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Abstract—Pattern mining is one of the most well-studied
subfields in exploratory data analysis. While there is a sig-
nificant amount of literature on how to discover and rank
itemsets efficiently from binary data, there is surprisingly little
research done in mining patterns from real-valued data. In this
paper we propose a family of quality scores for real-valued
itemsets. We approach the problem by considering casting the
dataset into a binary data and computing the support from
this data. This naive approach requires us to select thresholds.
To remedy this, instead of selecting one set of thresholds,
we treat thresholds as random variables and compute the
average support. We show that we can compute this support
efficiently, and we also introduce two normalisations, namely
comparing the support against the independence assumption
and, more generally, against the partition assumption. Our
experimental evaluation demonstrates that we can discover
statistically significant patterns efficiently.

Keywords-pattern mining, itemsets, real-valued itemsets

I. INTRODUCTION

Pattern mining is one of the most well-studied subfields in
exploratory data analysis. While there is a significant amount
of literature on how to discover and rank itemsets efficiently
from binary data, there is surprisingly little research done
in mining patterns from real-valued data. In this paper we
propose a family of quality scores for real-valued itemsets.

In order to motivate our approach, assume that we are
given a dataset D containing real numbers and a miner for
mining itemsets from a binary data. The most straightfor-
ward way to use the miner to find patterns from D is to
transform D into a binary data, and apply the miner. More
formally, assume that we have selected a threshold ti for
every item i in the dataset. Then we define a binary data B
by setting bji = 1, if dji ≥ ti, and 0 otherwise, where j
ranges over all transactions of D.

This approach has two immediate setbacks. Firstly, we
have to select the thresholds ti. In addition, such a measure
is coarse, any intricate interaction between items is destroyed
as data values are categorised into two coarse categories,
0s and 1s. Hence, instead of selecting just one set of
thresholds, we will vary ti, and instead of computing support
only for one dataset, we will compute an average support.
More formally, we will attach a distribution p(Ri = ti) to
each threshold and compute the mean E[fr(X;B)], where
fr(X;B) is the frequency (support) of an itemset X in a
binarized data B.

This approach has several benefits. First of all, the support
is monotonically decreasing, which allows us to discover
all frequent itemsets efficiently. On the other hand, we
will show that we can compute the support efficiently,
even though it involves taking an average over a complex
function.

We still need to choose the threshold distribution p(Ri =
ti). In this work we focus on a specific distribution in-
volved with copulas [1]: roughly speaking, we will define
p(Ri ≤ dji) = k/(|D| − 1), where k is the rank of the
jth transaction after data is sorted w.r.t. the ith column. We
will see that this distribution induces a support in which the
actual values of individual items do not matter, instead the
support is based on the ranks of the values. Interestingly
enough, several popular statistical tests, such as the Mann-
Whitney U test or the Wilcoxon signed-rank test, are also
based on the ranks of values.

A standard technique in pattern mining is to compare the
observed support against the expected value under some null
hypothesis, where the hypothesis is typically an indepen-
dence assumption. Here we consider two approaches, in the
first approach we do a z-normalisation by comparing the
support against the independence assumption. In our second
approach, we generalise the null hypothesis to a partition
model, where we assume that items from different parts of
the partition are independent. A particular difficulty with
these approaches is that in order to compute them we need
to compute the expected mean and the variance. While this
is trivial when dealing with simple transactional data, it
becomes intricate since the threshold distribution actually
depends on the dataset. Nevertheless, we can compute the
exact mean and variance for the independence assumption
and exact mean and asymptotic variance for the partition
assumption. Interestingly enough, the independence test is
non-parametric, that is the mean and the variance depend
only on the number of datapoints, whereas in the partition
assumption we need to estimate parameters from the dataset.

The rest paper of the paper is organized as follows. We
introduce preliminary notation in Section II. We define our
general measure in Section III and introduce copula support
in Section IV. We present an independence test in Section V
and test based on partitions in Section VI. We discuss
related work in Section VII and present our experiments in
Section VIII. Finally, we conclude our paper with remarks
in Section IX.
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II. PRELIMINARIES AND NOTATION

In this section we introduce the preliminary notation.
A dataset D is a multiset of N transactions d1, . . . , dN ,

where dj ∈ RK is a vector of length K. We will often
use N = |D| as the number of datapoints and K as the
dimension of the dataset. We treat each vector di as a sample
from an unknown distribution, p(a1, . . . , aK). We refer to
the random variables ai as items, or as features.

Let A = {a1, . . . , aK} be the set of all items. An itemset
X is a set of items X ⊆ A. Assume that you are given an
itemset X and a binary vector d ∈ {0, 1}K . We say that d
covers X if di = 1, for every ai ∈ X . We will use standard
notation, by writing x1 · · ·xM to mean {x1, . . . , xM}.

Assume now that we are given a collection of binary
vectors D = d1, . . . , dN . We define the support or the
frequency of an itemset X as the proportion of transactions
in D covering X ,

fr(X;D) =
|{1 ≤ i ≤ N ; di covers X}|

N
.

An important property of the support is that it is monoton-
ically decreasing, that is, fr(X;D) ≤ fr(Y ;D), if Y ⊆ X .
This property allows us to use efficient techniques [2] to
discover all itemsets whose frequency is higher than some
given threshold.

III. ITEMSET SUPPORT FOR REAL-VALUED DATA

In this section we define our measure for real-valued
data. In order to do so, let D be a dataset over K items,
a1, . . . , aK , and N transactions. Assume that we are given
a threshold ti ∈ R for each item ai. Let us write T =
(t1, . . . , tK). Given a vector x ∈ RK of length K, we define
y = xT to be a binary vector with yi = 1 if xi ≥ ti, and 0
otherwise. We now define a binarized data DT to be

DT = {xT | x ∈ D} .

Essentially, DT is a dataset where each value is binarized
either to 0 or to 1, depending on the threshold. We can
now compute a support for a given itemset X by computing
fr(X;DT ).

The problem with this approach is that we need to select
a threshold set T . Additionally, once we have made this
choice, the treatment of values in D is coarse: a value
slightly higher than the threshold contributes to the support
as much as the values that are significantly higher.

To remedy this, we treat thresholds as random variables.
That is, we have K random variables, R1, . . . , RK . We will
assume that each threshold is assigned independently, that is,
Ri are independent variables. We will go over some of the
natural choices for distributions of Ri later on. If we write
p(Ri = ti) to be the density function of the ith threshold,
we can now define support as an average support, where the

mean is taken over the possible thresholds, that is,

fr(X;D, p) = E[fr(X;DT )]

=

∫
t1

· · ·
∫
tK

fr(X;DT )

K∏
i=1

p(Ri = ti)dti .

The important property of this support is that it is mono-
tonically decreasing. This allows us to mine all frequent
itemsets using the standard pattern mining search.

Proposition 1: Assume two itemsets X,Y such that X ⊆
Y . Then fr(X;D, p) ≥ fr(Y ;D, p).

Proof: For any given threshold set T , we have
fr(X;DT ) ≥ fr(Y ;DT ). It follows immediately, that
E[fr(X;DT )] ≥ E[fr(Y ;DT )], which proves the proposi-
tion.

Computing the support from the definition is awkward as
it requires taking |X| integrals. Fortunately, we can rewrite
the support in a much more accessible form.

Proposition 2: Assume a dataset D with N transactions
and a distribution p over the thresholds. Then the support of
itemset X is equal to

fr(X;D, p) =
1

N

∑
x∈D

∏
i∈X

p(Ri ≤ xi) .

Proof: We can rewrite the support as

fr(X;D, p) = E[fr(X;DT )]

=
1

N

∑
x∈D

p(xT covers X) .

Transaction y = xT covers X if only if yi ≥ Ri for each
i ∈ X . Since Ri are independent, it follows that

p(xT covers X) =
∏
i∈X

p(Ri ≤ xi) .

This completes the proof.

IV. COPULA SUPPORT

Our measure depends on the threshold distribution. In this
section we focus on a specific distribution related to copulas.

Assume that we are given a dataset D = d1, . . . , dN . Let
us assume for simplicity that for each item, say aj , the data
points dij are unique. Fix an item aj and for notational
simplicity let us assume that the datapoints are ordered
according to the jth item, dij < d(i+1)j for i = 1, . . . , N−1.
Let us define the probability of a threshold Ri by requiring
that the threshold will hit the interval [dij , d(i+1)j ] with a
probability of 1/(N − 1), where i = 1, . . . , N − 1. In other
words, the cumulative distribution is equal to

p(Rj < dij) =
i− 1

N − 1
.

This gives us straightforward way of computing the support.
Given a dataset D of N points, we compute rij = (c −
1)/(N − 1), where c is the rank of the ith transaction



according to the jth column. We can now define a copula1

support by

cp(X;D) =
1

N

N∑
i=1

rnk(i;X,D),

where rnk(i;X,D) =
∏
j∈X rij .

Example 1: Consider that we are given a dataset with 4
items and 3 transactions

{(1.2, 4.5, 3.8, 8.9), (4.4, 4.7, 1.9, 8.8), (8.2, 8.5, 3.0, 6.5)} .

The corresponding ranks {rij} are then

{(0, 0, 1, 1), (0.5, 0.5, 0, 0.5), (1, 1, 0.5, 0)} .

For example, the copula support for {a2a3} is then

cp(a2a3) =
1

3
(0× 1 + 0.5× 0 + 1× 0.5) =

1

6
.

As we see in the experiments, using cp(X,D) as a
filtering condition is not enough. Consequently, we also
define cp(X;D,α) by setting

p(Ri < di) = max

(
min

(
i− 1−M
N − 1− 2M

, 1

)
, 0

)
,

where M = bαNc, that is, the top αN items will be always
above threshold and the bottom αN will be always below
threshold.

Copula support has some peculiar features. First of all,
the support does not depend on the actual values of D, only
on their ranks. This makes this support excellent for cases
where computing the difference between the values of D
does not make sense. In addition to that cp(ai;D) = 1/2
for any item, hence the support is not useful for selecting
itemsets of size 1. Even though, we assume that D has in-
dependent samples, the ranks rij are no longer independent.
However, if we assume independence between the items, we
can compute the mean and the variance as we will see in
the next section.

V. COPULA SUPPORT AS A STATISTICAL TEST

A standard technique in pattern mining is to compare the
observed support against the independence model. In this
section we demonstrate how to do this comparison for copula
support. More specifically, we are interested in the quantity

zIND(X;D) =
√
N

cp(X;D)− µ
σ

,

where µ and σ are the mean and the variance of the copula
support under the null hypothesis.

We will now show how to compute the mean and the
variance of the copula support. In fact, if we set M = |X|,
then we will show that µ = 1/2M and

σ2 =
(2N − 1)M

6M (N − 1)M
+

(N − 2)M (3N − 1)M

12M (N − 1)2M−1
− N

4M
.

1Copula stands for a cumulative joint distribution of random variables
that have gone through such a transformation [1].

We will also show that zIND(X;D) approaches the Gaussian
distribution N(0, 1) as the number of data points goes to
infinity.

To simplify the analysis we will make an assumption that
the probability of a tie between two values of an item is 0.
This assumption is reasonable if the dataset is generated for
example from sensor readings.

We will dedicate the remaining section to proving these
results. Note that we cannot use Central Limit Theorem to
prove the normality because the ranks of individual rows are
not independent. Case in point, cp(x) for a single item will
always be 1/2, hence the variance will be 0 for this case.

In order to prove the result, we will first need to es-
tablish some notation. Assume that we have N samples,
independent and identically distributed random variables,
Y = Y1, . . . , YN , each sample is a vector of size K. Define

Sij = rnk(i; j,Y) =
1

N − 1

N∑
k=1

I [Yij > Ykj ] ,

where I [B] returns 1 if the statement B is true, and 0
otherwise. Note that the term I [Yij = Yij ] = 0, however,
we keep it in the sum for notational convenience. Similarly,
we can now define

U = cp(X;Y) =
1

N

N∑
i=1

∏
j∈X

Sij .

If we are given a dataset D, then cp(X;D) is an estimate
of the random variable U . Our goal is to compute µ = E[U ]
and σ2 = Var

[√
NU

]
.

Note that since we assume that Yij and Ykl are indepen-
dent for j 6= l, it follows also that Sij and Skl are also
independent for j 6= l. However, unlike Yij and Ykj , Sij
and Skj are not independent.

In order to continue we need the following lemma.
Lemma 3: Fix j and let i, k, and l be distinct integers.

Then
p(Yij > Ykj) = 1/2,

p(Yij > Ylj , Ykj > Ylj) = 1/3,

p(Yij > Ykj , Ykj > Ylj) = 1/6 .

Proof: Since the probability of a having a tie between
variables is 0, using the symmetry argument, the probability
Yij will be larger than Ykj is 1/2.

Similarly, if we sort the three variables based on their
value, there are 6 possible permutations, each permutation
has a probability of 1/6. There are two permutations that
satisfy the second event, namely Yij > Ykj > Ylj and Ykj >
Yij > Ylj . This shows that the probability of the second
event is equal to 1/3. Finally, there is only one permutation
that satisfies the third event, namely, Yij > Ykj > Ylj , which
proves the lemma.

We will first compute the mean of U .
Proposition 4: The average of U is E[U ] = 1/2M .



Proof: According to Lemma 3, E[Sij ] = 1/2. Since Sij
and Skl are independent for j 6= l, we can write

E[U ] =
1

N

N∑
i=1

∏
j∈X

E[Sij ] =
1

N

N∑
i=1

∏
j∈X

1

2
=

1

2M
.

This proves the result.
Our next step is to compute the variance of U . Since the

variables Sij are not independent, we will have to compute
them in two stages. Our first step is to compute the second
moment of Sij .

Lemma 5: The second moment of Sij is equal to

E
[
S2
ij

]
=

2N − 1

6(N − 1)
.

Proof: Decompose the second moment into two sums,

E
[
S2
ij

]
=

1

(N − 1)2
E
[(∑

k 6=i
I [Yij > Ykj ]

)2]
=

1

(N − 1)2

∑
k 6=i

p(Yij > Ykj)

+
1

(N − 1)2

∑
k 6=i

∑
l 6=k,i

p(Yij > Ykj , Yij > Ylj) .

According to Lemma 3, the terms in the first sum are equal
to 1/2 while the terms in the second sum are equal to 1/3.
This gives us

E
[
S2
ij

]
=

1

(N − 1)2

(
(N − 1)/2 + (N − 1)(N − 2)/3

)
=

1

6(N − 1)
(3 + 2(N − 2)) =

2N − 1

6(N − 1)
.

This completes the proof.
Our next step is to compute the cross-moment of Sij .
Lemma 6: The cross-moment is equal to

E[SijSkj ] =
(N − 2)(3N − 1)

12(N − 1)2
.

Proof: Decompose the moment into four sums

E[SijSkj ]

=
1

(N − 1)2
E
[(∑
m 6=i

I [Yij > Ymj ]
)(∑

n 6=k
I [Ykj > Ynj ]

)]
=
A+B + C +D

(N − 1)2
,

where

A =
∑
m6=i,k

p(Yij > Ymj , Ykj > Ymj),

B =
∑
m6=i,k

∑
n 6=m,i,k

p(Yij > Ymj , Ykj > Ynj),

C =
∑
m6=i,k

p(Yij > Ykj , Ykj > Ynj), and

D =
∑
m6=i,k

p(Yij > Ymj , Ykj > Yij) .

The random variables in the term of the sum of B are
all independent, hence the probability is equal to 1/4.
According to Lemma 3 the term in the sum of A is equal to
1/3 and the term in the sum for C and D is equal to 1/6.
This gives us

A =
N − 2

3
, B =

(N − 2)(N − 3)

4
, C = D =

N − 2

6
.

Grouping the terms gives us

E[SijSkj ] =
4(N − 2) + 3(N − 2)(N − 3) + 4(N − 2)

12(N − 1)2

=
(N − 2)(3N − 1)

12(N − 1)2
.

This completes the proof.
We can now use both lemmas in order to compute the

variance.
Proposition 7: The variance Var

[√
NU

]
is equal to

σ2 =
(2N − 1)M

6M (N − 1)M
+

(N − 2)M (3N − 1)M

12M (N − 1)2M−1
− N

4M
.

Proof: We begin by splitting E
[
(
√
NU)2

]
into two

sums and applying Lemma 5 and Lemma 6,

E
[
(
√
NU)2

]
=

1

N

( N∑
i=1

∏
j∈X

E
[
S2
ij

]
+
∑
i,k
i6=k

∏
j∈X

E[SijSkj ]
)

=
(2N − 1)M

6M (N − 1)M
+

(N − 2)M (3N − 1)M

12M (N − 1)2M−1
.

We can now use this to express the variance as

σ2 = E
[
(
√
NU)2

]
−N E[U ]

2

=
(2N − 1)M

6M (N − 1)M
+

(N − 2)M (3N − 1)M

12M (N − 1)2M−1
− N

4M
.

This proves the result.
Finally, we show that zIND(X;Y) approaches a Gaussian

distribution. Note that this result does not depend on the
assumption that items are independent. Hence, we will be
able to use the same result in the next section.

Proposition 8: The quantity
√
N(U − E[U ]) approaches

a Gaussian distribution as N approaches infinity.
We postpone the proof of this proposition to Appendix.

VI. PRODUCTIVE ITEMSETS AND COPULA SUPPORT

In the previous section we tested the support against the
independence assumption. A natural extension of this is to
assume a partition of the given itemset such that items are
independent only when they belong to different blocks of
the partition. In fact, an approach suggested in [3] mines
itemsets from binary data whose support is substantially
larger than the expectation given by the partition. In order
to mimic this for real-valued data, we define

zPRT(X,P ;D) =
cp(X;D)− µ

σ
,



where P is a partition of X and where µ and σ is the mean
and the variance under the assumption that items belonging
to different blocks in P are independent. Our final goal is
to find a partition that produces the lowest score, that is, a
partition that explains the support the best, zPRT(X;D) =
minP zPRT(X,P ;D), where P goes over all partitions of at
least size 2. Note that we are only interested in one-side test.
However, we can easily adjust the formula for a symmetrical
two-side test. In addition, in [3] the authors were looking
only at partitions of size 2, whereas we go over all non-
trivial partitions.

In this section we show how we can compute the needed
mean and the variance in order to normalise the support.
Unlike with the independence model, the test is no longer
non-parametric and we will have to estimate several param-
eters for each subitemset in the partition. Moreover, we will
only provide the variance only when N approaches infinity
as the interactions between variables are complex and hard
to compute exactly for finite N .

We proceed as follows: We will first show what statistics
we need from each subitemset and how to compute them.
Then we will show how to use these statistics in order to
compute the mean and the variance.

A. Statistics needed to compute the rank

Assume that we are given an itemset X = x1 · · ·xM .
This itemset will eventually be a block in the partition. Let
Y = Y1, . . . , YN be N data samples. Let us shorten Oijx =

1
N−1 I [Yix > Yjx]. Let us define

Ti = rnk(i;X,Y) =
∏
x∈X

N∑
j=1

Oijx,

which is essentially a product of normalised ranks of the
ith datapoint. Similar to Section V, let U = 1

N

∑N
i=1 Ti, a

random variable corresponding to the copula support cp(X).
Ultimately, we will need three statistics from X , namely

µ = E[U ], α = E
[
T 2

1

]
, and β = Var

[√
NU

]
. We will

discuss how to estimate these statistics in the next subsec-
tion. If Ti were distributed independently, then β = α−µ2.
However, Ti are dependent. Fortunately, we know enough
about the dependency so that we can compute β.

In order to compute β we need to introduce several
random variables. Let

Tix = rnk(i,X \ {x} ,Y) =
∏

y∈X,y 6=x

N∑
j=1

Oijy

be the rank of the ith transaction for an itemset X \ {x}.
In addition, let us define Ckx =

∑N
i=1 TixOikx. We can

express the variance β with α, µ and Ckx. The benefit of
this is that we can estimate these parameters, and by doing
so estimate β, as we will demonstrate in the next subsection.

Proposition 9: The variance β approaches

α− (M + 1)2µ2 +
2

N

N∑
k=1

E
[( ∑
x∈X

Ckx
)2]

as N approaches infinity.
We postpone the proof of this proposition to Appendix.

B. Estimating statistics

Unlike with zIND(X), the mean and the variance of
zIND(X;P ) depend on the underlying distribution, and we
are forced to estimate the statistics, namely α, β, µ described
in the previous section. These estimates are given in Algo-
rithm 1. Estimating µ and α is trivial. However, estimating β
is more intricate due to the last term given in Proposition 9.

Assume that we are given a dataset D and itemset X . Fix
x ∈ X and assume that D is sorted based on xth column,
largest first. Let Z = X \ {x}. Note that rnk(k;Z,D) is an
estimate for Tkx. Hence, we can estimate Ckx as

ckx =
1

N − 1

k−1∑
i=1

rnk(i;Z,D)

= c(k−1)x +
1

N − 1
rnk(k − 1;Z,D) .

We can use the right-hand side to compute ckl for every k
efficiently, and then use ckl to estimate β. We can assume
that we have precomputed the order w.r.t. each item xl
before the actual mining. Hence, the cost of estimating the
parameters is O(N |X|).

Algorithm 1: ESTIMATE, estimates the statistics needed
for zPRT.

input : dataset D, itemset X
output: estimates µ, α, and β

1 µ← cp(X;D);
2 α← 1

N

∑N
i=1 rnk(i;X,D)

2;
3 cix ← 0, i = 1, . . . , N , x ∈ X;
4 foreach x ∈ X do
5 sort D according to x, largest first;
6 foreach k ∈ [2, N ] do
7 ckx ← c(k−1)x + 1

N−1rnk(k − 1, X \ {x} , D);

8 β ← α− (|X|+ 1)2µ2 + 2
N

∑N
k=1

(∑
x∈X ckx

)2
;

9 return µ, α, β;

We should stress that we use the same dataset to compute
the estimates and to compute zPRT(X;D). This means that
zPRT(X,P ;D) will be somewhat skewed and we cannot
interpret zPRT(X,P ;D) as a p-value. However, our main
goal is not to interpret the obtained values as a statistical
test, rather our goal is to rank patterns.



C. Computing z-score

Now that we have computed statistics for each itemset
occurring in a partition, we can combine them in order to
compute the mean and the variance needed for zPRT(X).

Proposition 10: Assume that we are given an itemset X
and a partition P1, . . . , PL of X . Let Y = Y1, . . . , YN be
N random data points. Let U = cp(X;Y), and let Ui =
cp(Pi;Y). Let µi = E[Ui], αi = E

[
rnk(1;Pi,Y)

2], βi =

limN→∞Var
[√
NUi

]
.

Under the assumption that Pi are independent, we have
E[U ] =

∏L
i=1 µi and

Var
[√
NU

]
→

L∏
i=1

αi + (L− 1)µ2 + µ2
L∑
i=1

βi − αi
µ2
i

as N approaches infinity.
We postpone the proof of this proposition to Appendix.

VII. RELATED WORK

While pattern mining has been well researched for binary
data, the problem of discovering patterns from real-valued
data is open. The most straightforward approach to mine
patterns is to discretize data using threshold, see for exam-
ple [4]. Among methods that do not use thresholds, Calders
et al. [5] proposed 3 quality measures for itemsets from nu-
merical attributes. The first two measures were based on the
extrema values of the items in an itemset. The most related
measure to our work is the third measure, suppτ , which
is a generalisation of Kendall’s τ , essentially the number of
pairs in which all items are concordant. Interestingly enough,
similar to the copula support, suppτ also depends only the
order of values not on the actual values. In this work we
were able to define two normalisations zIND(X) and zPRT(X)
for our approach, while the authors did not introduce any
statistical normalisation for suppτ . We conjecture that a
similar normalisation can be done also for suppτ .

Jaroszewicz and Korzen [6] suggested discovering poly-
nomial itemsets, essentially cross-moments from real-valued
data. We can show that for a certain threshold distribution,
our support is equal to the support of polynomial itemsets.
Steinbach et al. [7] considered several support functions for
itemsets, such as, taking the smallest value in a transaction
among the items in the itemset.

Ranking and filtering patterns based on a statistical test
has been well studied. Brin et al. compared likelihood-
ratio against independence assumption [8]. Webb proposed,
among many other criteria, to compare the observed support
to an expected support of a partition of size 2 that fits
best [3]. More complex null hypotheses such as Bayesian
networks [9] or Maximum Entropy models [10] have been
also suggested.

Our approach has similarities with mining itemsets from
uncertain data [11], where instead of binary data, we have
real-valued values between [0, 1] expressing the likelihood

Table I
BASIC STATISTICS OF DATASETS AND EXPERIMENTS

Name Size Threshold Time |patterns|

Ind 10 000× 100 0.1 7m37s 166 750
Plant 10 000× 100 0.1 7m14s 171 303

Alon 2000× 62 0.26 8m17s 393 683
Thalia 734× 69 0.12 2m10s 148 334
Yeast 2993× 173 0.2 19m50s 529 872

of the entry being equal to 1. In fact, if we interpret rij
values computed in Section IV as probabilistic dataset, then
cp(X) will be the same as the expected support computed
from probabilistic dataset. However, in probabilistic setting
the entries are assumed to be independent, whereas in
our case they have an intricate dependency. Consequently,
the variance given by Propositions 7 and 9 do not hold
for probabilistic datasets. In addition, we cannot compute
frequentness measure suggested by Bernecker et al. [12] in
our case, however we can estimate it by a normal distribution
as suggested by Calders et al. [13].

Defining and computing a quality score for two real-
valued variables, essentially an itemset of length 2, is a sur-
prisingly open problem. The approach based on Information
Theory was suggested in [14]. An interesting starting point is
also a measure of concordance, see Definition 5.1.7 in [1].
These approaches are suitable only for itemsets of size 2
whereas we are interested in measuring the quality of itemset
of any size. Finally, Szeékely and Rizzo [15] suggested a
measure based on how pair-wise distances correlate. This
measure is symmetric while our measure was specifically
designed to focus on large values.

VIII. EXPERIMENTS

In this secion we present our experiments.
Datasets: We used 2 synthetic and 3 real-world data sets

as our benchmark data. The first dataset Ind consists of
10 000 data points, each of 100 items, generated indepen-
dently uniformly from the interval [0, 1]. The second dataset
Plant has the same dimensions as the first dataset. In this
dataset we planted 5 subspace clusters each having 4 items:
We generated independently 5 × 10 000 boolean variables
Bti indicating whether a transaction t belongs to the ith
cluster, a transaction can belong to multiple clusters. We set
p(Bti = 1) = 0.4. If Bti = 1, then we set the corresponding
items to 0.5. All other values were set to 0. Finally, we
added noise sampled uniformly from [0, 1] . As real-world
benchmark datasets we used the following 3 gene expression
data sets: Alon [16], Arabidopsis thaliana or Thalia, and
Saccharomyces cerevisiae or Yeast.2 The sizes of the datasets
are given in Table I.

Setup: For each dataset we computed frequent itemsets
using cp(X;D, 0.25) as a support. We set the threshold such

2Thalia and Yeast are available at http://www.tik.ee.ethz.ch/∼sop/bimax/

http://www.tik.ee.ethz.ch/~sop/bimax/


that we get roughly several hundred thousand itemsets, see
Table I. We then ranked itemsets using zIND(X) and zPRT(X).
The results are given in Figure 1.

Support comparison: Let us first compare supports cp(X)
and cp(X; 0.25), given in the top row of Figure 1. We
see that for a fixed itemset length there is a strong linear
correlation between the supports. The histograms reveal
why we should consider cp(X; 0.25) as a stopping criterion
instead of cp(X). A significantly large number of itemsets
of length, say M , will have larger support than any itemset
of length M + 1 or higher, that is, in order to discover any
itemset of length 3, we will have to discover all itemsets of
length 2. This problem does not occur with cp(X;D, 0.25).

Normalisation comparison: Our next step is to compare
ranks, given on the second row of Figure 1. As expected
zPRT(X) is more conservative than zIND(X). For example, in
Ind, zIND(X) is distributed as N(0, 1), as predicted by Propo-
sition 8, whereas zPRT(X) is skewed towards negative values.
In general, zIND(X) prefers large itemsets whereas zPRT(X)
prefers small ones. This can be beneficial as seen with Plant
dataset. The first 5 itemsets A according to zIND(X) are
the itemsets related to subspace clusters. However, the next
itemsets B are the clusters with some additional unrelated
items, on the other hand, zPRT(X) will assign a low score
to B. In addition, zPRT(X) favours sets C and D itemsets of
size 2–3 that are subitemsets of A.

Computational complexity: While optimising for speed
is not the focus in this work, our implementation3 is able
to discover several hundred thousand patterns in minutes.
The datasets we consider here are relatively small when
compared to the size of the binary datasets used for mining
normal patterns. However, the speed of traditional miners
is based on the fact that binary datasets are typically very
sparse. We do not have the same luxury and computing of
each itemset requires a full scan. On the other hand, the cost
for computing the support a single itemset depends only on
the size of the itemset and the number of datapoints whereas
the performance of traditional itemset miners depends heav-
ily on how 1s are distributed in the dataset.

IX. CONCLUDING REMARKS

In this paper we proposed a measure of quality for
itemsets mined from real-valued dataset. Our approach was
to compute the average support from binarized data with
random thresholds. Despite the complex definition we can
compute the measure efficiently. As a distribution for a
threshold we considered a special distribution related to
copulas. We normalised the support by comparing the
observed support to the expected support according to a
null hypothesis. We considered two hypotheses: the first
assumption is that all items are independent, while the

3Python implementation available at http://users.ics.aalto.fi/ntatti/

second assumption is more general—we assume that items
are independent w.r.t. to a given partition.

This research opens up several directions for future work.
Firstly, we considered one specific threshold distribution.

This distribution is a good choice if you do not have
any information about the distribution of individual items.
However, there are other choices. For example, if we know
that data is distributed between [a, b], we can consider a
uniform distribution over the interval, see [6], or possibly a
shorter interval that excludes the extreme values.

The speed-up techniques used for mining sparse binary
data no longer apply. This raises a question whether we can
speed up significantly the mining procedure.

Lastly, the distribution of itemsets is different than of
those that are obtained from binary data. Typically, in binary
data, the margins of the items are distributed unevenly: there
will be a lot of items that are rare and some items that are
frequent. This means a lot of itemsets will be pruned in
first steps. This is not the case with the copula support,
where typically you will pass almost all items of size 2.
This emphasizes the need for ranking itemsets, in our case,
we used zIND(X) and zPRT(X). However, as future work it
would be interesting to see what type of constraints one can
impose on itemsets in order to reduce the output.
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APPENDIX

A. Proof of Proposition 8
In order to prove the proposition we need the following

proposition.

Proposition 11 (Theorem 12.3 in [17]): Let h be a func-
tion (called kernel) of L parameters. Assume that h is
symmetric w.r.t. its parameters (that is, any permutation of
parameters will yield the same result). Let Y1, . . . , YN be N
i.i.d. variables such that E

[
h2(Y1, . . . , YL)

]
<∞. Then

√
N(
N
L

) ∑
i1,...,iL

h(Yi1 , . . . , YiL)− µ,

where the sum goes over all subsets of size L and µ =
E[h(Y1, . . . , YL)], approaches a Gaussian distribution as N
goes to infinity.

Proof of Proposition 8: Note that since Sij and Skj
are not independent, we cannot use Central Limit theorem
to prove normality. Instead we will use U -statistics to prove
the result. In order to do that let us first define a function
of M + 1 vectors of length M ,

g(y0, y1, . . . , yM ) =

M∏
i=1

I [y0xi
> yixi

] ,

where xi are the items of X = x1 · · ·xM . Note that

U =
1

N(N − 1)M

N∑
i0=1

· · ·
N∑

iM=1,
iM 6=i0

g(Yi0 , . . . , YiM ) .

Proposition 11 requires a kernel to be symmetric w.r.t. its
parameters. In order to do that, let us define

h(y0, y1, . . . , yM ) =
∑
τ

g(yτ(0), . . . , yτ(M)),

where the sum goes over all permutations τ of size M + 1.
Then according to Proposition 11 a statistic

√
NU ′, where

U ′ =
1(
N

M+1

) ∑
i0,...,iM

h(Yi0 , . . . , YiM ),



where the sum goes over all M + 1 subsets of (1, . . . , N),
converges to a Gaussian distribution.

The statistics U and U ′ have the same mean, say µ =
E[U ] = E[U ′], but they are different. We will show next that
this difference becomes minute as N approaches infinity. In
order to do that, let us define

a(N) = N(N−1)M and b(N) =

(
N

M + 1

)
(M+1)! .

The sum of U ′ requires that all rows Yik for must be
different where as U only requires that Yi0 is different from
the remaining rows. Hence, there are a(N)−b(N) less terms
in U ′. Let Z be the sum of these terms. We have

U =
b(N)

a(N)
U ′ +

Z

a(N)
.

Let us write r(N) = (a(N)− b(N))/a(N). Both a(N) and
b(N) are polynomials of degree M + 1 and the coefficient
of the highest term is 1 for both polynomials. Consequently,
a(N)−b(N) is a polynomial of degree M . This implies that
r(N) and r(N)

√
N both go to 0 as N approaches infinity.

We can express the difference as
√
N(U − U ′) = r(N)

√
N(U ′ − µ) + r(N)

√
Nµ+

Z

a(N)
,

According to Proposition 11,
√
N(U ′ − µ) converges to

a Gaussian distribution and since r(N) converges to 0, it
follows that the first term goes to 0 as N goes to infinity.
Similarly, the second term goes to 0 since r(N)

√
N goes

to 0. Finally, to bound the last term note that

0 ≤ Z

a(N)
≤ a(N)− b(N)

a(N)
= r(N)

which implies that Z/a(N) goes to 0 as N approaches
infinity. We have shown that

√
N(U − θ) and

√
N(U ′ − θ)

converge to each other in probability and that the latter
approaches a Gaussian distribution.

B. Proof of Proposition 9

First, we need the following technical proposition.
Proposition 12: Assume that we a given integers N and

K let Ω = [1, . . . , N ]K be the set of integer vectors of
length K. Let fN : Ω → [0, 1] be a function such that
maxω∈Ω |fN (ω)| ∈ O(N−K+1). Let P ⊂ Ω be the subset
containing only vectors with distinct entries. Assume that
we are given K(K − 1)/2 subsets Ωij such that

{ω ∈ Ω | ωi = ωj} ⊆ Ωij ⊆ Ω \ P,

that is, Ωij contains vectors for which ith and jth entries
are the same and has no vectors from P . Then∑

ω∈Ω\P
f(ω)→

K−1∑
i=1

K∑
j=i+1

∑
ω∈Ωij

f(ω)

as N approaches infinity.

Proof: Partition Ω into K groups Ω0, . . . ,ΩK−1 such
that

Ωi = {ω ∈ Ω | ω has K − i distinct entries } .

A direct computation shows that∣∣Ωi∣∣ = S(K,K − i) N !

(N −K + i)!
∈ O(NK−i),

where S(K,K− i) is a Sterling number of the second kind.
Let Θ = Ω2 ∪ · · · ∪ ΩK−1. This immediately implies that
|Θ| ∈ O(NK−2). Note that P = Ω0 and that Ω1 ⊆

⋃
i,j Ωij .

Let ∆ij = Ωij \ Ω1 be the set of vectors that have i and j
as common entries and have less than K−1 unique entries.
Note that ∆ij ⊂ Θ. Consequently |∆ij | ∈ O(NK−2). We
can now write the sum as∑
ω∈Ω\P

f(ω) =
∑
i6=j

∑
ω∈Ωij

f(ω)−
∑
i 6=j

∑
ω∈∆ij

f(ω)+
∑
ω∈Θ

f(ω) .

Since f is bounded by O(N−K+1), the third and fourth
terms vanish as N goes to infinity.

Proof of Proposition 9: For notational simplicity, let
us assume that X = 1 · · ·M and define f and g as functions
of 2M + 2 variables,

f(i0, . . . , iM , j0, . . . , jM ) =
1

N
E
[ M∏
k=1

Oi0ikk

M∏
k=1

Oj0jkk
]

and

g(i0, . . . , j0, . . . , jM ) =
1

N
E
[ M∏
k=1

Oi0ikk
]

E
[ M∏
k=1

Oj0jkk
]

.

Let Ω = [1, . . . , N ]2M+2. Note that

E
[
NU2

]
=
∑
ω∈Ω

f(ω) and E
[√
NU

]2
=
∑
ω∈Ω

g(ω) .

Let Ωi as defined in Proposition 12. Let us define

Ωij = {ω ∈ Ω | ωi = ωj}

for 1 ≤ i ≤M and M + 1 ≤ j ≤ 2M , and also

Ωij =
{
ω ∈ Ω1 | ωi = ωj

}
whenever 1 ≤ i, j ≤ M or M + 1 ≤ i, j ≤ 2M . Note
that f(ω) = g(ω) whenever ω does not share any entry
between the first M entries and the last M entries. This
holds when ω ∈ Ω0 or when ω ∈ Ωij for 1 ≤ i, j ≤ M or
M + 1 ≤ i, j ≤ 2M .

We can now apply Proposition 12 to conclude that∑
ω∈Ω

f(ω)−
∑
ω∈Ω

g(ω)→
M∑
i=1

2M∑
j=M+1

∑
ω∈Ωij

(f(ω)− g(ω))

as N approaches infinity.
Our final step is to compute the sums in the above

equation.



First note that∑
ω∈Ω1(M+1)

f(ω)−g(ω) =
1

N

N∑
k=1

E
[
T 2
k

]
−E
[
Tk
]2

= α−µ2 .

Let 1 < i, j ≤M . Then∑
ω∈Ωi(j+M)

f(ω) =
1

N

N∑
k,l,m=1

E[TkiTljOkmiOlmj ]

=
1

N

N∑
m=1

E
[( N∑
k=1

TkiOkmi
)( N∑

l=1

TljOlmj
)]

=
1

N

N∑
m=1

E
[
CmiCmj

]
= γij ,

where γij = 1
N

∑N
k=1 E[CkiCkj ], and∑

ω∈Ωi(j+M)

g(ω) =
1

N

N∑
k,l,m=1

E[TkiOkmi] E[TljOlmj ]

=
1

N

N∑
m=1

E
[ N∑
k=1

TkiOkmi
]

E
[ N∑
l=1

TljOlmj
]

=
1

N

N∑
m=1

E
[
Cmi

]
E
[
Cmj

]
= µ2 .

The last equality follows from the fact that 1
N

∑N
k=1 Ckl =

U . Since E[Ckl] does not depend on k, this immediately
implies that E[Ckl] = E[U ] = µ.

Let 1 < i ≤M , Then∑
ω∈Ωi(M+1)

f(ω) =
1

N

N∑
k,l=1

E[TkiOkliTl]

=
1

N

N∑
k,l,m=1

E[TkiOkliTliOlmi]

and similarly∑
ω∈Ω1(M+i)

f(ω) =
1

N

N∑
k,l=1

E[TliOlkiTk]

=
1

N

N∑
k,l,m=1

E[TliOlkiTkiOkmi] .

Since OkliOlmi + OlkiOkmi = OkmiOlmi for k 6= l and 0
for k = l, summing two previous sums leads to

1

N

N∑
k,l,m=1

E[TkiOkliTliOlmi + TliOlkiTkiOkmi]

=
1

N

N∑
k,l,m=1

E[TkiTliOlmiOkmi]−
1

N

N∑
k,m=1

E
[
T 2
kiO

2
kmi

]
= γ2

ii −
1

N(N − 1)

N∑
k=1

E[TkiTk] .

The last term goes to 0 as N approaches infinity. Hence we
have ∑

ω∈Ωi(M+1)

f(ω) +
∑

ω∈Ω1(M+i)

f(ω)→ γ2
ii .

On the other hand,∑
ω∈Ωi(M+1)

g(ω) =
1

N

N∑
k,l=1

E[TkiOkli] E[Tl]

=
1

N

N∑
k

E[Tk]µ = µ2 .

and a similar result holds for Ω1(M+i). Combining all these
equations proves the proposition.

C. Proof of Proposition 10

Proof: Since the blocks Pi are independent, it follows
immediately that µ = E[U ] =

∏L
i=1 µi. In order to prove

the result for the variance, let Tk = rnk(k;X,Y) and Tki =
rnk(i;Pi,Y). Let us define

α = E
[
T 2

1

]
, γ(N) = E[T1T2] , γ

(N)
i = E[T1iT2i] .

We see that α =
∏L
i=1 αi and γ(N) =

∏L
i=1 γ

(N)
i .

Let us define

β
(N)
i = Var

[√
NUi

]
and β(N) = Var

[√
NU

]
.

A straightforward calculation reveals that

β
(N)
i = αi + (N − 1)γ

(N)
i −Nµ2

i

and
β(N) = α+ (N − 1)γ(N) −Nµ2 .

We can express the variance β(N) as

β(N) = α+ (N − 1)

L∏
i=1

β
(N)
i − αi +Nµ2

i

N − 1
−Nµ2

= α+

∏L
i=1(β

(N)
i − αi +Nµ2

i )−N(N − 1)L−1µ2

(N − 1)L−1
.

Let us now consider the right-hand side as a function of N .
Both terms in the numerator contain µ2NL, consequently
this term is annihilated and the highest term in the numerator
has degree of L− 1, its coefficient is equal to

cN = (L− 1)µ2 + µ2
L∑
i=1

1

µ2
i

(βNi − αi) .

Since the highest term in the demoninator is NL−1, the
fraction converges to limN→∞ cN .
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