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Abstract

A clustering is an implicit assignment of labels of points, based on proximity to other points.
It is these labels that are then used for downstream analysis (either focusing on individual
clusters, or identifying representatives of clusters and so on). Thus, in order to trust a clustering
as a first step in exploratory data analysis, we must trust the labels assigned to individual data.
Without supervision, how can we validate this assignment?

In this paper, we present a method to attach affinity scores to the implicit labels of individual
points in a clustering. The affinity scores capture the confidence level of the cluster that claims
to "own” the point. This method is very general: it can be used with clusterings derived from
Euclidean data, kernelized data, or even data derived from information spaces. It smoothly
incorporates importance functions on clusters, allowing us to weight different clusters differently.
It is also efficient: assigning an affinity score to a point depends only polynomially on the number
of clusters and is independent of the number of points in the data. The dimensionality of the
underlying space only appears in preprocessing.

We demonstrate the value of our approach with an experimental study that illustrates the
use of these scores in different data analysis tasks, as well as the efficiency and flexibility of
the method. We also demonstrate useful visualizations of these scores; these might prove useful
within an interactive analytics framework.

1 Introduction

We live in an era of personalized data mining, where the power and sophistication of learning tools
are used to make predictions for individuals. Whether it be Netflix or Amazon recommendations,
customized medical diagnosis based on genetic markers, or even decisions on whether or not place
someone on a no-fly list, important decisions are being made at the individual level based on
techniques that have global predictive guarantees. These decisions impact our lives in ways large
and small, and their impact is greater because they are personalized. It is therefore very important
that we have personalized ways to validate these decisions.

Clustering is an unsupervised exploratory data mining technique that generates predictions in
the form of implicit labels for points. These predictions are used for exploration, data compression,
and further analysis, and so it is important to verify the accuracy of the labels. Clustering is unsu-
pervised however, and there is no direct way to validate the data assignments. Thus, a number of



indirect approaches have been developed to validate a clustering at a global level[30]. These include
internal, external and relative validation techniques, and methods based on clustering stability that
assume a clustering (algorithm) is good if small perturbations in the input do not affect the output
clustering significantly.

But all these approaches are global: they assign a single number to a clustering. While this per-
spective might be suitable from the perspective of the entity running the algorithm, it is insufficient
to answer the question: is my data correctly assigned ?

Example. Consider a service like Klout that tracks user reputation on social media and offers
perks tailored to users in particular categories. For example, a blogger who generates a lot of traffic
for their posts on home repair might be targeted with a discount code for Home Depot. In such a
setting, knowing that the overall grouping of users into different occupation categories is accurate
does not help in suggesting recommendations. What Klout wants is a sense of how “close” an
individual is to a particular grouping, so that the targeting is more effective.

Example. Consider a less benign example. It is now possible to take large amounts of genetic
data and build screens that identify people with risk factors for various diseases. If your data falls
into a high risk cluster, you might potentially be denied access to insurance, or forced to pay a
premium. In such a setting, it is important to know at a local level if the assignment being made
is valid or not.

While these examples are a little stylized, they illustrate an important point. Whether we
use clustering as a exploratory tool to focus attention, or as a “last-step” prediction tool, local
validation differs greatly from global validation.

Desiderata A measure of local validity is a number we assign to an individual point of a clus-
tering. What properties should such a validation provide 7 It should have a well-defined scale. It
will incorporate both spatial and combinatorial aspects of the clustering (like distances between
clusterings). We should be able to define it for a single clustering of any kind without generative
assumptions, but we should also be able to compare scores for a point if we have different can-
didate clusterings. Examples of such measures exist for other prediction tasks. For example, the
margin of an individual point in binary classification (the distance from the point to the decision
boundary) is a measure that satisfies some of the above propertiesﬂ For clustering, the problem is
more challenging because there are multiple decision boundaries (with respect to each cluster) and
these need to be combined in a meaningful way.

Validation versus outlier detection. Local validation bears a superficial resemblance to
outlier detection: in both cases the goal is to evaluate individual points based on how well they
“fit” into a clustering. There are important differences though. An outlier affects the cost of a
clustering by being far away from any cluster, but it will usually be clear what cluster it might
be assigned to. In contrast, a point whose labelling might be invalid is usually in the midst of the
data. Assigning it to one cluster or another might not actually change the clustering cost, even
though the label itself is now unreliable.

!While it is not scale-invariant, one can scale the data by fixing the classifier margin to be 1 (so that all points
have a margin of at least 1).



1.1 Our Work

We now introduce the key ideas underlying our proposed method for determining local validity.
The key notion in clustering is prozimity: points are expected to have similar labels if they are
close to each other and not to others. In other words, the regions of influence of points belonging
to the same cluster must overlap. [15]

Therefore, a point should be associated with a cluster if its region of influence significantly
overlaps the region of influence of the cluster, and does not have such an overlap with other
clusters. And more importantly, we can quantify the confidence of this association by measuring
the degree of overlap.

The way we estimate this quantity is via a thought experiment: suppose the point under
consideration was a separate cluster by itself 7 How much of its influence would be derived from
the set of existing clusters ? Answering this question will lead to the measure we propose.

Consider for example using the distance to a cluster center as a measure of influence. Then a
point is most influenced by clusters that it is closest to. The distance here acts as a one-dimensional
measure of influence: if all points are on the line, then the region of influence of a point can be
quantified as half the distance to the nearest point.

The method we propose is a generalization of this idea to incorporate a variety of more general
notions of regions of influence that can incorporate cluster importance, density and even different
cluster shapes. The key idea is to define regions of influence as elements of an appropriate weighted
power diagram (a generalization of a Voronoi diagram) and use random sampling to estimate how
regions of influence overlap (and avoid the curse of dimensionality).

1.2 Applications

Our belief is that the ability to quantify the validity of a clustering locally, in addition to the above
mentioned applications, will aid in existing tools for clustering and metaclustering. We present a
few examples.

Active Clustering. Active learning[21] [T4] [IT] is a supervised learning technique that assumes
that labels are hard to obtain, and so tries to learn a task while querying as few labels as possible.
While clustering is unsupervised, a variant of this idea applies here as well. In this case, since
clustering is expensive, the goal is select points that will be most influential in deciding the final
decision boundaries of the clustering. Our method can be used to select points that are least
affiliated with any current clustering.

Validating Consensus. A consensus clustering[26] is the consensus answer obtained from a
collection of clusterings (arising from different runs of an algorithm or different algorithms). A
consensus clustering is only useful if the underlying clusterings mostly agree with each other, else
the resulting clustering might have no connection to the original clusterings. But there’s no easy
way to test this | Our procedure can be used to validate consensus clusterings by verifying that
the number of valid points increases when we do consensus.

Incremental Clustering. Many clustering algorithms for large data proceed incrementally[12),
31L 28]. A partial clustering is built up from the data seen thus far, and then the new data updates
this clustering. By identifying points with weak validity, we can treat them differently to points
that are strongly associated with clusters by maintaining them separately without committing them
to a cluster. Points strongly associated with a cluster can then be collapsed to the cluster centers
safely.



2 Background

There have been a number of approaches to testing global validity of a clustering. These can roughly
be broken down into three categories[30]. Internal validation mechanisms look at the structure of a
clustering and attempt to determine its quality. For example, the ratio of the minimum inter-cluster
distance to the maximum intra-cluster distance is a measure of how well-separated clusters are, and
thus how good the clustering is. External validation measures can be employed when a reference
clustering exists. In this case, an appropriate distance between clusterings must be defined, and
then the given clustering can be compared to the reference clustering. Relative validation measures
look at different runs of a clustering algorithm and compare the resulting clusterings produced.

Another approach to understanding clustering quality is via the idea of cluster stability[3], 4, [5].
The goal here is to determine how robust a clustering solution is to small perturbations in algorithm
parameters. This idea was used to do model selection; for example, the “right” number of clusters
is the one that exhibits the most stable clusterings.

Stability in general has been studied extensively in the statistics and machine learning commu-
nities, as a way to understand generalization properties of algorithms. The paper by Elisseeff et
al. [I0] provides a good overview of this literature and the monograph by Luxburg[29] focuses on

clustering.

sectionPreliminaries

Let P be a set of n points in RY. We assume a distance measure D on R¢, which for now we
will take to be the Euclidean distance. A clustering is a partition of P into clusters Cq, Cy,..., Cy.

We will assume that we can associate a representative c; with a cluster Ci. For example, the
representative could be the cluster centroid, or the median. We will denote the set of representatives
by C.

A Voronoi diagram on a set of sites S = {s1,s2,...,sK} C R% is a partition of R into regions
Vi,... Vi such that for all points in Vi, the site s; is the closest neighbor. Formally, Vi = {p €
RYD(p, s;) < D(p, Sj)yj # i}. When D is the Euclidean distance, the boundary between two regions
is always a hyperplane, and therefore each cell V; is a convex polyhedron with at most k — 1 faces.

We will also make use of a generalization of the Voronoi diagram called the power diagram.
Suppose that we associate an importance score w; with each site s;. Then the power diagram on S
(see Figure [1)) is also a partition of Rq into k regions V;, such that V; = {p € RY | D?(p, s;) —w; <
Dz(p)sj) _ijj 7& i}.

Power diagrams allow us to give different sites different influence, but retain the property that
all boundaries between regions are hyperplanes and all regions are polyhedra in Euclidean spaceﬂ

Finally, we will frequently refer to the volume Vol(S) of a region S Cc RY. In general, this
denotes the d-dimensional volume of S with respect to the standard Lebesgue measure on R4, If S
is not full-dimensional, this should be understood as referring to the lower-dimensional volume, or
the volume of the relative interior of S; for example the “volume” of a triangle in three dimensions
is its area, and the volume of a line segment is its length, and so on.

3 Defining Affinity Scores

As we discussed in Section [I], the region of influence of a point is how we define its affinity to
clusters. Each cluster has a region of influence. If we now consider a particular point in the data

2The squared distance is crucial to making this happen; without it, arcs could be elliptical or hyperbolic.
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Figure 1: The power diagram of a set of points. The sphere radius is proportional to the weight w

and treat it as a singleton cluster, it will draw influence from neighboring clusters (for example, in
a k-means setting, points assigned to other clusters might be reassigned to it). If a point draws
its influence primarily from one cluster, then its affinity with that cluster should be high. More
generally, the affinity of a point to a cluster will derive from the proportion of influence it steals
from that cluster.

Defn 3.1 (Region of Influence) Let C = Cy,Cy,...Cx be a clustering of n points. A region of
influence function is a function R : C — 2%* on C such that all R(Cy) (which are subsets of RY) are
disjoint.

Defn 3.2 (Affinity Scores) Let R be a region-of-influence function. Let C = Cy,Ca,...Cy be a
clustering. For any point x, let Cy denote the clustering Cq \ {x}, Co \ {x},..., Cx \ {x},{x}, and let
Ry (C) denote the region of influence of a cluster C € Cy.

Then the affinity score of x is the vector (1, 2, . .., &), where

~ VOI(R(Cy) NRu({x}))
T T VolR())

In the above definition, Ry ({x}) is the region of influence x has carved out for itself, and o; merely
captures the proportion of Ry({x}) that comes from the (original) cluster C;.

There can be at most one «; > 1/2. If such an i exists, we say that x is stable: intuitively,
cluster C; wins the vote over other clusters to own x. If not, we refer to max; &; as the affinity
score of x, and set the affinity score of a stable point to 1. The lower the affinity score, the less
confident we are about the label for x.

The simplest region of influence function is a Voronoi cell. Specifically, consider a clustering
with k clusters, each cluster C; having representative c;. Let C be the set of these representatives.
Consider any point x € CH(C) (the convex hull of C). Let Vi, Va,..., Vx be the Voronoi partition
of C, and let V{,VJ, ..., V{, V] be the Voronoi partition of CU{x}, with V; being the Voronoi cell of



x. Then we define R(C;) = V4, and Ry(Cy) = V/. We call a hyperplane supporting Vy that separates
¢i from x a supporting hyperplane for x with respect to c;.

e Voronoi Site
s New Point
2. NNIT region

Figure 2: In this example, the red point is “stealing” the shaded area from the Voronoi cells of Cq, Cy, C3.

The Voronoi cell V] of x “steals” volume from Voronoi cells around it (Figure [2] illustrates this
concept). We can compute the fraction of V| that comes from any other cell. For any point p; € P,

let oy = %\/ﬂx\)&,) Then oy represents the (relative) amount of volume that x “stole” from p;.

Note that }_ a3 =1, and if x = py, then o; = 1.

Note Thisidea of area stealing was first defined in the context of natural neighbor interpolation |23,
24), where the «; values were then used to compute an interpolation of function values at the pj.
However, in this paper we will use the «; directly, without computing any interpolants.

3.1 Affinity versus Distance

The simplest way to define influence is by distance. For example, we could define the affinity of a
point to a cluster as the (normalized) distance between the point and the cluster representative.
We note that affinity generalizes distance ratios: in one dimension, affinity calculations yield the
same result as distance ratios, since the “area” stolen from a cell is merely half the distance to
that cell. But distances cannot capture influence created by the spatial relationship of the clusters.
Consider the configuration shown in Figure [3l The point q is equidistant from the cluster centers
¢y and c3 and so would have the same distance-based influence with respect to these clusters. But
when we examine the configuration more closely, we see that the presence of ¢4 is reducing the
influence of c3 on q, and this effect appears only when we look at a planar region of influence. We
validate this by 100 runs of k-means with random seeds and watch which clusters q ends up in. We
observe that q was assigned to c; in 15 runs and to c3 in only 2 runs. Note that heuristically, the
distance ratios behave like the volume ratios to the power of 1/d, and so the distance ratios would
be expected to show less variation (and therefore less fidelity) across clusters.

3.2 Visualization

The affinity scores define a scalar field over the space the data is drawn from, and can be visualized
(in low dimensions). Consider the clustering depicted in Figurd] We can draw a contour map
where each level connects points with the same affinity score (unlike in a topographical map, more



Figure 3: lllustration of the difference between distance-based and area-based influence measures

deeply nested contours correspond to lower affinity scores). We can also render this as a greyscale
heatmap (where the lower the affinity, the brighter the color). These visualizations, while simple,
provide a nice visual rendering of affinity scores that can be useful as part of the exploratory analysis
pipeline.

3.3 Extensions

Our definition of affinity is not limited to Euclidean spaces. It can be generalized to a variety of
spaces merely by modifying the way in which we construct the Voronoi diagrams. In all cases, the
resulting affinity scores will result from a volume computation over polyhedra.

Giving clusters varying importance: density-based methods The definition of affinity
assumes that all clusters are equally important, since the Voronoi-based construction treats dis-
tances from all centers the same way. However, cluster size is an important factor when considering
whether a point has been correctly labeled. Intuitively, dense clusters have a larger region of in-
fluence and the affinity scores should account for this. Consider therefore a generalized clustering
instance where each cluster C; has an associated weight wi, with a larger w; indicating greater
importance. Instead of constructing the Voronoi diagram, we will construct the power diagram
defined in Section [2| Specifically, the region of influence R; for cluster C; will be defined as the set
R(Cy) = {x|d?(pi, x)—w; < d? (pj, x)—wj}. We compute the affinity vector as before, with the weight
of x set appropriately depending on the weight function used. For example, if w(C;) =|C;i|/n, then
w(x) =1/n.

Consider the examples depicted in Figure |7l The lefthand figure has 100 points in each of five
clusters, and the right-hand figure has 500 points in each of four outer clusters and 100 points in
the center cluster. Notice that there is a lot more instability (as seen by the contours) in the sparser
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Figure 4: Data in five clusters
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Figure 5: A contour plot
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Figure 6: Heat map

example, much of which is due to the presence of the central cluster. However, once the density
of the outer clusters increases, the effect of the inner cluster is much weaker, and there are fewer
unstable regions.

Bregman Divergences While the Euclidean distance is a common underlying metric for cluster-
ing, the Bregman divergences[7] are also very important. Clustering with Bregman divergences is
equivalent[2] to mixture estimation for a corresponding family of distributions. Mixture estimation
with Gaussians leads to the use of the Euclidean distance (squared), the multinomial distributions
give rise to the Kullback-Leibler distance, and so on.

Let Dy(p | q) = d(p) — d(q) — (Vb(q),p — q) be the Bregman divergence from p to q. It
has been shown[6] that the Bregman Voronoi diagram on a collection of sites sy, ..., sy defined as
Vi = {pIDy(p,si) < Dg(p,sj)Vj # i} is a convex polyhedron just like in the case of the Euclidean
distanceﬂ Thus, defining the region of influence R; to be V;, we can define affinity scores appro-
priately. Note that the above procedure for incorporating weights on clusters also generalizes, by
defining R(C;) = {x|Dg¢(x [ pi) —wi < D¢ (x| pj) — wjt
Kernels If we have a distance space defined by a kernel function[20], we can define regions
of influence in a similar manner. The n X n Gram matrix defined by the kernel yields an n-
dimensional Euclidean space (via the “kernel trick”), and then the problem reduces to computing
Voronoi regions and estimating volumes in this space. An explicit embedding into n-dimensional
space is still prohibitively expensive, and so we will explain how to address the problem using
approximate lifting maps.

3An easy way to see this is to solve the equation D (p | si) = Do (p | 55) for the bisector.
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(a) A data set with 100 points in each cluster (b) A data set 500 points in each of four cluster, and
100 in the center.

Figure 7

4 Estimating Affinity

The many different ways of defining affinity scores via regions of influence all reduce to the following:
given a set of representatives C = {c1,...,cx} and a query point x, estimate the volume of a single
cell in the Voronoi diagram of C or C U{x}, and estimate the volume of the intersection of two such
cells.

In two and three dimensions, it is relatively easy to compute these quantities efficiently. In
two dimensions, the Voronoi (or weighted Voronoi) diagram of k points can be computed in time
O(klogk)[9], and the intersection of two convex polygons can be computed in O(k) time[27]. Any
polygon with k vertices can be triangulated on O(k) time using O(k) triangles, and then the area
can be computed in O(k) time (O(1) time per triangle). In three dimensions, computing the
Voronoi diagram takes O(k?) time. This is the dominant term in the running time, as computing
the intersection of two convex polyhedra can be done in linear time [8]. Tetrahedralizing the convex
polyhedron can also be done efficiently[16].

However, this direct approach to volume computation does not scale. In general, a single cell
in the Voronoi diagram of k points in R4 can have complexity O(k/4/2). We now propose an
alternate strategy that provably approximates the affinity scores to any desired degree of accuracy
using random sampling.

Let Vi be the Voronoi cell of x in the Voronoi diagram of C U {x}. We say that y is stolen
from s(y) = ¢y if (i) y € Vx and (ii) y’s second nearest neighbor is ¢i. We can then write

o = W Note that given a point x and any point y, we can verify in O(k) time whether
y € Vi and also compute s(y) by direct calculation of the appropriate distance measure.
Let (o1, &2, ..., 0¢) be the affinity scores for x. Suppose we now sample a point y uniformly at

random from V. We can find s(y) in O(k) time and this provides one update to ;. The number
of such samples needed to get an accurate estimate of each o is given by the theory of e-samples.
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Algorithm 1 SamplePolytope
Input: Collection of halfplanes H defining convex region K = Npeyh, number of samples m.
Output: m points uniformly sampled from K.

Construct affine transform T such that TK is centered and isotropic.
Fix burn-in parameter b
Run Hit-And-Run for d steps on TK, ending in z = zg
fori=1...mdo

Set z; to be result of one Hit-And-Run move from z;_;
Return (T 'z1, ..., T 'z).

Let u be a measure defined over X and let R be a collection of subsets of X. An e-sample with
respect to (X, R) and p is a subset S C X such that for any subset R € R,

w(SNR)  u(R)
u(s) Xy —

By standard results in VC-dimension theory[I3], a random subset of size O(d/ e2log1/¢) is an
e-sample for a range space (X, R) of VC-dimension[I3] d.

If we now consider the discrete space [1...k] with the measure p(i) = «;, then the set of ranges
R is the set of singleton queries {1...k}, and the VC-dimension of ([1...k],R) is a constant. This
means that if we sample a set S of O(d/e?log1/¢) points from Vi, and set &; = %, then

|5(i — oql <e for all i.

4.1 Sampling from V,

We now have a strategy to estimate the affinity scores of x. Sample the number of points from Vy
as prescribed above and then estimate &; by computing the owners of samples. A simple sampling
strategy would be as follows. Find a ball that encloses Vy. Sample uniformly from within this ball,
and then reject any points outside V4. Unfortunately, as the dimension of the space increases, the
number of rejections grows exponentially with d, and so the time required to produce even one
sample is exponential in d. For example, our experiments show that in twenty dimensions, over
one thousand points are rejected for each good sample.

The problem of sampling from a convex polytope in high dimensions has been studied exten-
sively. The main focus of these efforts has been to estimate the volume of a convex polytope via
sampling, following the groundbreaking randomized polynomial time algorithm of Dyer, Frieze and
Kannan. At a high level, these are all MCMC methods: they use different random walks to extract
a single uniform sample from the polytope. One of the most effective strategies in practice for doing
this is known as hit-and-run]25]. It works as follows. Starting with some point x in the desired
polytope K, we pick a direction at random, and then pick a point uniformly on the line segment
emanating from x in that direction and ending in the boundary of K. We refer to this step as
Hit-And-Run. It has been shown[I7] that this random walk mixes very well, making O(d?) calls
to a membership oracle to produce a single sample (under some technical assumptions). Figure
illustrates the distribution of samples using Hit-And-Run for the Voronoi cell of the point q.

Algorithm [2[ (AFFINITY) summarizes the process for computing the affinity score of a single
point.
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Figure 8: lllustration of Hit-And-Run for sampling from a Voronoi cell. Samples are shown in red.

Algorithm 2 ArFrFINITY: Computing the affinity score for a point

Input: A clustering C = Cy, Cy,..., Cx with representatives c1,...,cx and a point x.
Output: Affinity vector (aq,..., o) for x
mée 5 log%
Set all o « 0
forj=1...k do
Set H; as the halfplane supporting Vi with respect to ¢j in the Voronoi diagram.
Call SamplePolytope({H,...,Hi}, m) to generate m samples z1,23,...z;m € Vyx = NH;.
fori=1...mdo
Compute s = argminj—;._\ d(zi, ¢;).
o =g+ 1/m
Return (oq,..., o).

12



Kernel spaces In Section we described how to extend the notion of affinity vectors to kernel
spaces by using the representer theorem and the Gram matrix representation of the kernel values.
Unfortunately, the resulting space has n dimensions, which makes AFFINITY very expensive. A
better approach is to use an approximate representation of the kernel using a lifting map like hash
kernels[22] or the random Fourier method[I§]. It has been shown that the number of dimensions
required to yield an e-approximation to the true kernel distances is roughly O(logn)/e?, which is
significantly better than n for large enough n.

Reducing dimensionality The above sampling procedure runs in time O(d?) per point. How-
ever, d can be quite large. We make one final observation that replaces terms involving d by terms
involving k < d for Euclidean distance measures (or Euclidean distances derived from a kernel).

The Voronoi diagram of k points in d dimensions, where k < d, has a special structure. The k
points together define a k — 1-dimensional subspace H of R%. This means that any vector p € R¢
can be written as p = u+w where u € H and w L u. The Euclidean distance ||p —p’||? can be
written as ||[u—u'||?+|[w—w’||>. In particular, this means that in any subspace of the form H +w
for a fixed w L H, the distance between two points is merely their distance in H.

Therefore, each Voronoi cell V can be written as V/+ X", where V/ C H and H= is the orthog-
onal complement of H consisting of all vectors orthogonal to H. Thus, we can project all points
onto H while retaining the same volume ratios as in the original space. This effectively reduces the
problem to a k-dimensional space. The actual projection is performed by doing an singular value
decomposition on the k x d matrix of the cluster representatives. Once this transformation is done,
we call AFFINITY as before.

The resulting algorithm computes all affinity scores in time O(nk>log(1/¢€)/€?).

5 Experiments

In two and three dimensions, affinity scores can be calculated via direct volume computations. We
use built-in routines provided by CGAL(http://www.cgal.org) to compute the scores exactly
and validate our sampling-based algorithm. For higher dimensional data, we perform the initial
data transformation (if needed) in C and use a native routine for Hit-And-Run in MATLAB. All
experiments are run on a Intel Quad Core CPU 2.66GHz mahine with 4GB RAM. Reported times
represent the results of averaging over 10 runs.

We created two synthetic datasets in R? namely, 2D5C-500 for which data is drawn from
5 Gaussians to produce 5 visibly separate clusters with 100 points each and 2D5C-2100 which
adds 400 points each to the 4 clusters in the corners. We also use 2 different datasets from the
UCI repository (Iris, Soybean) along with the test set of MNIST (http://yann.lecun.com/exdb/
mnist/) handwritten digits that contains 10,000 examples respectively in R”%*,

5.1 Case Studies

We start with three case studies of applications that show a demonstrable benefit from knowing
affinity scores for points. In all cases, our goal is to emphasize the flexibility and usability of affinity
scores, rather than claim that affinity scores can solve all the problems listed here.
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Active Clustering The idea of active clustering is to select a few points that are most likely
to influence the formation of good clusters. We show how affinity scores can be used to guide
the search for such points, reducing the number of points that the clustering algorithm needs to
process.

We run a k-means++[1] seeding to initialize k cluster centers. We then compute affinity scores
for all points. We fix a fraction 0 < o < 1 (set by cross validation) and then select a sample of
points of size 2ay/1 from the pool of stable points, selecting the remaining 2(1 — «)y/n points
at random from the unstable pool. We then cluster this small set using k-means and assign all
remaining points to their nearest cluster center. We compare this to doing a straight k-means
implementation. As we can see in Table [2] even though the data size is reduced considerably (see
Table , the quality of the solutions remains the same.

The memory footprint of this approach is considerably smaller. A standard implementation of
k-means needs an n x n matrix of distances of ®(n?) space, which in our procedure is reduced to
O(n) space. While the k-means algorithm can be implemented without explicitly materializing the
distances, it then must pay a price in time to recompute each distance, which for large-dimensional
data would be prohibitive.

’ Dataset Points \ Samples \ # Stable \ # Unstable ‘
2D5C-500 500 50 30 20
MNIST test data | 10000 | 200 160 40

Table 1: Data setup for Active Clustering.

Validating Consensus Clustering When we compute a consensus clustering from a collection
of clusterings, it is hard to determine whether the new clustering is in any sense better due to
calibration issues on the quality score. The “number of stable points” is a different measure that
can be used to evaluate the quality of the consensus. Intuitively, the consensus is improved if points
have moved from being unstable to being stable.

We take four data sets for which we have a reference clustering and run five clustering algorithms
on each. We then run a spatially-aware consensus procedure[I9] and obtain a consensus clustering
of each data set. We now compare this consensus clustering to one of the base clusterings and
report two distances (LIFTEMD [19] and the Rand Distance) as well as the change in the number
of unstable points. The results are tabulated in Table

In all data sets, the consensus clustering is closer to the reference clustering than the base
clustering that uses k-means. This is of course why we compute consensus in the first place. But
looking closer, we see that for 2D5C-500 and Soybean, the fraction of unstable points reduces
considerably indicating a tighter collection of clusters. In contrast, the reduction for MNIST and
IRIS is small. Note that in all cases, the distance reductions are the same and do not distinguish
the sets. This shows two things: firstly, stability correlates well with other measures of clustering
distance. Secondly, the number of unstable points allows us to understand consensus quality more
deeply than just via a global distance measure.

Incremental Clustering As a final demonstration of the versatility of affinity scores, consider
the problem of incremental clustering. The typical approach to incremental clustering [31], 28] is
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LirTEMD Rand Distance % Unstable points
Dataset d(Pac,Prer) | d(Pkm,Prer) [ d(Pac,Prer) | d(Pkm,Prer) || Pac | Pkm
2D5C-500 0.16 0.18 0.22 0.26 20 18
MNIST test data || 0.14 0.13 0.12 0.10 14 17

Table 2: Comparing partitions generated by active clustering (Pac) and k-means (Pxm) w.r.t. reference
Partition (Prer). Smaller numbers indicate better performance.

LirTEMD Rand Distance % Unstable points
Dataset d(Pcon,Prer) | d(Pxm,Prer) || d(Pcon,Prer) | d(Pkm,Prer) || Pcon | Pkm
2D5C-500 0.15 0.18 0.20 0.26 10 18
IRIS 0.10 0.12 0.11 0.15 8 8
Soybean 0.27 0.32 0.15 0.19 22 30
MNIST test data || 0.10 0.13 0.09 0.10 15 17

Table 3: Using affinity scores to evaluate performance of consensus.

to cluster a block of data, build a reduced representation of the cluster, and then read the next
block of data and update this representation. We can use stable points to define the cluster and
its centroid, while keeping unstable points around unassigned pending further information. Each
time a new batch of data comes in, we determine the stable points in this batch with respect to
the current clustering, update the centers, and then check if any more points have become stable
or unstable. The process then repeats. Note that we need only maintain cluster centroids for high
quality clusters and know which points to defer decisions on. Table {|illustrates the results of this
on the MNIST test data, where at each stage we compare the clustering obtained to the reference
clustering. We see that the clustering produced is of quite high quality inspite of the severe size
reduction (10 cluster centers and a decreasing number of unstable points).

’ Dataset \ #Points \ LIFTEMD \ % Unstable points ‘
MNIST batch 1 | 2000 0.16 20
MNIST batch 2 | 3000 0.14 18
MNIST batch 3 | 1000 0.15 18
MNIST batch 4 | 2500 0.14 16
MNIST batch 5 | 1500 0.13 16

Table 4: Running incremental clustering on MNIST test data.

5.2 Validation
5.2.1 Concept Validation

The premise of the affinity scores is that low affinity corresponds to points that are difficult to
cluster. One way to test this idea directly is to evaluate the affinity scores for data that admits a
verified labeling. The MNIST database (http://yann.lecun.com/exdb/mnist/)) of digits is useful
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to test this because we can visually inspect the digits with low affinity to see whether they have
ambiguous labels.

We run a k-means algorithm on the MNIST test data and compute affinity scores of the points.
We then visualize one example each from the stable and unstable regions. Figure [9] shows the
results. The first row shows points that had high affinity in the clustering (close to 1.0 in each
case). We can see that the digits are unambiguous. The second row shows digits from the unstable
region (affinity scores less than 0.5). Notice that in this case the digits are far more blurred. In fact,
the 4 and 9 look similar, as do the 0 and 6. This indicates that low affinity does in fact correlate
with ambiguous labels as indicated.

NARAL
f E f f

Figure 9: Results of running k-means on MNIST training data. First row: high affinity. (L-R) 0.96, 1.0,
1.0, 0.92. Second row: low affinity: (L-R) 0.38, 0.46, 0.34, 0.42.

5.2.2 Score Validation

We can validate the scores produced by sampling against the exact scores in two and three di-
mensions using exact volume computations. Table [5] illustrates this for the 2D5C and 3D5C data
sets. We note that these error reports come from choosing 1000 samples after a burn-in of 1000
samples (this corresponds to an error ¢ = 0.04). As we can see, the reported error is well within
the predicted range.

5.3 Running times

Table [5] also presents running times for the affinity score computation. We note that the running
times reported are the total for computing the affinity scores for all points. We only report the
time taken by the sampler; the preprocessing affine transformation is dominated by the sampling
time. In all cases, we used 1000 samples to generate the estimates. Note that the procedure is
extremely fast, even for the very high dimensional MNIST data.

’ Dataset \ #Points \ #Dimensions \ #Clusters \ Runtime (sec) \ Empirical Approximation ‘
2D5C-500 500 2 5 0.11 £ 0.005 | £ 0.02
3D5C-500 500 3 5 0.19 = 0.008 | £ 0.035
RIS 150 4 3 0.24 £ 0.012 | -
Soybean 47 35 4 0.31 £ 0.08 -
MNIST test data | 10000 | 784 10 0.58 + 0.5 -

Table 5: Runtimes and empirical approximation to exact affinity: Estimating affinity for one point by
generating 1000 samples.
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6

Conclusion

In this paper we present a method to validate the assignment of points to clusters in a clustering.
We show different ways in which identifying points that are “unstable” can enhance or illuminate
downstream clustering tasks, and validate the notion of a local affinity score against clusterings
where the ground truth is known.

We view this work as part of a larger effort to personalize validation mechanisms in data mining.

In future work we plan on incorporating ideas from topological data mining to add more dimensions
to the validation. We hope to develop better visualizations to accompany this method. And more
generally we plan on studying other unsupervised learning tasks where local validation is important.
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