arXiv:1310.5430v1 [cs.SI] 21 Oct 2013

Validating Network Value of Influencers by means
of Explanations

Glenn S. Bevilacqua' Shealen Clare?

Amit Goyal® Laks V. S. Lakshmanan'

University of British Columbia
Vancouver, B.C., Canada
T{Iennson,goyal,laks}@cs.ubc.ca, shealen.clare@gmail.com

Abstract—Recently, there has been significant interest in social
influence analysis. One of the central problems in this area is
the problem of identifying influencers, such that by convincing
these users to perform a certain action (like buying a new
product), a large number of other users get influenced to follow
the action. The client of such an application is essentially a
marketer who would target these influencers for marketing a
given new product, say by providing free samples or discounts.
It is natural that before committing resources for targeting an
influencer the marketer would be interested in validating the
influence (or network value) of influencers returned. This requires
digging deeper into such analytical questions as: who are their
followers, on what actions (or products) they are influential, etc.
However, the current approaches to identifying influencers largely
work as a black box in this respect. The goal of this paper is
to open up the black box, address these questions and provide
informative and crisp explanations for validating the network
value of influencers.

We formulate the problem of providing explanations (called
PROXI) as a discrete optimization problem of feature selection.
We show that PROXI is not only NP-hard to solve exactly,
it is NP-hard to approximate within any reasonable factor.
Nevertheless, we show interesting properties of the objective
function and develop an intuitive greedy heuristic. We perform
detailed experimental analysis on two real world datasets —
Twitter and Flixster, and show that our approach is useful in
generating concise and insightful explanations of the influence
distribution of users and that our greedy algorithm is effective
and efficient with respect to several baselines.

I. INTRODUCTION

The study of social influence has gained tremendous at-
tention in the field of data mining ever since the seminal
paper of Kempe et al. [14] on the problem of influence
maximization. A primary motivating application for influence
maximization as well as for other closely related problems
such as identifying community leaders [9], trendsetters [21],
influential bloggers [1] and microbloggers [24], [3], is viral
marketing. The objective in these problems is to identify
influential users (also called influencers or seeds) in a social
network such that by convincing these users to perform a
certain action (like buying a new product), a large number of
other users can be influenced to follow the action. The client
of such an application is essentially a marketer who would
target these influencers for marketing a given new product,
e.g., by providing free samples or discounts. It is natural that
the marketer would like to analyze the influence spread [[14] or
“network value” [6] of these influencers before actually com-

mitting resources for targeting them. She would be interested in
the answers to the following questions: Where exactly does the
influence of an influencer lie? How is it distributed? On what
type of actions (or products{]_-l) is an influencer influential? What
are the demographics of its followers? However, the current
approaches for identifying influencers, and in particular, for
selecting seed users for the problem of influence maximization,
largely work as a black box in this respect. Just outputting a
list of seed users (influencers), along with a scalar which is
an estimate of the expected influence spread. The goal of this
paper is to open up this black box, address these questions and
provide informative and crisp explanations for the influence
distribution of influencers.

Providing explanations to the marketer for influence spread
of influencers can have several benefits. First, it provides
transparency to the seed selection algorithm. The marketer
is made aware of why a certain user is selected as a seed,
where the user’s influence lies, and on what type of actions
the user is influential. These are important analytics she may
want to investigate before spending resources on targeting that
seed user. Second, it makes the seed selection algorithm (and
thus the system) scrutable. The marketer would now be able
to tell the system, if the explanations (and thus the algorithm)
are wrong or are based on incorrect assumptions, say using her
own surveys or background knowledge. If the explanations are
correct and accurate, this can increase the marketer’s trust in
the system and help her in making good, informed decisions
quicker. In other words, accurate explanations may enhance
effectiveness and efficiency of the marketers, in making im-
portant marketing decisions. Furthermore, such explanations
allow room for flexibility in the targeting process. Indeed, if the
marketer is not able to target some of the seeds successfully,
then she knows what exactly the impact on “coverage” would
be, and can make adequate adjustments. For example, if a
seed’s influence was over young college students in CA on
handheld devices, the marketer can look for an alternate seed
with close characteristics to cover that demographic. Overall,
providing accurate and crisp explanations would increase the
marketer’s satisfaction, and hence loyalty to the provider of
seed selection service, as well as confidence in the seed
selection algorithm. In this paper, we specifically focus on
providing explanations for influencer validation, that is, a
marketer would be able to analyze the demographics of the
followers and the actions.

buying a product is an action.



TABLE 1. MIKE: USER WITH MOST FOLLOWUPS. k = 6, = 3.
Actions  Followers  Followups
(3.0k) (106) (37.9k)
rated R thriller male 708 67 6.7k
female 708 37 2.3k
len:long 480 67 4.8k
male drama
len:med 520 67 3.5k
pre-1997 comedy male 607 67 4.8k
female 607 37 2.2k

Total Coverage: 56.3%

On the industry side, companies like Klouf| and Peerindex|
claim to provide users’ influence scores from their Social Me-
dia profiles (like Facebook and Twitter). Both these companies
provide “topics” over which the users’ influence is spread,
in addition to influence scores. The explanations we propose
offer a principled and comprehensive account of just how
the influence of a seed user is distributed across the user
(i.e., follower) and action dimensions instead of an ad hoc
“influence score” and “topic”.

The merit of providing explanations has been recognized
before, in the related fields of recommender systems (see
Chapter 15 of [[19] for a survey) and expert systems (see [[15]
for a review). In these systems, the explanations are known
to have benefits similar to those mentioned above. In the field
of social influence analysis, to the best of our knowledge, there
has been no such systematic study.

A Motivating Example. Consider a social network where
users perform actions. For instance, in Flixstelﬂ (www flixster.
com)), user actions correspond to rating movies. A movie can
have many attributes, e.g., genre, year of release, length of
the movie, rating value, and similarly, users can have many
attributes, e.g., gender, age-group and occupation. Table
shows an example of the result from our experimental analysis
on the real data of Flixster. In this example, we analyze the
influence of the top influencer in Flixster, measured in terms
of number of followups. For simplicity, we refer to this user as
Mike. Informally, a followup is defined as a follower following
up on a user’s action. In the context of this example, the
number of followups of Mike is the number of times a follower
of Mike rated a movie, after he rated itE]

The table makes the following assertions. Mike has rated
3K movies and has 106 active followers. In total, he has
received 37.9K followups. This is the overall picture of Mike’s
influence spread. Drilling down, the table shows six explana-
tions describing a partial breakdown that covers a significant
chunk of the influence mass, each explanation corresponding
to a row. Each explanation is presented in terms of action
and user features (first three columns). The explanations are
heterogeneous: e.g., the first two explanations involve attributes
maturity rating, genre, and user gender, whereas the next two
involve the attributes user gender, genre, and movie length.

With just 6 crisp explanations, our algorithm is able to
explain 56.3% of Mike’s followups. As an example, 6.7K
followups came from male followers, on Mike’s ratings on
thriller movies rated R. (movies restricted to persons of age
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17 or older). Moreover, 2.3K followups came from females
on the same category of movies, suggesting that Mike is quite
influential on R-rated thriller movies. The Actions column
tells us that there are 708 such movies (thriller, rated R) that
are rated by Mike, while the Followers column tells us that
out of 106 followers, 67 are males and 37 are females and
2 (= 106 - (67 + 37)) others did not specify their gender.
Other explanations reveal that Mike is also influential on
drama movies on males, and old (pre-1997) comedy movies
regardless of gender.

Notice, the entries in each of the numeric columns (Ac-
tion/Followers Count and Followups) do not sum to their
overall values. That is, in general, the explanations provided
do not necessarily completely cover the entire influence spread
of the seed user. Each explanation consists of a description
involving follower (user) demographics and action attributes
(e.g., topic). It also comes equipped with three statistics —
action count, follower count, and followups, with the meaning
described above. It is possible that different explanations cover
overlapping demographics, e.g., females in Vancouver and
young college students in BC.

There are several benefits to this style of explanations in
terms of affording simple inferences. First, we can deduce that
if Mike (in the example above) rates an arbitrary movie again,
he is likely to receive 37.9K/3K = 12.6 followups on average.
Next, we know on what kinds of movies Mike is influential.
Thus, if a marketer wants to advertise a horror movie, then
perhaps Mike is not a good seed, even though his influence is
quite high. Moreover, if Mike rates a thriller movie rated R,
it is likely that it will attract 6.7K/708 = 9.5 followups, from
male users on average. Clearly, these types of explanations are
very informative and valuable.

Notice that a trivial answer to providing explanations is
to describe every single followup for a given influencer. This
is undesirable since such an explanation would be verbose
and uninformative to the marketer trying to make sense of
the influencer’s influence. We thus argue for providing crisp
or concise explanations that explain as much of the influence
spread (in terms of followups) of the influencer, as possible.

In the literature, the network value of a user [6]], [[14] is treated
as a scalar, i.e., it’s equated with the (expected) influence
spread of the user. We argue that in order to answer the above
questions, we must revisit this notion. Our thesis is that there is
much more to the network value of a user than just a number:
it can be seen as a summary of the influence distribution of
the user, which describes how the influence is distributed, over
what kind of user demographics and on what type of actions.
In this paper, we formulate and attack the problem of how to
characterize the distribution of influence of a given seed user.
In particular, we make the following contributions.

e  We propose a novel problem of PROviding eXplana-
tions for Influencers’ validation (PROXI) to describe
network value of a given influencer. We outline several
benefits of providing explanations.

e We show that PROXI is not only NP-hard to solve
exactly, it is NP-hard to approximate within any
reasonable factor. However, by exploiting properties of
the objective function, we develop an intuitive greedy
heuristic.
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e  We perform experimental analysis on two real datasets
— Flixster and Twitter, by exploring the influence
distributions of top influencers, from both qualitative
and quantitative angles.

e  Performing qualitative analysis, we establish the va-
lidity of our framework, while gaining insights into
influence spread of influencers. On the other hand,
with quantitative analysis, we show that our algorithm
explains a significant amount of the influence spread
with a small number of crisp explanations. We com-
pare our algorithm with various baselines, and show
that it is both effective and efficient.

The rest of the paper is organized as follows. Related work
is discussed in We formalize the problem in and
develop our algorithm in The experimental analysis is
presented in while summarizes the paper and discusses
future work.

II. RELATED WORK

We summarize related work under three headings.
Identifying Influencers. Identifying influencers has been ex-
tensively studied as the problem of influence maximization.
The first work of this kind is due to Domingos et al. [6].
They refer to users’ influence as network value and model
it as the expected lift in profit due to influence propagation.
Thus, the network value of a customer is captured as a
number. Later, Kempe et al. [14] formulated this as a discrete
optimization problem: select k influencers in a given social
network such that by targeting them, the expected spread
of the influence is maximized, assuming the propagation
follows a diffusion model such as independent cascades or
linear threshold or their variants. The problem is NP-hard.
However, the objective function satisfies the nice properties of
monotonicity and submodularity, under the diffusion models
considered, allowing a simple greedy algorithm to provide a
(1 — 1/e — €)-approximation to the optimal solution, for any
€ > 0 [18]. Further exploiting these properties, Leskovec et
al. [16] proposed a lazy forward optimization that dramatically
improves the efficiency of the greedy algorithm. The idea is
that the marginal gain of a node in the current iteration cannot
be better than its marginal gain in the previous iterations. Goyal
et al. [10] proposed a direct data driven approach to social
influence maximization. They show this alternative approach
is both accurate (in predicting the influence spread) and is
scalable, compared to the probabilistic approach of Kempe
et al. [14]. Their work also highlights the importance of
validating the influence prediction and spread.

Considerable work has been done on analyzing social influ-
ence on blogs and micro-blogs. Agarwal et al. [1] investigate
the problem of identifying influential bloggers in a community.
They show the most influential bloggers are not necessarily the
most active. Gruhl et al. [11] analyze information diffusion
in blogspace by characterizing the individuals and the topics
of their blog postings. In [8]], the authors look into the
problem of inferring networks of diffusion and influence in
blogspace. Weng et al. [24]] develop a topic sensitive Pagerank-
like measure (called Twitterrank) for ranking users based
on their influence on given topics. Cha et al. [5] compare
three different measures of influence — indegree (number of

followers), retweets and user mentions, with regard to their
ability to characterize influencers. They observe that users
who have a large number of followers are not necessarily
influential in terms of spawning off retweets or mentions.
Romero et al. [20] showed that the majority of users act as
passive information consumers and do not forward the content
to the network. Bakshy et al. [2]] find that the largest cascades
tend to be generated by users who have been influential in the
past and who have a large number of followers.

The problem of identifying influencers, and indeed in-
fluence maximization, is fundamentally different from our
problem PROXI. The objective of PROXI is to allow a human
(or marketer) to (independently) validate a given influencer, by
generating human readable, crisp explanations. The explana-
tions consist of features from action and user dimensions with
relevant statistics and are generated in a way such that they
are able to cover the maximum amout influence, in terms of
followups.

Since our explanations are built of action and user features,
works on topic-sensitive influence analysis [23], [17], [24],
[21], [3]] and influence based community detection [9], [4] are
relevant and we survey these next.

Topics. Tang et al. [23] introduce the problem of topic-based
social influence analysis. Given a social network and a topic
distribution for each user, the problem is to find topic-specific
subnetworks, and topic-specific influence weights between
members of the subnetworks. Liu et al. [17] propose a gen-
erative model which utilizes the content and link information
associated with each node (which can be a user, or a document)
in the network, to mine topic-level direct influence. They use
Gibbs sampling to estimate the topic distribution and influence
weights. Weng et al. [24], as described earlier, propose a topic
sensitive Pagerank-like measure to rank users of Twitter. In
[21], the authors define trendsetters as the ‘“‘early adopters”
who spread the new ideas or trends before they become
popular. They also propose a Pagerank-like measure to identify
trendsetters. Barbieri et al. [3]] extend classical propagation
models like linear threshold and independent cascade [14] to
handle topic-awareness. Our problem is given a network, past
information cascades in the form of an action log, and a seed
node, we need to generate a compact explanation of the way
the influence spread of the seed is distributed, which is not
addressed by any of these works.

Communities. Another related line of work is influence-based
community detection [9], [4]. Goyal et al. [9] define the
notion of “tribe-leaders” — leaders (or influencers) who are
followed up by the same set of users, on several actions. They
apply a pattern mining framework to discover them. Barbieri
et al. [4] propose a generative model to detect communities
incorporating information cascades.

In contrast to the above mentioned papers, our goal is
not to model topics or to detect communities, but to describe
the influence distribution of a given user, by generating ex-
planations consisting of interesting features from action and
user dimensions. To the best of our knowledge, this is the
first research study to provide explanations for the purpose
of influencer validation.



III. PROBLEM DEFINITION

We consider a directed social graph, G = (V, D) over a
set of users V' where each arc (u,v) € D indicates that user
v follows user uE] and a propagation log L, a set of triples
(u,a,t,) signifying that user u performed action a at time
t,. When the action a is clear from the context, by ¢, we
mean the time at which user u performed action a. We say
an action a is propagated from u to v if (u,v) € D, and the
log L cotains the tuples (u,a,t,) and (v,a,t,) for some t,
and t,, such that ¢, < t,. This defines a propagation graph
of a as a directed graph G(a) = (V(a), D(a)), with V(a) =
{u € V|3t : (u,a,t,) € L} and D(a) = {(u,v) € D|u €
V(a),v € V(a), and t,, < t,}. Define an influence cube C
over the dimensions Users (as influencers), Actions and Users
(as followers) as follows: for a cell (u,a,v), C(u,a,v) =1
if there exists a (directed) path from u to v in G(a), i.e., v
performed action a after v did. All other cells have value 0.

Given a user u, by a followup of u, we mean a cell (u, a, v)
for which C(u,a,v) = 1. The followup set of w is then the
set of followups of w: M, = {(u,a,v) | C(u,a,v) = 1}.
When the user is understood from the context, we use M
instead of M,. We assume users are equipped with a set
of features (e.g., age, location etc), and similarly for actions
(e.g., topic). Descriptions for followup sets are derived from
attributes by means of predicates of the form A = val where
A is an attribute and val is a value from its domain. We
assume numeric attributes are binned into appropriate intervals.
Thus it suffices to consider only equality. E.g., year = pre-
1997, maturity-rating = “rated R”, and gender = female are
predicates/features. We use the terms predicates and features
interchangeably. Let P be the set of all predicates. Consider
a cell (u,a,v) in M,, the followup set of user u, and a
predicate p € P, we say the cell satisfies the predicate,
(u,a,v) = p, provided either p is a user predicate and
user u satisfies this predicate or p is an action predicate
and action a satisfies this predicate. For a predicate p, we
define M? = {(u,a,v) | (u,a,v) € M&(u,a,v) = p},
i.e., the subset of followups satisfying the predicate. We
define an explanation as a conjunction of one or more (user
and/or action) predicates. Given an explanation F, we define
ME = ﬂpeE MP. ie., the set of followups satisfying all the
predicates in /. We define the coverage of an explanation to
be o(E) = |M¥F|, i.e., the number of followups satisfying F.

Our goal is to provide explanations for the followup set of
a user (candidate influencer). On one hand, we would like each
explanation to be as informative as possible. On the other, the
total size of explanations should be concise or crisp so that a
human (marketer) can quickly make sense of them. At the same
time, between them, the explanations should cover as much
“influence mass” as possible. We formalize these intuitions by
insisting that each explanation should have length > [ and ask
for a set of at most k explanations £ = {E1,..., Ex} such
that the number of followups covered by these explanations is
as large as possible. For a set of explanations £, we extend
coverage as follows: define M = |Jp.e MP and finally,
define the coverage of a set of explanations as o (&) = |[M¢],
i.e., the number of followps in M which satisfy at least one

6Qur ideas and algorithms easily extend to undirected graphs such as those
corresponding to friendship links.

explanation in £. That is,

o =M= JMPI=1U M @

EcE E€E peE

Note the term coverage is defined for a single explanation
as well as for a set of explanations. In discussing the properties
of the coverage function, we consider both o(E) : 2¥ — R,
coverage of a single explanation as a function of the features
in the explanation, as well as o(&) : 22" R, coverage of a
set of explanations as a function of the explanations in the set
£. The notation and the context should make it clear.

The main problem we study in this paper is PROXI
(PROviding eXplanations for validating the network value of
Influencers):

Problem 1 (PROX1): Given a user u, followup set M, the
available user and action predicates P, and numbers k and |,
find a set of at most k explanations €& = {E1, ..., E;}, where
each explanation E; is a conjunction of at least | (user/action)
predicates such that o(E) is maximized.

The lower bound [ on the size of each explanation captures
the intuition that explanations should be informative. The
upper bound k£ on the number of explanations captures the
intuition that overall the explanations should be crisp. At
the same time, problem asks for the influence mass covered
(coverage) to be maximum.

A. Hardness of PROXI

Not surprisingly, it turns out that PROXI is NP-hard.
Unfortunately though, not only it is NP-hard to solve exactly,
it is NP-hard to approximate within any reasonable factor,
even when k = 1, which in other words is the problem
of generating one explanation (Thm. [T). We establish the
hardness by exploiting its equivalence with the problem of
Maximum [-Subset Intersection (MSI for short). However,
to develop intuitions for building our algorithm, we show
some interesting properties of the objective function (). In
particular, we show that the function o(€) is monotonically
increasing and submodular (Thm. [2)), while the function o (F)
is monotonically decreasing and supermodular (Thm. [3). We
exploit these results to develop our algorithm (§IV).

Theorem 1: Problem PROXI is NP-hard to solve exactly.
Moreover, it cannot be approximated within a factor of
0.5n172¢ + O(1 — 3¢) for any € > 0, unless P=NP.

Proof: We prove the claim for the special case when
k = 1. In this case, the problem reduces to finding exactly
one explanation F, of length [ such that o(F) is maximized.
Since o(FE) is defined as the intersection of sets MP for
all p € E, the problem is equivalent to Maximum [-Subset
Intersection (MSI) Problem [25]], [22]: Given a collection
of sets S = {51,952,...,5,} over a universe of elements
U ={e1,ea,...,e,}, the objective is to select (no less than) [
sets ' C S, 8" ={S5,,,S5i,,...,5} such that its intersection
size, |Si; NS, N---S;, ], is maximum.

It is easy to see that MSI is equivalent to PROXI when
k = 1. An element e € U/ in MSI corresponds to a cell (u, a,v)
with a value 1 in PROXI. Similarly, a set S corresponds to
MP, the set of cells selected by a predicate p. Furthermore,



the objective is equivalent — select [ sets (I predicates) such
that the resulting intersection size is maximum. The formal
reduction from MSI to PROXI and the other way around is
thus straightforward and we skip it for brevity.

It is well known that MSI is NP-hard, and is NP-hard to
approximate it within a factor a 0.5n'~2¢ + O(1 — 3¢) [22].
Given the equivalence between PROXI and MSI, the theorem
follows. [ |

Theorem 2: The function o(£) : 22° — R is monotoni-

cally increasing and submodular. That is, V€ C &' C 22”7 .
0(€) <o(&) and c(EU{E}) =0 (&) > o(E&'U{E}) —0(&).

Proof: First, we show that the objective function o (&) is
monotonically increasing. By definition of o (&), we have,

c(EU{E}) —a(E) = |IME UME| —|ME|

Clearly, M¢ U MPF is a superset of M, the above
quantity is non-negative, implying that ¢ (&) is monotonically
increasing. Next, we show the property of submodularity.

o(&' U{EY}) — (&) = |IMT UMPE| - M|
= (M UME)\ ME]
= [(MEUME UMP)\ (MEUME)
= |(MEUMP)\ M)\ M|

Since set subraction may only remove set elements,

o(£'U{E}) — o(€') < [(M®UMP)\ M?|
<o(EU{E}) —a(€)

which is what we wanted to prove. [ |

Theorem 3: The function o(E) : 27 — R is monotoni-
cally decreasing and supermodular. That is, VE C E’ C 2% :
o(E) > o(E') and o(EU{p}) —o(E) < o(E'U{p}) —o(E").

Proof: First, we show that the objective function o(FE) is
monotonically decreasing. By definition of o(E), we have,

o(EU{p}) —o(E) = [M" N MP| - |MF|

Clearly, M NMP is a subset of M¥, the above quantity is
non-positive, implying that o(F) is monotonically decreasing.
We next show the property of supermodularity.

o(E'U{p}) — o(E) = —=(IMZ| = IMZ 0 MmP))
= —|MP\ (MT nmp))|
= —|(ME A ME Y\ (ME 0 ME 0 MP)|
= — M A (MP\ (MP o mP)))|

Since set intersect may only remove set elements,

o(E'U{p}) = o(E") > —[(MP\ (MP nMP)
2 o(EU{p}) —o(E)

which is what we wanted to prove. [ ]

IV. ALGORITHM

Even though PROXT is NP-hard to approximate, the func-
tion o(€) has nice properties as we show in Theorem
Nembhauser et al. [18]] show that maximizing monotonically
increasing submodular functions can be approximated within
a factor of (1 — 1/e) using a greedy algorithm. Moreover,
due to Feige [7], we know that this is the best possible
approximation factor that can be achieved in polynomial time.
These results, in addition to Theorem 2] suggest that the greedy
heuristic which adds the current best explanation F to &,
until |€] is k& would be the best possible heuristic. However,
the complex step here is to generate one explanation E, or
more generally, the next explanation E, such that the marginal
coverage 0(EU{E})—o(F) maximized, where £ is the current
set of explanations. We showed that this particular problem
is NP-hard to approximate (see the proof of Theorem [I)).
Thus, strictly speaking, we cannot expect to have an efficient
algorithm with a provable approximation guarantee for PROXI.

However, given the hardness of the problem, we believe
that a greedy algorithm of successively generating explanations
by repeatedly picking the best predicate would still be a good
heuristic. More precisely, in any iteration, where £ : |€| < k is
the current set of explanations and F : |E| < [ is the current
explanation, the greedy algorithm picks the predicate, p, that
when added to E gives an extended explanation that provides
the maximum possible additional coverage, w.r.t. £. That is,
oc(EU{E U{p}}) — o(€) is maximum.

Since the search space is massive, a naive greedy algorithm
as explained above would be extremely slow. So we focus
our attention on making the algorithm efficient, by cleverly
avoiding unnecessary coverage evaluations, in any given it-
eration. In particular, we optimize our algorithm by means
of lazy evaluation. Recall, the function o(E) : 27 — R
is non-increasing and supermodular. Thus, the lazy forward
approach used by Leskovec et al. [[16] does not work here,
as it relies on the non-decreasing submodular nature of the
objective function. We instead exploit the fact that the coverage
of a single explanation o(F) : 2 — R is non-increasing
in the number of features (predicates), and devise a lazy
evaluation optimization based on this. The idea is that, while
constructing a single explanation, the marginal coverage of
the explanation after adding a predicate p to explanation F
also cannot increase (since o(FE) is non-increasing). Thus, by
maintaining a max-heap of predicates, p, sorted on additional
coverage of the extended explanation U {p} w.r.t. £, we can
avoid coverage recomputations for many of the predicates, in
any given iteration.

We next explain our algorithm in detail, given in Al-
gorithms [I] and 2] In @, we store the max-heap of fea-
tures. Each element p in @) represents a predicate/feature
with the following attributes: p.cells denotes the set of cells
corresponding to the predicate, or equivalently MP; p.cov
denotes the effective additional coverage of an explanation,
E, wrt. €, if p were added to the explanation, that is,
p.cov =c(EU{EU{p}}) —o(E). Due to our lazy evaluation
optimization, p.cov may not always store the correct value.
Instead, it may store an outdated value, which may have
been calculated in some earlier iteration. To keep track of
it, we use p.flag to save the iteration when p.cov was last
updated. Moreover, we mark a cell when it is covered by the



current set of explanations. Initially, all cells are unmarked,
and p.flag for all the features is set to 0. The heap @Q is
sorted on p.cov. Our main subroutine MINEEXPLANATIONS
adds one explanation E at a time, in a greedy fashion, while
the subroutine NEXTEXPLANATION generates the next best
explanation, again in a greedy fashion.

Algorithm 1 MINEEXPLANATIONS
Input: Q, k, 1
Output: &

1. £+ 0.

2: while |£] < k do

3 p<+ Q.peek().

4 if p.flag < |€| -1 then

5 Q.poll().

6: p.cov < #cells in p.cells for which cell is not marked.
7 p.flag « €] - 1.

8 Reinsert p in @ (and reheapify w.r.t. p.cov).

9: else

10: Q' « copy(Q) (copy includes features’ coverage).

11: E <+ NEXTEXPLANATION(Q', [, |£]).

12: &+ EU{E}

Algorithm 2 NEXTEXPLANATION

Input: Q' I, |€|
Output: £
1. E <+ 0.
2: while |E| < [ do
p < Q' .poll().
4:  if p.flag <|€] -1+ |E| then
5: p.cov < #cells in p.cells for which cell. flag = |E|- 1+ | E|
and cell is not marked.
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6 p.flag < |E| - L+ |E|.

7: Reinsert p in @’ (and reheapify w.r.t. p.cov).

8 else

9: E +— EU{p}.

10: for each cell € p.cells do

11: if |E| =1 and cell.flag = |E| -1 + | then
12: mark the cell.

13: else if |E| = 1 then cell.flag < |€] -1 + 1.
14: else cell. flag < cell.flag + 1.

We first describe Algorithm MINEEXPLANATIONS. & is
initialized in line 1 and we iterate until k explanations are
generated (lines 2-12). In each of these k iterations, we get
the next best explanation by calling NEXTEXPLANATION, and
add it to £ (lines 10-12). We make a copy of () before
calling NEXTEXPLANATION, because the ordering of the heap
@ can be changed by the subroutine, and thus corrupt the
original ordering. Other lines of the algorithm implement the
lazy evaluation optimization. The feature with the maximum
coverage is taken from the heap ), without removing the it
from @ (i.e., peek(), in line 3). If there is a need to recompute
the coverage p.cov of the feature p (this condition is tested
using p. flag), then we do so in line 6, after removing it from
Q in line 5 (i.e., poll()). The flag is updated in line 7 and the
heap () is re-heapified accordingly.

Next, we describe Algorithm [2] which generates one expla-
nation at a time. This algorithm also employs a greedy strategy
to select the features in a lazy manner. F is initialized in line 1
and we iterate until we generate [ features in E. In this subrou-
tine, we also assign a flag to each cell. Intuitively, cell. flag

stores the number of features in the current explanation F
that covers the cell. For example, cell.flag is |E] -1 + 1, if
it is covered by exactly one feature in F, and similarly, it is
|€| - I + |E| when all features in E cover the cell. It should
be noted that the term |€| - [ is added to ensure that the flag
values across different iterations of Algorithm [1|don’t mix up.

We again exploit p.flag to track the iteration when the
coverage of the predicate/feature was last updated. As in
cell.flag, we also add |€| -1 in p. flag to avoid the mix up in
the flag values across different iterations. If there is no need
to recompute p.cov, then we add p to E (line 9). Next, if
|E| = [, it implies that this is the last iteration of Algorithm
2. In that case, we must mark the cells which are selected by
the explanation E. Recall that for a cell to be covered by all
features in F, its flag should be |€|-1+1 (lines 11-12). On the
other hand, if |E| = 1, indicating that we just selected the first
feature in F, then cell. flag is initialized to |£]-1+1 (line 13).
In other cases, that is, 1 < |E| < I, we increment cell. flag
(line 14).

Lines 4-7 implement the lazy forward optimization. If
p.flag indicates that we must recompute p.cov, then we do
so in line 5. Note that the coverage of feature p here is the
number of cells in p.cells that are not marked, and which are
covered by all the features in E. We test this condition by
checking that cell. flag is || - I + |E|. We update p.flag in
line 6, and re-heapify @’ accordingly in line 7.

V. EXPERIMENTS

The goals of our experimental analysis are manifold. Not
only we are interested in identifying influential users, that is,
users with high number of followups, we are also interested in
exploring the distribution of their influence, from both quanti-
tative and qualitative angles. We achieve this by performing an
exhaustive analysis on two real-world datasets — Flixster and
Twitter. We next describe the datasets.

A. Datasets

Flixster. Flixster (www.flixster.com) is a major player in the
mobile and social movie rating business. Originally collected
by Jamali et al. [13]], the dataset contains 1M users and 7.06M
ratings, distributed across 49K movies. Out of these 1M users,
148K users have provided one or more ratings and they have
2.43M edges among them. Here, an action is a user rating a
movie. For each rating, the dataset also includes the timestamp
at which the user rated the movie.

User Features: There are two user attributes in the dataset:
Gender and Age. As is done in other public datasets such as
Movielens, we bin age values into 7 age ranges as follows:
less than 18, 18-24, 25-34, 35-44, 45-49, 50-55 and 56+.
Thus, we ended up with 9 binary user features.

Action Features: To enrich action (movie) features, we
queried IMDB API (imdbapi.com) with the movie titles present
in the Flixster data set: 82% of the movie titles found matches;
we ignore ratings on the remaining 18% of the unmatched
movies, which constituted 9% of the ratings. As shown in
Table 7 attributes were collected. Two of them — Rating
and Year are numerical attributes, and we bin them into 3
ranges. For instance, Rating is classified into three ranges: 1—
6, 67 and 7-10. Similarly, attribute Year is classified into 3
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TABLE II. FLIXSTER: MOVIE (ACTION) PREDICATES/FEATURES. WE

COLLECTED 7 ATTRIBUTES.

[ Attribute [ # of Predicates/Features |
Rating 3 {16, 6.7, 7-10}
Year 3 { <1998, 1998-2002, 2002+
Genre 28 {ex. Comedy}
Maturity Rating | 94 {ex. PG-13}
Director 1239
Actor 4364
Writer 1404

bins: less than 1998, 1998-2002 and 2002+. Other attributes
include Genre, Maturity Rating, Director, Actor and Writer.
In total, we ended up with 7135 predicates. In general, we
perform the binning in a roughly equi-depth manner, that is,
equal number of (global) followups fall in each bin. The reason
for following such a binning strategy is to remove any prior
bias on selecting predicates.

Twitter. Twitter (twitter.com) is a well known microblogging
site where users post tweets, messages of up to 140 characters,
that are broadcast to users following them. Tweets can be
retweeted by receiving users; this rebroadcasts the tweet to
users following the receiver. Thus, action here is a user posting
a tweet (or retweet).

While collecting data, we focus on tweets that are
retweeted, as retweets are definite indications of flow of
influence (or information). That is, tweeting is an action and
retweeting is evidence of its propagation through the network.
Moreover, we restricted our data collection to tweets contain-
ing URLSs, as it allows us to compile rich action features, from
the webpages corresponding to the mentioned URLs.

We collected the tweet data using Twitter Streaming API,
for 3 weeks from Tue Jul 24 14:50:07 PDT 2012 to Tue Aug
14 14:57:30 PDT 2012. The Streaming API permits tracking
of specific users, that is, using this API, we can collect tweets
created by these users, and any retweets of these tweets. To
select these “source” users, we exploit the Twitter Search API.
We did not provide any search term in the query, and the API
returned top-20 tweets according to Twitter’s internal ranking.
Queries were sent every 5 seconds until a total of 10K source
users were collected. Once we had source users, we collected
tweet data from the Streaming API, targeting these 10K users.
In 3 weeks of data collection, we accumulated 2.2M (source)
tweets from these source users, which were retweeted 92.5M
times by 11.8M other users.

Action Features: Tweets may contain user mentions, hashtags
and URLSs as features. Usually, URLs are shortened by services
like bit.ly. Out of the 2.2M source tweets, 51% contained
URLs. We focused on these tweets and their retweets. We
were able to expand 98% of the URLs. To collect features, we
queried Delicious (http://delicious.com/) with URL hostnames
and gathered Delicious tags. A total of 39K unique URL tags
were found from 28K unique URL hosts. After this processing,
we had 948K source tweets, which received 12.8M retweets.
We consider this sample in our analysis.

Influence Cube and Frequency Distribution of Followups.
From this data, we construct influence cube C as described in
That is, the value in cell (u,a,v) is set to 1 if there is
a path from u to v in the propagation graph corresponding to
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Fig. 1. Frequency distribution of number of followups in Flixster (left) and
Twitter (right). Both axes are in log scale.

action a. For each user u, we then calculate the total number
of followups, the distribution of which is presented in Fig.
(note that both the axes are in log scale). As expected, the
distribution follows a power law in case of Flixster, with
the power law exponent of -1.326. On the other hand, the
distribution in case of Twitter is not exactly power law. This is
due to the bias in our data collection strategy that favors active
users: recall that we collected 10K source users by exploiting
Twitter Search API. We fit two piecewise functions — the first
with exponent -0.462 and the latter with exponent -1.04.

B. Qualitative Analysis

Through qualitative analysis, we mainly seek to validate
our problem settings, approach and algorithm. But we note
the limitations imposed by the public datasets available. In
Twitter dataset, we know the identity of the influencers. We
can thus validate our approach by checking if the distribution
of influence is along the expected lines. On the other hand, in
Flixster dataset, we do not know the identity of the influencers,
but have the access to both user and action attributes. Thus,
in this case, we can examine the benefits of incorporating
followers’ demographics (as we saw in the example shown
in Table [I).

Formatting the Explanations. To avoid clutter, in the expla-
nation tables, we do not mention the name of each attribute,
and instead show its required value directly. For instance,
consider the example in Table |II Here, “rated R” indicates
the feature “maturity rating = rating R” and “thriller” implies
“genre = thriller”. Similarly, we combine overlapping features
(or predicates) from various explanations, to allow us to
visualize the explanations in a tree structure. As an example,
the features “rated R” and “thriller” are present in the first two
explanations. We order the features in a manner that minimizes
the repetition of the features in the explanations table.

Flixster. We take the top-3 influencers measured in terms of
the number of followups they recieve, and apply our algorithm
to generate explanations, for examining their influence distri-
bution. The results are presented in Tables I} [[II] and [[V] For
simplicity, we refer to the top-3 users as Mike, Kali, and Julie,
even though their identities in Flixster are unknown. Table
shows the complete set of movie features. For users, we have
the features corresponding to attributes gender and age. The
intent should be clear from the context.

While Table [[] shows the explanations for the most influ-
ential user (please see for more details about this user),
Tables [[TT| and [[V] show the explanations for users who received
second and third most number of followups, Kali and Julie,
respectively. Kali has rated 2.8K movies and received 27K
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TABLE III. KALI: USER WITH 2ND MOST FOLLOWUPS. k = 6, k = 3.
Actions Followers Followups
(2.8k) 93) (27.0k)
comedy pre-1997 550 62 2.8k
female thriller action 549 62 3.1k
drams len:long 475 62 2.8k
rama

len:med 483 62 2.1k
mal thriller rated:R 687 28 2.6k
age:25-34  pre-1997 1.4k 13 2.3k

Total Coverage: 51.4%

followups from her 93 active followers. Julie has rated 1.8K
movies and received 23.5K followups from her 73 active
followers. While Kali’s explanations cover 51.4% of her fol-
lowups, Julie’s explanations cover 68.7% of her followups.

Julie in particular is influential on female users, with all
her followups in the explanations coming from female users.
In fact, 63 among 73 of her followers are females. Finally,
she is influential on all sorts of movies (on female users),
ranging from comedy, drama, thiller and action. This implies
that Julie might be a very good seed if the target market is
females, perhaps better than the top-2 users whose influence
is distributed among both males and females. This is the sort
of insight that simply cannot be gained by viewing network
values solely as a scalar! A final remark about the explanations
found is that they are heterogeneous, in that they involve a mix
of user and action features.

Twitter. We next analyze the results from Twitter dataset.
Recall that we have user identities of key influencers in Twitter,
which allows us to validate whether the topics on which these
influencers reported to be influential by our algorithm are along
the expected lines. This provides us a nice strategy to validate
our problem settings and approach. For instance, we expect
news accounts like New York Times (NYTimes) and CNN
to be influential on topics like news, politics, media, etc, and
individuals like Tim O’Reilly to be influential on news on
software, tech, programming etc. Fortunately, we were able
to generate a rich set of topics for tweets by expanding their
mentioned URLs.

While we have the identity of the key influencers, for fol-
lowers, we could not collect user attributes due to demographic
data not being available through the API. Thus, our analysis is
restricted to the action attributes, which consist of tweet topics.
We focus on explanations of four influencers (Twitter accounts)
— New York Times, National Geographic, CNN Breaking News
and Tim O’Reilly, the results of which are presented in Tables

(Vi V1, [VIT] and [VITI}

Consider the news accounts NYTimes and CNN first.
As we expect, both these accounts are influential on topics
“news” and “politics”. Moreover, CNN is quite influential on
topics like “tv” and “breaking news”, which do not appear
in explanations of NYTimes. This makes sense as CNN is
a television news channel, while NYTimes is a newspaper.
Another interesting observation is that topics like “religion”
and “christianity” appear in CNN explanations (but not in
NYTimes explanations) indicating CNN airs programs about
religion. In the sample we collected, CNN tweeted about
religion and christianity only once, and received 434 retweets
— much higher than the average of 56200/390 = 144 retweets
per CNN tweet. Similarly, topics “journalism” and “photos”

TABLE IV. JULIE: USER WITH 3RD MOST FOLLOWUPS. k = 6, [ = 3.
Actions  Followers  Followups

(1.8k) (73) (23.5k)
pre-1997 comedy 401 63 4.3k
rat:7-10 317 63 3.9k
female 1998-2002 comedy 238 63 3.2k
drama 222 63 2.3k
rated:R thriller 446 63 3.7k
PG-13 action 228 63 3.0k

Total Coverage: 68.7%

can be found in NYTimes explanations but not in CNN ones,
while the topics “business” and “politics” can be found in both.
Finally, it is interesting to note that these explanations are able
to cover almost all the followups — 82.8% for NYTimes and
99.8% for CNN, suggesting that these accounts are followed
mostly because of their news, politics, media etc, i.e., the topics
represented in the explanations shown in these tables.

Next, in Table we show the explanations of influence
of Tim O’Reilly, the founder of O’Reilly Media and a sup-
porter of the free software and open source movements. Topics
like “news, tech, media, software, open source, programming,
development, google” etc. emerge as the topics of his influ-
ence, which agrees with our expectation. Finally, we explore
the influence of the National Geographic Channel in Table
This account is influential on ‘“science, nature, geography
travel” etc, again consistent with our expectations.

Above, we have seen that our algorithm outputs the features
(topics) that we expect these well known accounts to be
influential on. These observations clearly indicate that our
problem settings and framework are valid and effective for the
purpose of digging deep into the influence spread of influencers
and providing explanations. When coupled with user features,
as in the case of Flixster dataset, we are able to answer the
questions we raised in I Where exactly does the influence
of an influencer lie? How is it distributed? On what type of
actions is an influencer influential? What are the demographics
of its followers?

C. Quantitative Analysis

We next focus on evaluating our algorithm from a quan-
titative perspective and compare our algorithm with other
algorithms, in terms of the coverage achieved (the fraction of
total followups), running time, and memory usage.

Algorithms Compared: We compare our algorithm, which we
refer to as GREEDY, with the following baselines.

RANDOM: It selects the features randomly, with probability
proportional to number of followups covered by each feature.

MoOST-POPULAR: It orders the features by their popularity,
i.e., number of followups they cover. Then, it picks the top [
features that have yet to be picked to build an explanation, this
is repeated k times. It is an intuitive algorithm, as the features
which cover most followups can be seen as the representative
set of features on which the given influencer is influential.

EXHAUSTIVE: It generates one explanation at a time, by
exhaustively trying all possible combinations of features and
picking the one that covers the maximum number of followups
(which are not covered by previous explanations). Note that the



TABLE V. NEW YORK TIMES. k = 6, [ = 4.
Followups  Actions
(246) (12.5k)
. finance 32 745
business -
nytimes media 8 578
news culture media 8 535
journalism photos 14 762
politics media newspaper 79 8.5k
nyt journalism 43 4.2k
Total Coverage: 82.8%
TABLE VIL TiM O’REILLY. k = 6, [ = 3.
Actions  Followups
(115) (3.0k)
software 11 410
tech Dusiness 65
news usiness 6
media politics 15 513
magazine science 3 113
development ~ programming  opensource 2 471
socialmedia google ping.fm 5 235
Total Coverage: 63.4%

number of possible combinations is (”l)l), where [ is the num-

ber of features in one explanation. Thus, each explanation is
an optimal one, i.e., the one with the maximum marginal cov-
erage w.r.t. the previous set of explanations chosen. Since the
objective function o : 22" 5 R is monotone non-decreasing
and submodular (see Thm. @]) the set of explanations obtained
using this algorithm is an (1 — 1/e)-approximation to the
optimal solution [18].

Thus, among the algorithms compared, algorithm EX-
HAUSTIVE provides the upper bound on the number of fol-
lowups that can be possibly covered by the explanations
generated. Because of its exhaustive nature, we expect the
algorithm to be quite slow.

Unless otherwise stated, on each dataset, we take top-
100 influencers with respect to number of followups they
received. The algorithms are then run on all of 100 influencers,
and the median is picked as the representative value for the
comparison. We use median instead of mean, as it is more
robust against outliers.

Coverage w.r.t. change in k: Figure [2| shows the variation
in relative coverage achieved when £ is varied. Recall that
k denotes the number of explanations (table rows) generated.
Relative coverage is defined as the fraction of followups that
are covered. The parameter [ is fixed to 3 in Flixster and 5
in Twitter. As expected, the (relative) coverage increases with
k, but not at the same rate for all algorithms. Our algorithm
GREEDY consistently performs just as well as EXHAUSTIVE,
while beating both RANDOM and MOST-POPULAR by huge
margins, on both the datasets. In fact, the performance of
GREEDY is almost indistinguishable from that of EXHAUS-
TIVE. For instance, on Flixster, with just 6 explanations,
GREEDY is able to cover 0.57 fraction of followups, compared
to the fraction 0.58 achieved by EXHAUSTIVE. On the other
hand, MOST-POPULAR covers 0.25 fraction of followups and
RANDOM performs dismally, covering only 0.03 fraction of
followups. Moreover, it is worth mentioning that the coverage
achieved quickly saturates (on Flickr only) for both MOST-
POPULAR and RANDOM, implying that increasing k would
not have helped achieve better coverage from these algorithms.

TABLE VI. CNN BREAKING NEWS. k = 6,1 = 3.
Actions  Followups
(390) (56.2k)
politics 295 39.8k
cnn buﬁness 10 1.9k
news breaking-news 75 13.3k
media tv 288 38.5k
religion chistianity 1 434
magazine sport 2 265
Total Coverage: 99.8%
TABLE VIIL NATIONAL GEOGRAPHIC. k = 3,1 = 3.
Actions  Followups
(262) (23.6k)
science nature geography 116 12.8k
. . magazine 51 4.7k
travel tional h
rave! national geographic oo = >k
Total Coverage: 84.1%
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In case of Twitter, as we can observe, the coverage
achieved, is in general higher, with GREEDY covering up to
0.95 fraction of followups, again with 6 explanations. Recall,
the longer an explanation (higher /) the smaller the coverage, in
general. Despite this, the coverage achieved on Twitter with 6
longer explanations (I = 5) is more than achieved on Flixster
with 6 shorter explanations (I = 3). This indicates that the
influencers in Twitter are followed due to their niche. For
example, news accounts like CNN and New York Times are
mostly followed on topics like “news” and “politics” as we saw
above. Once again, GREEDY and EXHAUSTIVE significantly
outperform other baselines while their performance is very
close. The relative coverage of RANDOM seems to grow
sharply as k increases but at k£ = 6 it still performs poorly.
The challenge is to cover as much as possible with as few but
as detailed explanations as possible, and GREEDY is found to
rise to this challenge.

Coverage w.r.t. change in I: In Figure 3| we show the variation
in relative coverage when the parameter [, the number of
features (table columns) per explanation, is changed. As ex-
pected, coverage decreases with the increase in [. Our GREEDY



-3-Exhaustive

-B3-Exhaustive R |
T _..@---| > Greedy @ . || Greedy _—'E'—
E10 __-&- Most-Popular E10 Most-Popular|__ _g-~
o —¥-Random o —#-Random
£ £ 4
E’ E’ 10(3 8
g 5 W
€ S 10
4 x
o[ _— 0
10% 2 3 i 5 6 10y 2 s 4 5 6

Fig. 4. Running time comparison for various algorithms on Flixster with [
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algorithm continues to perform quite well. For instance, on
Flixster, it covers 0.31 fraction of followups, compared to
0.05 and 0.00, the coverage achieved by MOST-POPULAR
and RANDOM, respectively at [ = 4. EXHAUSTIVE on the
other hand, covers 0.34 fraction of followups. We see a similar
pattern in Twitter dataset as well. When [ = 5, GREEDY covers
0.92 fraction of followups (same as 0.92 by EXHAUSTIVE),
while the coverage from MOST-POPULAR and RANDOM is
0.66 and 0.35. Notice that EXHAUSTIVE took too long to
complete for [ > 5 on Twitter.

Running Times and Memory Usage. Fig. [] shows the
running time of various algorithms, on both datasets. As can be
seen, our GREEDY algorithm is an order of magnitude faster
than the optimal EXHAUSTIVE algorithm. For instance, on
Flixster, when £ = 6 and | = 3, while GREEDY takes 26
ms to finish, EXHAUSTIVE finishes in 3,748 ms, that is, it
takes 144 times longer than GREEDY. The other algorithms —
MOST-POPULAR and RANDOM are faster than GREEDY as we
foresaw earlier. They complete in 5 ms and 3 ms. Similarly,
on Twitter, when kK = 6 and [ = 5, EXHAUSTIVE (finishes
in 597 ms) is 18 times slower than GREEDY (finishes in 32.5
ms). On the other hand, MOST-POPULAR and RANDOM take
just 15 ms and 27 ms, respectively.

All the algorithms consume approximately the same
amount of memory, up to a maximum of 446 MB and 2.92 GB
on Flixster and Twitter, respectivly. This is because the mem-
ory usage primarily depends on the number of features and
the number of followups they cover. To be precise, GREEDY
incurs additional space overhead on account of maintaining
heaps of features, but this additional overhead is under 1 MB,
which is negligible.

In sum, our GREEDY algorithm performs essentially as well as
EXHAUSTIVE algorithm in terms of coverage achieved, while
being much more efficient in running time.

VI. CONCLUSIONS AND FUTURE WORK

Ever since Domingos and Richardson [6] introduced the
notion of network value of users in social networks, a lot of
work has been done to identify influencers, community leaders,
trendsetters etc. Work in this area has been further ignited
since Kempe et al. [14]] popularized influence maximization
as a discrete optimization problem. Most of the current ap-
proaches largely work as a black box that just outputs a list of
influencers or seeds, along with a scalar which is an estimate
of the expected influence spread. A marketer would want to
investigate the influence demographics of the seeds returned to
her and validate them with her own independent survery and/or
background knowledge. Motivated by this, our goal has been to
open up the above black box and provide informative and crisp

explanations for the influence distribution of influencers, thus
allowing the marketer to drill down into a seed and address
deeper analytic questions about what the seed is good for.

We formalized the above problem as that of finding up
to k explanations, each containing [ or more features, while
maximizing the coverage. We showed the problem is not only
NP-hard to solve optimally, but is NP-hard to approximate
within any reasonable factor. Yet, exploiting the nice properties
of the objective function, we developed a simple greedy
algorithm. Our experiments on Flixster and Twitter datasets
show the validity and usefulness of the explanations generated
by our framework. Furthermore, they show that the greedy
algorithm significantly outperforms several natural baselines.
One of these is an exhaustive approximation algorithm that by
repeatedly finding the explanation with the greatest marginal
coverage gain achieves a (1-1/e)-approximation of the optimal
coverage. However, our greedy algorithm achieves a coverage
very close to that of the exhaustive approximation algorithm
and is an order of magnitude or more faster. It is interesting
to investigate how algorithms for mining maximum frequency
item sets of a given cardinality (e.g., see [12]) can be leveraged
for finding explanations with the maximum marginal gain.

Several interesting problems remain open. We give one
example. Advertisers often like to target users in terms of prop-
erties like demographics, instead of targeting specific users.
E.g., if we want to target female college grads in California,
what would be an effective set of explanations that would
describe the influence distribution of this demographic? How
can we generate these explanations efficiently and validate
them?
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