interval betweenrandom Apps and then telpp,. The probability ofp;ff)
two Apps. Since two consecutive launches could be vieweds defined as in Equatiohl 3 which is the summation of
as a Poisson arrival process, we can formulate the intervakvery probability fromApp; to App,. Note that we use
between two launches as an exponential distribution. Foa superscripts, to indicate how many Apps are between
example, Figuré]3 shows the probability density functionApp;, and App,, and App.,, is the k-th App after App;.
(PDF) of two consecutive launches which exactly fulfils theOnce we derive the implicit feature in a reverse time order,
exponential distribution where most transitions (e.g#586)  the sub-problem of estimatirygﬁfkff) is already solved. The
are within 1 minute. calculation of the implicit feature forpp; stops when the

Here, Equatiofill formulates the exponential density functransition probability falls below a given thresholeiin,,,.
tion of the launch interval being ilx, z+1). The parameter In our collected dataset, the transition probability falhs



! App App, Appg among Apps, wherd Ff', TFJ, ... are column vectors.

777777777777 App1<§>App3||pg:pq3:0 Then, the value of; could be updated by Equatibh 5, which
********************** TR T RS is the probability of staying impp; after one-step walking
0.5 0.5 It p( )=p pA p( ) . . .
App2™App; AR 28 _2rets along the transition matri/. We keep updating; and I F;
””” T 05 05 T ey Tk a weTTTTTTTTT iteratively, until A is fixed to one specific App. In our
App1~ApPo ¥ APP, S APy p!ELp" 1" o1 0 ex erimZnts thepilt)érative refinementIO rocess pclcz)nver es in
I =04+0.09x0.13+0 P ) . . . P L 9
" 001 about 3 iterations. Algorithiil 2 depicts the derivation aé th
T 0.01 0.13 0 implicit feature for testing.
Figure 5. Steps of obtaining the implicit feature 4pps in the training IFy = Z 0; x IF; (4)
case, -- — App1 =N Appo 035, App1 o3, Apps. App;
0; = Y IF[m] x M[m][i] (5)
0.1% when we look backward to more than 5 Apps, which Appm

is the default parameter fonin,,. Algorithm[1 depicts the
derivation of the implicit feature for a training case with
App, as its class label.

Algorithm 2: Deriving the implicit feature for testing.

Input: ¢: a testing case
s ~ ~ s—k . . f .-
P = gy +§ :pi,mk % P;(zk,t) 3) Output: IF;: the implicit feature at
k

1 while iter < threshold do

2 foreach 6; do
IF, < IF, +0; x IF; ;
Algorithm 1: Deriving the implicit feature ofApp, for j e|nd ! Lo
training. __ 5 foreach App; prior than timet do
Input: App;: a training App 6 0; < 0; + IF,[m] x M[m][i] ;
Output: [ F;: the implicit feature ofApp, . Normalize#; :
1 foreach App; prior than App, do s | end
2 TFi[i] + ITF:[i]) + pit(0ir) ; 9 iter < iter + 1 ;
3 | foreach App,, betweenApp; and App; do 10 end
o || IR« TF[) + pon(Sjm) X TFnlt] ; u return 15
5 end
¢ end For example, suppose the testing case- is— App; —

7 return IF, Appe 2% Appr 22 App,. First, we initialize 6; as

< 1/3,1/3,1/3 >, which gives equal probability to each

For example, suppose we have an AUG as shown in 0.49 0.6 0.01
Figure[d and a usage trace as — App; — App, ~2  App, and the transiton matrix/ = | 0 0 0.13 |,
Appq 035, Apps — .... Figure[® shows the process of 0 0 0

- A ' ; which is derived by calculating the IF of each App shown
obtaining the implicit feature aflpp;. We first estlmat@’l(??) in Equation[3. Nozle that the ?ast row is all zergpbecause

0.5 /(1) 0.5 05
from Appy == Apps, thenpys” from Appy == App1 == pare is noApps transiting to any other Apps. Then, the

A i /(2) 1 0.5 S . : S .
pps, and finally updatep,3” from Appl — Apps —  implicit feature is< 0.37,0.04,0 > in the first iteration.
Appr 22 Apps. Note thatp'y is reused for calculating Next, ¢; is updated to< 0.18,0.22,0.01 >, and normalized
P, andply) andp/Y) are reused for updatingy). The as < 0.44,0.54,0.02 > according to one-step walk in/
implicit feature of Apps is < 0.01,0.13,0 >. with the calculated implicit feature as the prior probapili
3) Implicit Features for Testing:Since the App to be Then, we can obtain the implicit feature €<.53,0.01,0 >
predicted for current invocationdpp,, is unknown for in the second iteration.
testing, the derivation process of implicit features fairting
does not work. We propose an iterative refinement algorithm
to estimate bothApp; and its implicit feature,lF;, for The goal of the personalized feature selection is to use
testing. Supposé; is the probability ofApp; = App;, the  as fewer features as possible to guarantee an acceptable
implicit feature I'F; is calculated as in Equatidd 4 which accuracy. Due to the energy and storage consumption of
is a linear combination of the IF of eachpp;. In addi- collecting sensors readings and Apps transition relatiames
tion, M = [IF{, IF},...] represents the transition matrix should select useful features for different users in adeanc

IV. PERSONALIZED FEATURE SELECTION



Furthermore, through the personalized feature selectien, ® ® 8
could avoid the curse of dimensionality on performing the o0 O 00 ®
kKNN. We first apply the personalized feature selection on 0®® @ y OC?C? C?) y O(Dﬂ_(?_(?_(?_?_.@_.@_ﬁ
the training data, and then only the selected features are Time Battery Wi-Fi Signal
required to be collected in the future. * LH)=log,(2+2+1) * LH)=log,(2+2+1) * LH)=log,(4+3+1)
. * LD|H)=log,(0+1+1+1)  « L(D|H)=log,(0+2+1+1) + L(D|H)=log,(0+0+0+1)

Here, we propose a greedy algorithm to select the best . woi-iog,5+10g,3 . wpL=iog, 5+10g,4 + MDL=log, 8
feature iteratively. We adopt the concept of Minimum De- o
scription Length (MDL) [[21], [[22] to evaluate the goodness .0 L2 9
of the features. For different features, we can have varied , .., O ey O ensga
projections of the training data. We claim that if a feature . L(H)=log,(1+1) . L(H)=log,(1+1)
needs fewer bits to describe its data distribution, it isdyoo * L(D|H)=log,(0+1+1)  + L(D|H)=log,(0+0+1)
for predicting the data. Therefore, in each iteration, the * MDL=log,2+log, 2+ MDL=log,2

feature with the minimum description length is selected._ . .

. . . Figure 6. An example of feature selection where the red daiatpare
Then, those data points which are correctly predicted argoecty predicted.
logically eliminated from the training data, and the next
feature s selected by the same process repeatedly. We de.f"'ﬁlgorithm 3: Personalized feature selection.
the description length of the hypothesis, which is shown in T D The Ao dat
Equation[6, as the length of representing the training data. (;'p:] .t' ]ZDF ?h raining al_a d feat
NG(App;) is the number of groups ofpp;. The description utput. - the personalized teatures
length of Data given the hypothesis is the total number oft Let N, < |D,| ;
miss-classified data which is formulated as in Equdfion 7. 2 while |D,| < pN, do

3 foreach feature f do

L(H) = ZlogQ NG (App;) 6) 4 CalculateDL;: description length for featurg

5 end
L(D|H) = Z10g2(missClassz’fied(Appi) +1) (7 6 PF + PFU {argxfnaxDLf} ;
b o o 7 Let D, be the set of accurately predicted data

For example, given 8 data points in the training data and points ;
three features as shown in Figlie 6. In the first round, Time, D.«D,—D,:
is the feature with minimum description length. Those datay o,
points marked as red_ are correctly predicted and will b, (eturn PF
removed. Therefore, in the second round, only two data
points are left, and the feature of Wi-Fi signal is selected
due to its minimum description length.

The selection process stops when a percentageobthe  introduce the metrics employed to evaluate the performance
training data is covered. We also discuss the impagtiof ~ and finally deliver the experimental resullts.
the experimental section. Note that the number of featurei
affects the energy and storage consumption and is setf’
according to the capability of the smartphones. Algorifim 3 In this paper, we use a real world dataset collected
depicts the process of personalized feature selectiorer Aft Py & mobile phone company which installed a monitoring
the selection, only the readings of the sensors which arBrogram on every volunteer’s smartphone. In this dataset,
selected will be collected as the explicit feature in theifat ~ We have totally 50 volunteers including college student an

In addition, only the selected Apps will be used to construcfaculty from June 2010 to January 2011. For each user, we
AUG. separate the dataset into three parts, where each parstsonsi

of three months, and we use the first two months as training
V. EXPERIMENTAL STUDY data, and the last one month as testing data. Totally, there a
In this section, we conduct a comprehensive set of exmore than 300 different Apps installed on their smartphpnes

periments to compare the performance of the proposednd the average number of Apps on one smartphone is 56.
KAP framework with other existing methods including 1) i
most frequently used (MFU) method, 2) most recently used®- Peérformance Metrics
(MRU) method which is the built-in prediction method in  In this paper, we use two performance metrics: 1) average
most mobile OS, such as Android and iOS, 3) SVM, 4)recall and 2) nDCG[[23] score.
App Naive Bayes|[[9], 5) Decision Tree, and 6) AdaBoost. Average Recall: Since there is only one App being
In the following, we first discuss the collected datasetnthe launched in each testing case, recall score is thus adopted a

Dataset Description



one performance metric which evaluates whether the used
App is in the prediction list. The recall score of one user is

defined as > %, whereC is the set of testing

cases,Appfjeig the ground-truth, and.c; is the prediction
list at the i-th testing casel(-) is an indicator function
which equals 1, whenlpp,, € L.,, and equals 0, otherwise. s o
Finally, the average recall is the average of the recalleslu AdaBoost Ry

of all users.

nDCG Score: To evaluate the accuracy of the order of

the prediction list, we also test the nDCG score of the
prediction results. The IDCG score is fixed to 1 because

there is only one used App in the ground-truth. The DCG
1

Recall

nDCG

score ism when the used App is predicted at position 2 ¥
. . . . . G 0.1
i of the prgdlcUon list. Then, nDCG is the averagel%?c—c I ]
for all testing cases. Topk
AdaBaost o MRU - AR e
C. Experimental Results APPNG 2 S
(b) nDCG

To evaluate the performance of predicting Apps usage by
the proposed KAP framework, we first evaluate the overall Figure 7. Impact of the number of prediction, k.
performance when predicting different numbers of Apps.
Then, we test the performance of the personalized feature
selection algorithm. The impact of different parameters fo
the KAP framework and kNN classification is also included.
Note that we use top-= 4, kNN=40%, and the minimum
data coverage of personalized feature selection as 70% to be
the default parameter settings throughout the experiment. ;

1) Overall Performance:First, we evaluate the perfor- P e
mance KAP and other different methods under various AdaBoost o MRU - KA
numbers of predictionk. As can be seen in Figuié 7, when e e o
the number of predictiork increases, both the recall and
nDCG values also increase. However, KAP, MRU, MFU,
and SVM perform better than others. In Figlire J(a), when
k = 9 (the number of predictions shown in the latest Android
system), the recall of KAP could be more than 95%, while
it is only about 90% for MFU, MRU, and SVM. On the
other hand, the nDCG value of KAP shown in Fig{ire J/(b)

Rcall

nDCG

is always higher than that of the other methods, which means c45 ——  MFU = KAP o
the prediction order of KAP is better. - Y
Second, we test the accuracy of varied tofrequency. (b) nDCG

The top4 frequency is defined as the ratio of the usage
of the most frequent Apps. For example, if a user has
5 Apps and the usage counts are 3, 1, 2, 5, and 2, the
top-2 frequency is thus—>+3-— = ;. Figure[8 shows
the results when top- = 4. Intuitively, when the topk based selection algorithm could reduce the used storage
frequency increases, the accuracy of the MFU method could/hen maintaining a good prediction accuracy. For one user,
be better. However, in Figufe 8[a), even when the ratibds  the average used storage and prediction accuracy is shown
the MFU method performs just slightly better than the MRUin Table[Tl under different data coverage As can be seen
method, but worse than both KAP and SVM. In Figure B(b),in Table[Tl the personalized feature selection could reduce
the prediction order of KAP is also better than the resultss5% of training data size and only lose 1% of recall and
of the other methods. 3% of nDCG when the data coverage is 70%. In addition,
2) Impact of Personalized Feature SelectioRor the  Table[Il compares the execution time of KAP with and
proposed KAP method, we evaluate the performance of thevithout the personalized feature selection, where thaitrgi
personalized feature selection to see if the proposed MDLtime is reduced dramatically undgr= 70%.

Figure 8. Impact of top-k frequency.
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THE STORAGE CONSUMPTION AND ACCURACY UNDER VARIED DATA 08 e
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Coverage(%) 30 40 50 60 70 80 90 100 = s
Storage(KB) 28 31 34 37 43 52 82 04 o2p
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Table Il - S

THE EXECUTION TIME OFKAP WITH AND WITHOUT PERSONALIZED
FEATURE SELECTION

Execution time (ms) Training Testing Total
KAP 86 160 246
KAP without selection 185 160 345

D. Comparison of Different Usage Behavior

Since different users have different usage behaivor, which
could extremely affect the prediction accuracy. In this-sec
tion, we separate users into different groups according to 1
number of installed Apps, 2) usage frequency, and 3) usage
entropy. Then, we test the performance of applying differen
methods on different groups.

1) Impact of the Number of Installed App¥/hen users

results for a varying number of used Apps. As can be seen i
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Figure 10. Impact of the usage count.

2) Impact of the Usage Counflow, we test the impact

launch more Apps, it becomes more difficult to accurately® the usage count. A higher usage count means we could

predict Apps usage. Figuf@ 9 shows the recall and ndc%ave more training data to learn the classification model for

pp prediction. Concurrently, it provides more complichte

Figure[9, both the recall and ndcg values decrease when ttigformation of users’ usage behavior, and could make noisy
number of used Apps increases for all methods. Howevedata. FigureL 10 shows the recall and ndcg values. The
the decreasing rate of the proposed KAP method is mucRerformance of KAP, Naive Bayes, and SVM goes up when
smoother than that of the others. The recall of KAP is aroundl® Usage count increases. However, AdaBoost and Decision
85% while that of the others is below 40% when the number! €€ have worse performance as the usage count goes up.
of used Apps is 30.
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Figure 9. Impact of the number of Apps.

The result shows that the KAP algorithm can handle more
complicated and noisy data.
3) Impact of the Entropy of the Apps Usag#/e evaluate

the impact of the entropy of the Apps usage. Intuitively, as
the entropy of the Apps usage becomes larger, the Apps
usage is almost random, and the performance of Apps usage
prediction would become worse. Figute] 11 depicts that
the proposed KAP could have around 50% accuracy when
the entropy goes to 3 where the other methods only have
accuracy of less than 40%.

E. Impact of Different Parameters

1) Number of Iterations for Implicit Feature Extraction:
First, we test the number of iterations of deriving the irapli
feature for each testing case. As shown in Tdbl¢ IV, the
accuracy stays almost the same after the second iteration.
This indicates that the iterative refinement algorithm doul
converge within 2 iteration which is sufficient to estimate
the implicit feature.

2) Minimum Probability for Identifying Usage Sessions:
As users usage sessions could be varied according to dif-
ferent tasks, we only need the useful length of the usage
sessions to perform accurate Apps usage prediction, thstea



1 ‘ ‘ Table VI
] 1 THE RECALL AND NDCG VALUES UNDER VARIED NUMBER OF
' NEIGHBORS FOR KNN.

Recall

03| 7 KNN(%) 20 40 60 80 100
o3l ] Recal _ 0.74 079 080 080 08l
L ‘ 1 nDCG 055 061 063 063 0.64
15 2.0 25 3.0
Entropy
C4.5 —— MFU & KAP vioer
AdaBoost MRU
App-NB v SVM

set the default number of neighbor as 40% throughout the
experiments.

VI. CONCLUSION

nDCG

In this paper, we propose an Apps usage prediction frame-
work, KAP, which predicts Apps usage regarding both the
explicit readings of mobile sensors and the implicit tréagi

c45 ——  MFU = P relation among Apps. For the explicit feature, we consider
AdaBoost MRU . . .
APPNB ke SVM three different types of mobile sensors: 1) device sensors,
(b) nDCG 2) environmental sensors, and 3) personal sensors. For the

implicit features, we construct an Apps Usage Graph (AUG)

Figure 1. Impact of the entropy of Apps. to model the transition probability among Apps. Then, for

Table IV each training datum, we could represent the next used App

THE RECALL AND NDCG VALUES UNDER VARIED NUMBERS OF as the implicit feature which describes the probability of
ITERATIONS. transition from other Apps. Note that, since the next App

Fiieratons 1 > 3 7 5 in the testing data is unknown, we propose an iterative
Recall 067 079 079 080 08l refinement algorithm to estimate both the probability of the
nDCG 043 059 059 060 0.61 App to be invoked next and its implicit feature. We claim

that different usage behaviors are correlated to different
types of features. Therefore, a personalized featuretgaiec
of calculate the full usage sessions. Therefore, we condu@lgorithm is proposed, where for each user, only the most
this experiment to evaluate the impact of the length of usageelative features are selected. Through the feature satect
sessions. Ac can be seen in Table V, the results are nave can reduce the dimensionality of the feature space and
affected by the minimum transition probability;in,,, too  the energy/storage consumption.
much. From our collected data, the session length is around We integrate the explicit and implicit features as the
2 whenminy, is 0.5, and the best case is undein,, = 0.1,  feature space and the next used App as the class label
which has the session length as around 5. to perform kNN classification. In the experimental results,
3) Parameters for kNN ClassificatiorFinally, we eval- our method outperforms the state-or-the-art methods amd th
uate the impact of selecting different numbers of neighborgurrently used methods in most mobile devices. In addition,
to perform kNN classification. Here, we fix the number of the proposed personalized feature selection algorithrtdcou
predictions to 4 Apps and compare the recall and nDCGnaintain better performance than using all features. We als
values of KAP and the other methods. Because the trainingvaluate the performance of KAP for different types of users
data of different users could vary from several hundredsind the results show that KAP is both adaptive and flexible.
to thousands. we use a relative value for the number of
neighbors. Table'VI shows the results of the recall and nDCG REEERENCES
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