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Abstract—The combination of multiple classifiers using ensem-
ble methods is increasingly important for making progress in a
variety of difficult prediction problems. We present a comparative
analysis of several ensemble methods through two case studies
in genomics, namely the prediction of genetic interactions and
protein functions, to demonstrate their efficacy on real-world
datasets and draw useful conclusions about their behavior. These
methods include simple aggregation, meta-learning, cluster-based
meta-learning, and ensemble selection using heterogeneous clas-
sifiers trained on resampled data to improve the diversity of
their predictions. We present a detailed analysis of these methods
across 4 genomics datasets and find the best of these methods
offer statistically significant improvements over the state of the
art in their respective domains. In addition, we establish a
novel connection between ensemble selection and meta-learning,
demonstrating how both of these disparate methods establish a
balance between ensemble diversity and performance.

Index Terms—Bioinformatics; Genomics; Supervised learning;
Ensemble methods; Stacking; Ensemble selection

I. INTRODUCTION

Ensemble methods combining the output of individual clas-
sifiers [1]], [2] have been immensely successful in producing
accurate predictions for many complex classification tasks [J3]-
[9l. The success of these methods is attributed to their ability
to both consolidate accurate predictions and correct errors
across many diverse base classifiers [[10]. Diversity is key
to ensemble performance: If there is complete consensus the
ensemble cannot outperform the best base classifier, yet an
ensemble lacking any consensus is unlikely to perform well
due to weak base classifiers. Successful ensemble methods
establish a balance between the diversity and accuracy of the
ensemble [[11]], [12]]. However, it remains largely unknown how
different ensemble methods achieve this balance to extract
the maximum information from the available pool of base
classifiers [[11]], [[13]]. A better understanding of how different
ensemble methods utilize diversity to increase accuracy using
complex datasets is needed, which we attempt to address with
this paper.

Popular methods like bagging [[14] and boosting [[15] gener-
ate diversity by sampling from or assigning weights to training
examples but generally utilize a single type of base classifier
to build the ensemble. However, such homogeneous ensembles
may not be the best choice for problems where the ideal base
classifier is unclear. One may instead build an ensemble from

the predictions of a wide variety of heterogeneous base clas-
sifiers such as support vector machines, neural networks, and
decision trees. Two popular heterogeneous ensemble methods
include a form of meta-learning called stacking [16], [17] as
well as ensemble selection [18]], [19]. Stacking constructs a
higher-level predictive model over the predictions of base clas-
sifiers, while ensemble selection uses an incremental strategy
to select base predictors for the ensemble while balancing
diversity and performance. Due to their ability to utilize
heterogeneous base classifiers, these approaches have superior
performance across several application domains [6]], [20].

Computational genomics is one such domain where classi-
fication problems are especially difficult. This is due in part
to incomplete knowledge of how the cellular phenomenon
of interest is influenced by the variables and measurements
used for prediction, as well as a lack of consensus regarding
the best classifier for specific problems. Even from a data
perspective, the frequent presence of extreme class imbalance,
missing values, heterogeneous data sources of different scale,
overlapping feature distributions, and measurement noise fur-
ther complicate classification. These difficulties suggest that
heterogeneous ensembles constructed from a large and diverse
set of base classifiers, each contributing to the final predictions,
are ideally suited for this domain. Thus, in this paper we
use real-world genomic datasets (detailed in Section to
analyze and compare the performance of ensemble methods
for two important problems in this area: 1) prediction of pro-
tein functions [21f], and 2) predicting genetic interactions [9],
both using high-throughput genomic datasets. Constructing
accurate predictive models for these problems is notoriously
difficult for the above reasons, and even small improvements in
predictive accuracy have the potential for large contributions to
biomedical knowledge. Indeed, such improvements uncovered
the functions of mitochondrial proteins [22] and several other
critical protein families. Similarly, the computational discovery
of genetic interactions between the human genes EGFR-IFIH1
and FKBPIL-MOSC2 potentially enables novel therapies for
glioblastoma [23]], the most aggressive type of brain tumor in
humans.

Working with important problems in computational ge-
nomics, we present a comparative analysis of several methods
used to construct ensembles from large and diverse sets of
base classifiers. Several aspects of heterogeneous ensemble



TABLE I
DETAILS OF GENETIC INTERACTION (GI) AND PROTEIN FUNCTION (PF)
DATASETS INCLUDING THE NUMBER OF FEATURES, NUMBER OF
EXAMPLES IN THE MINORITY (POSITIVE) AND MAJORITY (NEGATIVE)
CLASSES, AND TOTAL NUMBER OF EXAMPLES.

Problem  Features Positives  Negatives Total
GI 152 9,994 125,509 135,503
PF1 300 382 3,597 3,979
PF2 300 344 3,635 3,979
PF3 300 327 3,652 3,979

construction that have not previously been addressed are
examined in detail including a novel connection between
ensemble selection and meta-learning, the optimization of
the diversity/accuracy tradeoff made by these disparate ap-
proaches, and the role of calibration in their performance. This
analysis sheds light on how variants of simple greedy ensemble
selection achieve enhanced performance, why meta-learning
often out-performs ensemble selection, and several directions
for future work. The insights obtained from the performance
and behavior of ensemble methods for these complex domain-
driven classification problems should have wide applicability
across diverse applications of ensemble learning.

We begin by detailing our datasets, experimental method-
ology, and the ensemble methods studied (namely ensemble
selection and stacking) in Section [[Il This is followed by a
discussion of their performance in terms of standard evaluation
metrics in Section [l We next examine how the roles of
diversity and accuracy are balanced in ensemble selection and
establish a connection with stacking by examining the weights
assigned to base classifiers by both methods (Section [[V-A).
In Section we discuss the impact of classifier calibration
on heterogeneous ensemble performance, an important issue
that has only recently received attention [24]]. We conclude
and indicate directions for future work in Section [Vl

II. MATERIALS AND METHODS
A. Problem Definitions and Datasets

For this study we focus on two important problems in
computational genomics: The prediction of protein functions,
and the prediction of genetic interactions. Below we describe
these problems and the datasets used to assess the efficacy of
various ensemble methods. A summary of these datasets is
given in Table

1) Protein Function Prediction: A key goal in molecular
biology is to infer the cellular functions of proteins. To keep
pace with the rapid identification of proteins due to advances
in genome sequencing technology, a large number of computa-
tional approaches have been developed to predict various types
of protein functions. These approaches use various genomic
datasets to characterize the cellular functions of proteins or
their corresponding genes [21]. Protein function prediction is
essentially a classification problem using features defined for
each gene or its resulting protein to predict whether the protein
performs a certain function (1) or not (0). We use the gene
expression compendium of Hughes et al. [25] to predict the

TABLE 11
FEATURE MATRIX OF GENETIC INTERACTIONS WHERE 12 ROWS
REPRESENT PAIRS OF GENES MEASURED BY FEATURES F} ... F}, HAVING
LABEL 1 IF THEY ARE KNOWN TO INTERACT, O IF THEY DO NOT, AND ? IF
THEIR INTERACTION HAS NOT BEEN ESTABLISHED.

Gene Pair Fy F» ces Fon Interaction?
Pairy 05 01 - 0.7 1
Pairo 02 07 - 0.8 0
Pair,, 03 09 0.1 ?

functions of roughly 4,000 baker’s yeast (S. cerevisiae) genes.
The three most abundant functional labels from the list of
Gene Ontology Biological Process terms compiled by Myers
et al. [26]] are used in our evaluation. The three corresponding
prediction problems are referred to as PF1, PF2, and PF3
respectively and are suitable targets for classification case
studies due to their difficulty. These datasets are publicly
available from Pandey et al. [27].

2) Genetic Interaction Prediction: Genetic interactions
(GIs) are a category of cellular interactions that are inferred
by comparing the effect of the simultaneous knockout of two
genes with the effect of knocking them out individually [28].
The knowledge of these interactions is critical for under-
standing cellular pathways [29], evolution [30], and numerous
other biological processes. Despite their utility, a general
paucity of GI data exists for several organisms important
for biomedical research. To address this problem, Pandey
et al. [9] used ensemble classification methods to predict
GIs between genes from S. cerevisiae (baker’s yeast) using
functional relationships between gene pairs such as correlation
between expression profiles, extent of co-evolution, and the
presence or absence of physical interactions between their
corresponding proteins. We use the data from this study to
assess the efficacy of heterogeneous ensemble methods for
predicting GIs from a set of 152 features (see Table [II| for
an illustration) and measure the improvement of our ensemble
methods over this state-of-the-art.

B. Experimental Setup

A total of 27 heterogeneous classifier types are trained
using the statistical language R [31]] in combination with its
various machine learning packages, as well as the RWeka
interface [32] to the data mining software Weka [33]] (see
Table [ITI). Among these are classifiers based on boosting and
bagging which are themselves a type of ensemble method, but
whose performance can be further improved by inclusion in a
heterogeneous ensemble. Classifiers are trained using 10-fold
cross-validation where each training split is resampled with
replacement 10 times then balanced using undersampling of
the majority class. The latter is a standard and essential step
to prevent learning decision boundaries biased to the majority
class in the presence of extreme class imbalance such as ours
(see Table E[) In addition, a 5-fold nested cross-validation is
performed on each training split to create a validation set for



TABLE III
INDIVIDUAL PERFORMANCE OF 27 BASE CLASSIFIERS ON GENETIC
INTERACTION AND PROTEIN FUNCTION DATASETS EVALUATED USING A
COMBINATION OF R [31]], CARET [34]], AND THE RWEKA INTERFACE [32]|
TO WEKA [33]]. DETAILS OF EACH CLASSIFIER ARE OMITTED FOR
BREVITY. R PACKAGES INCLUDE A CITATION DESCRIBING THE METHOD.
FOR ALL OTHERS, SEE THE WEKA DOCUMENTATION. FOR BOOSTING
METHODS WITH SELECTABLE BASE LEARNERS, THE DEFAULT (NORMALLY
A DECISION STUMP) IS USED.

Performance
Classifier GI  PFI PF2  PF3
Functions
glmboost [35] 0.72 0.65 071 0.72
glmnet [36] 0.73 0.63 071 0.73
Logistic 0.73 0.61 0.66 0.71
MultilayerPerceptron  0.74  0.64 0.71 0.74
multinom [37] 0.73 0.61 0.67 0.71
RBFClassifier 073 0.62 0.69 0.74
RBFNetwork 0.56 051 052 0.58
SGD 0.73 0.63 0.70 0.73
SimpleLogistic 0.73 0.65 0.72 0.73
SMO 0.73 0.64 070 0.73
SPegasos 0.66 0.52 056 0.56
VotedPerceptron 0.65 0.62 0.70 0.71
Trees
AdaBoostM 1 0.71 0.65 0.67 0.73
ADTree 0.73 0.64 0.67 0.5
gbm [38] 0.77 0.68 0.72 0.78
J48 0.75 0.60 0.65 0.71
LADTree 0.74 0.64 0.69 0.5
LMT 0.76 0.62 0.71 0.75
LogitBoost 073 0.65 0.69 0.75
MultiBoostAB 0.70 0.63 0.66 0.70
RandomTree 0.71 0.57 0.60 0.63
f [39] 079 0.67 072 0.76
Rule-Based
JRip 0.76 0.63 0.67 0.70
PART 0.76  0.59 0.65 0.73
Other
1Bk 0.70 0.61 0.66 0.70
pam [40] 0.71 0.62 0.66 0.64
VFI 0.64 0.55 056 0.63

the corresponding test split. This validation set is used for the
meta-learning and ensemble selection techniques described in
Section The final result is a pool of 270 classifiers.

Performance is measured by combining the predictions
made on each test split resulting from cross-validation into
a single set and calculating the area under the Receiver Oper-
ating Characteristic curve (AUC). The performance of the 27
base classifiers for each dataset is given in Table where
the bagged predictions for each base classifier are averaged
before calculating the AUC. These numbers become important
in later discussions since ensemble methods involve a tradeoff
between the diversity of predictions and the performance of
base classifiers constituting the ensemble.

C. Ensemble Methods

1) Simple Aggregation: The predictions of each base clas-
sifier become columns in a matrix where rows are instances
and the entry at row ¢, column j is the probability of instance ¢
belonging to the positive class as as predicted by classifier j.
We evaluate ensembles using AUC by applying the mean

across rows to produce an aggregate prediction for each
instance.

2) Meta-Learning: Meta-learning is a general technique for
improving the performance of multiple classifiers by using the
meta information they provide. A common approach to meta-
learning is stacked generalization (stacking) [17] that trains a
higher-level (level I) classifier on the outputs of base (level 0)
classifiers.

Using the standard formulation of Ting and Witten [41],
we perform meta-learning using stacking with a level 1 lo-
gistic regression classifier trained on the probabilistic outputs
of multiple heterogeneous level O classifiers. Though other
classifiers may be used, a simple logistic regression meta-
classifier helps avoid overfitting which typically results in
superior performance [41]. In addition, its coefficients have
an intuitive interpretation as the weighted importance of each
level O classifier [6].

The layer 1 classifier is trained on a validation set created
by the nested cross-validation of a particular training split and
evaluated against the corresponding test split to prevent the
leaking of label information. Overall performance is evaluated
as described in Section

In addition to stacking across all classifier outputs, we
also evaluate stacking using only the aggregate output of
each resampled (bagged) base classifier. For example, the
outputs of all 10 SVM classifiers are averaged and used as
a single level 0 input to the meta learner. Intuitively this
combines classifier outputs that have similar performance and
calibration, which allows stacking to focus on weights between
(instead of within) classifier types.

3) Cluster-Based Meta-Learning: A variant on traditional
stacking is to first cluster classifiers with similar predictions,
then learn a separate level 1 classifier for each cluster [6].
Alternately, classifiers within a cluster can first be combined
by taking their mean (for example) and then learning a
level 1 classifier on these per-cluster averaged outputs. This
is a generalization of the aggregation approach described
in Section but using a distance measure instead of
restricting each cluster to bagged homogeneous classifiers. We
use hierarchical clustering with 1 — |p| (where p is Pearson’s
correlation) as a distance measure. We found little difference
between alternate distance measures based on Pearson and
Spearman correlation and so present results using only this
formulation.

For simplicity, we refer to the method of stacking within
clusters and taking the mean of level 1 outputs as intra-cluster
stacking. Its complement, inter-cluster stacking, averages the
outputs of classifiers within a cluster then performs stacking on
the averaged level O outputs. The intuition for both approaches
is to group classifiers with similar (but ideally non-identical)
predictions together and learn how to best resolve their dis-
agreements via weighting. Thus the diversity of classifier
predictions within a cluster is important, and the effectiveness
of this method is tied to a distance measure that can utilize
both accuracy and diversity.



4) Ensemble Selection: Ensemble selection is the pro-
cess of choosing a subset of all available classifiers that
perform well together, since including every classifier may
decrease performance. Testing all possible classifier com-
binations quickly becomes infeasible for ensembles of any
practical size and so heuristics are used to approximate the
optimal subset. The performance of the ensemble can only
improve upon that of the best base classifier if the ensem-
ble has a sufficient pool of accurate and diverse classifiers,
and so successful selection methods must balance these two
requirements.

We establish a baseline for this approach by performing
simple greedy ensemble selection, sorting base classifiers by
their individual performance and iteratively adding the best
unselected classifier to the ensemble. This approach disregards
how well the classifier actually complements the performance
of the ensemble.

Improving on this approach, Caruana et al’s ensemble
selection (CES) [[18]], [19] begins with an empty ensemble and
iteratively adds new predictors that maximize its performance
according to a chosen metric (here, AUC). At each iteration, a
number of candidate classifiers are randomly selected and the
performance of the current ensemble including the candidate
is evaluated. The candidate resulting in the best ensemble
performance is selected and the process repeats until a maxi-
mum ensemble size is reached. The evaluation of candidates
according to their performance with the ensemble, instead of
in isolation, improves the performance of CES over simple
greedy selection.

Additional improvements over simple greedy selection in-
clude 1) initializing the ensemble with the top n base clas-
sifiers, and 2) allowing classifiers to be added multiple times.
The latter is particularly important as without replacement,
the best classifiers are added early and ensemble performance
then decreases as poor predictors are forced into the ensem-
ble. Replacement gives more weight to the best performing
predictors while still allowing for diversity. We use an initial
ensemble size of n = 2 to reduce the effect of multiple bagged
versions of a single high performance classifier dominating the
selection process, and (for completeness) evaluate all candidate
classifiers instead of sampling.

Ensemble predictions are combined using a cumulative
moving average to speed the evaluation of ensemble perfor-
mance for each candidate predictor. Selection is performed on
the validation set produced by nested cross-validation and the
resulting ensemble evaluated as described in Section [[I-B

D. Diversity Measures

The diversity of predictions made by members of an en-
semble determines the ensemble’s ability to outperform the
best individual, a long-accepted property which we explore in
the following sections. We measure diversity using Yule’s Q-
statistic [42]] by first creating predicted labels from thresholded
classifier probabilities, yielding a 1 for values greater than 0.5
and 0 otherwise. Given the predicted labels produced by each
pair of classifiers D; and Dy, we generate a contingency table

counting how often each classifier produces the correct label
in relation to the other:

Dy, correct (1)

Nll
NOI

Dy, incorrect (0)

NlO
NOO

D; correct (1)
D, wrong (0)

The pairwise () statistic is then defined as:

NllNOO _ NOlNIO
~ NI1p00 + NOINTO °

Qi k (1)
This produces values tending towards 1 when D; and Dy
correctly classify the same instances, 0 when they do not,
and —1 when they are negatively correlated. We evaluated
additional diversity measures such as Cohen’s x-statistic [43]]
but found little practical difference between the measures (in
agreement with Kuncheva et al. [11]]) and focus on @ for
its simplicity. Multicore performance and diversity measures
are implemented in C++ using the Rcpp package [44]. This
proves essential for their practical use with large ensembles
and nested cross validation.

We adjust raw @ values using the transformation 1 — |Q)
so that O represents no diversity and 1 represents maximum
diversity for graphical clarity.

III. ENSEMBLE PERFORMANCE

Performance of the methods described in Section is
summarized in Table Overall, aggregated stacking is the
best performer and edges out CES for all our datasets. The
use of clustering in combination with stacking also performs
well for certain cluster sizes k. Intra-cluster stacking performs
best with cluster sizes 2, 14, 20, and 15 for GI, PF1, PF2,
and PF3, respectively. Inter-cluster stacking is optimal for
sizes 24, 33, 33, and 36 on the same datasets. Due to the
size of the GI dataset, only 10% of the validation set is
used for non-aggregate stacking and cluster stacking methods.
Performance levels off beyond 10% and so this approach does
not significantly penalize these methods. This step was not
necessary for the other methods and datasets.

Ensemble selection also performs well, though we anticipate
issues of calibration (detailed in Section could have a
negative impact since the mean is used to aggregate ensemble
predictions. Greedy selection achieves best performance for
ensemble sizes of 10, 14, 45, and 38 for GI, PF1, PF2, and
PF3, respectively. CES is optimal for sizes 70, 43, 34, and 56
for the same datasets. Though the best performing ensembles
for both selection methods are close in performance, simple
greedy selection is much worse for non-optimal ensemble sizes
than CES and its performance typically degrades after the best
few base classifiers are selected (see Section [[V-A). Thus, on
average CES is the superior selection method.

In agreement with Altman et al. [6], we find the mean
is the highest performing simple aggregation method for
combining ensemble predictions. However, because we are
using heterogeneous classifiers that may have uncalibrated
outputs, the mean combines predictions made with different



TABLE IV
AUC OF ENSEMBLE LEARNING METHODS FOR PROTEIN FUNCTION AND
GENETIC INTERACTION DATASETS. METHODS INCLUDE MEAN
AGGREGATION, GREEDY ENSEMBLE SELECTION, SELECTION WITH
REPLACEMENT (CES), STACKING WITH LOGISTIC REGRESSION,
AGGREGATED STACKING (AVERAGING RESAMPLED HOMOGENEOUS BASE
CLASSIFIERS BEFORE STACKING), STACKING WITHIN CLUSTERS THEN
AVERAGING (INTRA), AND AVERAGING WITHIN CLUSTERS THEN
STACKING (INTRA). THE BEST PERFORMING BASE CLASSIFIER (RANDOM
FOREST FOR THE GI DATASET AND GBM FOR PFS) IS GIVEN FOR
REFERENCE. STARRED VALUES ARE GENERATED FROM A SUBSAMPLE OF
THE VALIDATION SET DUE TO ITS SIZE; SEE TEXT FOR DETAIL.

Performance
Method GI PF1 PF2 PF3
Best Base Classifier 0.79 0.68 0.72 0.78
Mean Aggregation 0.763 0.669 0.732  0.773
Greedy Selection 0.792 0.684 0.734  0.779
CES 0.802 0.686 0.741 0.785
Stacking (Aggregated)  0.812 0.687 0.742 0.788
Stacking (All) 0.809* 0.684 0.726 0.773
Intra-Cluster Stacking ~ 0.799*  0.684  0.725 0.775
Inter-Cluster Stacking  0.786*  0.683  0.735  0.783
TABLE V

PAIRWISE PERFORMANCE COMPARISON OF MULTIPLE NON-ENSEMBLE
AND ENSEMBLE METHODS ACROSS DATASETS. ONLY PAIRS WITH
STATISTICALLY SIGNIFICANT DIFFERENCES, DETERMINED BY
FRIEDMAN/NEMENYI TESTS AT o« = 0.05, ARE SHOWN.

Method A Method B p-value
Best Base Classifier CES 0.001902
Best Base Classifier Stacking (Aggregated)  0.000136
CES Inter-Cluster Stacking ~ 0.037740
CES Intra-Cluster Stacking  0.014612
CES Mean Aggregation 0.000300
CES Stacking (All) 0.029952
Greedy Selection Mean Aggregation 0.029952
Greedy Selection Stacking (Aggregated)  0.005364
Inter-Cluster Stacking ~ Mean Aggregation 0.047336
Inter-Cluster Stacking  Stacking (Aggregated)  0.003206
Intra-Cluster Stacking  Stacking (Aggregated)  0.001124
Mean Aggregation Stacking (Aggregated)  0.000022
Stacking (Aggregated)  Stacking (All) 0.002472

TABLE VI
GROUPED PERFORMANCE COMPARISON OF MULTIPLE NON-ENSEMBLE
AND ENSEMBLE METHODS ACROSS DATASETS. METHODS SHARING A
GROUP LETTER HAVE STATISTICALLY SIMILAR PERFORMANCE,
DETERMINED BY FRIEDMAN/NEMENYI TESTS AT o = 0.05. AGGREGATED
STACKING AND CES DEMONSTRATE THE BEST PERFORMANCE, WHILE
GREEDY SELECTION IS SIMILAR TO CES (BUT NOT STACKING).

Group  Method Rank Sum
a Stacking (Aggregated) 32
ab CES 27
be Greedy Selection 18
c Inter-Cluster Stacking 17
cd Stacking (All) 16.5
cd Intra-Cluster Stacking 15
cd Best Base Classifier 11
d Mean Aggregation 7.5

scales or notions of probability. This explains its poor perfor-
mance compared to the best base classifier in a heterogeneous
ensemble and emphasizes the need for ensemble selection or
weighting via stacking to take full advantage of the ensemble.
We discuss the issue of calibration in Section [V-Bl

Thus, we observe consistent performance trends across these
methods. However, to draw meaningful conclusions it is criti-
cal to determine if the performance differences are statistically
significant. For this we employ the standard methodology
given by DemSar [45] to test for statistically significant perfor-
mance differences between multiple methods across multiple
datasets. The Friedman test [46] first determines if there
are statistically significant differences between any pair of
methods over all datasets, followed by a post-hoc Nemenyi
test [47] to calculate a p-value for each pair of methods. This
is the non-parametric equivalent of ANOVA combined with a
Tukey HSD post-hoc test where the assumption of normally
distributed values is removed by using rank transformations.
As many of the assumptions of parametric tests are violated
by machine learning algorithms, the Friedman/Nemenyi test is
preferred despite reduced statistical power [45]].

Using the Freidman/Nemeyi approach with a cutoff
of o = 0.05, the pairwise comparison between our ensemble
and non-ensemble methods is shown in Table [Y} For brevity,
only methods with statistically significant performance differ-
ences are shown. The ranked performance of each method
across all datasets is shown in Table Methods sharing a
label in the group column have statistically indistinguishable
performance based on their summed rankings. This table
shows that aggregated stacking and CES have the best perfor-
mance, while CES and pure greedy selection have similar per-
formance. However, aggregated stacking and greedy selection
do not share a group as their summed ranks are too distant and
thus have a significant performance difference. The remaining
approaches including non-aggregated stacking are statistically
similar to mean aggregation and motivates our inclusion of
cluster-based stacking, whose performance may improve given
a more suitable distance metric. These rankings statistically
reinforce the general trends presented earlier in Table

We note that nested cross-validation, relative to a single
validation set, improves the performance of both stacking and
CES by increasing the amount of meta data available as well
as the bagging that occurs as a result. Both effects reduce
overfitting but performance is still typically better with smaller
ensembles. More nested folds increase the quality of the meta
data and thus affects the performance of these methods as well,
though computation time increases substantially and motivates
our selection of k£ = 5 nested folds.

Finally, we emphasize that each method we evaluate out-
performs the previous state of the art AUC of 0.741 for
GI prediction [9]]. In particular, stacked aggregation results
in the prediction of 988 additional genetic interactions at
a 10% false discovery rate. In addition, these heterogeneous
ensemble methods out-perform random forests and gradient
boosted regression models which are themselves homogeneous
ensembles. This demonstrates the value of heterogeneous
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Fig. 1. Performance as a function of diversity for all pairwise combinations
of 27 base classifiers on the GI (top figure) and PF3 (bottom figure) datasets.
More diverse combinations typically result in less performance except for
high-performance classifiers such as random forests and generalized boosted
regression models, whose points are shown in red if they are part of a pair.
Raw @ values are adjusted so that larger values imply more diversity.

ensembles for improving predictive performance.

IV. ENSEMBLE CHARACTERISTICS
A. The Role of Diversity

The relationship between ensemble diversity and perfor-
mance has immediate impact on practitioners of ensemble
methods, yet has not formally been proven despite extensive
study [11]], [13]]. For brevity we analyze this tradeoff using GI
and PF3 as representative datasets, though the trends observed
generalize to PF1 and PF2.

Figure [I] presents a high-level view of the relationship
between performance and diversity, plotting the diversity of
pairwise classifiers against their performance as an ensemble
by taking the mean of their predictions. This figure shows the
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Fig. 2. Ensemble diversity and performance as a function of iteration
number for both greedy selection (bottom curve) and CES (top curve) on
the GI and PF3 datasets. For GI (top figure), greedy selection fails to
improve diversity and performance decreases with ensemble size, while CES
successfully balances diversity and performance (shown by a shift in color
from red to yellow as height increases) and reaches an equilibrium over time.
For PF3 (bottom figure), greedy selection manages to improve diversity around
iteration 30 but accuracy decreases, demonstrating that diverse predictions
alone are not enough for accurate ensembles.

complicated relationship between diversity and performance
that holds for each of our datasets: Two highly diverse
classifiers are more likely to perform poorly due to lower
prediction consensus. There are exceptions, and these tend
to include well-performing base classifiers such as random
forests and gradient boosted regression models (shown in red
in Figure[T)) which achieve high AUC on their own and stand to
gain from a diverse partner. Diversity works in tension with
performance, and while improving performance depends on
diversity, the wrong kind of diversity limits performance of
the ensemble [48].

Figure [2] demonstrates this tradeoff by plotting ensemble
diversity and performance as a function of the iteration number
of the simple greedy selection and CES methods detailed in



TABLE VII
THE MOST-WEIGHTED CLASSIFIERS PRODUCED BY STACKING WITH
LOGISTIC REGRESSION (WEIGHT™) AND CES (WEIGHT®) FOR THE PF3
DATASET, ALONG WITH THEIR AVERAGE PAIRWISE DIVERSITY AND

PERFORMANCE.
Classifier Weight™  Weight® Div. AUC
rf 0.25 021 039 071
gbm 0.20 027 042 072
RBFClassifier - 0.05 045 0.71
MultilayerPerceptron 0.09 - 046 0.70
SGD 0.09 0.04 047  0.69
VFI 0.11 0.11 0.71 0.66
1Bk 0.09 0.13 072 0.68

Section [II| for the GI (top figure) and PF3 (bottom figure)
datasets. These figures reveal how CES (top curve) success-
fully exploits the tradeoff between diversity and performance
while a purely greedy approach (bottom curve) actually de-
creases in performance over iterations after the best individual
base classifiers are added. This is shown via coloring, where
CES shifts from red to yellow (better performance) as its
diversity increases while greedy selection grows darker red
(worse performance) as its diversity only slightly increases.
Note that while greedy selection increases ensemble diversity
around iteration 30 for PF3, overall performance continues to
decrease. This demonstrates that diversity must be balanced
with accuracy to create well-performing ensembles.

To illustrate using the PF3 panel of Figure 2} the first classi-
fiers chosen by CES (in order) are rf.1, rf.7, gbm.2, RBFClas-
sifier.0, MultilayerPerceptron.9, and gbm.3 where numbers
indicate bagged versions of a base classifier. RBFClassifier.0 is
a low performance, high diversity classifier while the others are
the opposite (see Table [l1]] for a summary of base classifiers).
This ensemble shows how CES tends to repeatedly select
base classifiers that improve performance, then selects a more
diverse and typically worse performing classifier. Here the
former are different bagged versions of a random forest while
the latter is RBFClassifier.0. This manifests in the left part
of the upper curve where diversity is low and then jumps to
its first peak. After this, a random forest is added again to
balance performance and diversity drops until the next peak.
This process is repeated while the algorithm approaches a
weighted equilibrium of high performing, low diversity and
low performing, high diversity classifiers.

This agrees with recent observations that diversity enforces
a kind of regularization for ensembles [13]], [49]: Performance
stops increasing when there is no more diversity to extract
from the pool of possible classifiers. We see this in the PF3
panel of Figure 2| as performance reaches its peak, where small
oscillations in diversity represent re-balancing the weights to
maintain performance past the optimal ensemble size.

Since ensemble selection and stacking are top performers
and can both be interpreted as learning to weight different
base classifiers, we next compare the most heavily weighted
classifiers selected by CES (Weight©) with the coefficients of
a level 1 logistic regression meta-learner (Weight”). We com-

TABLE VIII
CANDIDATE CLASSIFIERS SORTED BY MEAN PAIRWISE DIVERSITY AND
PERFORMANCE. THE MOST HEAVILY WEIGHTED CLASSIFIERS FOR BOTH
CES AND STACKING ARE SHOWN IN BOLD. THIS TREND, WHICH HOLDS
ACROSS DATASETS, SHOWS THE PAIRING OF HIGH-PERFORMANCE
LOW-DIVERSITY CLASSIFIERS WITH THEIR COMPLEMENTS,
DEMONSTRATING HOW SEEMINGLY DISPARATE APPROACHES CREATE A
BALANCE OF DIVERSITY AND PERFORMANCE.

Classifier Diversity  AUC
rf 0.386  0.712
gbm 0419 0.720
glmnet 0.450 0.694
glmboost 0.452  0.680
RBFClassifier 0453 0.713
SimpleLogistic 0.459  0.689
MultilayerPerceptron 0459 0.706
SMO 0.462  0.695
SGD 0.470  0.693
LMT 0472  0.692
pam 0.525 0.673
LogitBoost 0.528  0.691
ADTree 0.539  0.682
VotedPerceptron 0.540 0.694
multinom 0.553  0.677
LADTree 0.568  0.678
Logistic 0.574  0.669
AdaBoostM 1 0.584  0.684
PART 0.615  0.652
MultiBoostAB 0.615  0.679
J48 0.632  0.645
JRip 0.687  0.627
VFI 0.713  0.662
IBk 0.720  0.682
RBFNetwork 0.778  0.653
RandomTree 0.863  0.602
SPegasos 0.980 0.634

pute Weight® as the normalized counts of classifiers included
in the ensemble, resulting in greater weight for classifiers
selected multiple times. These weights for PF3 are shown in
Table

Nearly the same classifiers receive the most weight under
both approaches (though logistic regression coefficients were
not restricted to positive values so we cannot directly compare
weights between methods). However, the general trend of
the relative weights is clear and explains the oscillations
seen in Figure 2} High performance, low diversity classifiers
are repeatedly paired with higher diversity, lower performing
classifiers. A more complete picture of selection emerges by
examining the full list of candidate base classifiers (Table [VIII)
with the most weighted ensemble classifiers shown in bold.
The highest performing, lowest diversity GBM and RF classi-
fiers appear at the top of the list while VFI and IBk are near the
bottom. Though there are more diverse classifiers than VFI and
IBKk, they were not selected due to their lower performance.

This example illustrates how diversity and performance are
balanced during selection, and also gives new insight into
the nature of stacking due to the convergent weights of these
seemingly different approaches. A metric incorporating both
measures should increase the performance of hybrid methods
such as cluster-based stacking, which we plan to investigate
in future work.
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Fig. 3. Performance as a function of calibration as measured by the Brier score [S0] for base classifiers (left), ensembles for each iteration of CES (middle),

and ensembles for each strictly greedy iteration (right). Iterations for greedy selection move from the upper left to the lower right, while CES starts in the lower
right and moves to the upper left. This shows better-calibrated (lower Brier score) classifiers and ensembles have higher average performance and illustrates
the iterative performance differences between the methods. Stacking with logistic regression produces outputs with approximately half the best Brier score of
CES, explaining the difference in final classifier weights leading to the superior performance of stacking.

B. The Role of Calibration

A key factor in the performance difference between stacking
and CES is illustrated by stacking’s selection of Multilayer-
Perceptron instead of RBFClassifier for PF3. This difference
in the relative weighting of classifiers, or the exchange of one
classifier for another in the final ensemble, persists across our
datasets. We suggest this is due to the ability of the layer 1
classifier to learn a function on the probabilistic outputs of
base classifiers and compensate for potential differences in
calibration, resulting in the superior performance of stacking.

A binary classifier is said to be well-calibrated if it is cor-
rect p percent of the time for predictions of confidence p [24]].
However, accuracy and calibration are related but not the same:
A binary classifier that flips a fair coin for a balanced dataset
will be calibrated but not accurate. Relatedly, many well-
performing classifiers do not produce calibrated probabilities.
Measures such as AUC are not sensitive to calibration for
base classifiers, and the effects of calibration on heterogeneous
ensemble learning have only recently been studied [24]. This
section further investigates this relationship.

To illustrate a practical example of calibration, consider a
support vector machine. An uncalibrated SVM outputs the
distance of an instance from a hyperplane to generate a
probability. This is not a true posterior probability of an
instance belonging to a class, but is commonly converted to
such using Platt’s method [51]]. In fact, this is analogous to
fitting a layer 1 logistic regression to the uncalibrated SVM
outputs with a slight modification to avoid overfitting. This
approach is not restricted to SVMs and additional methods
such as isotonic regression are commonly used for both binary
and multi-class problems [352].

Regardless of the base classifier, a lack of calibration may
effect the performance of ensemble selection methods such as
CES since the predictions of many heterogeneous classifiers
are combined using simple aggregation methods such as the

mean. Several methods exist for evaluating the calibration of
probabilistic classifiers. One such method, the Brier score,
assesses how close (on average) a classifier’s probabilistic
output is to the correct binary label [50]:

1 N
BS = N;(fi —0;)? (2)

over all instances ¢. This is simply the mean squared error
evaluated in the context of probabilistic binary classification.
Lower scores indicate better calibration.

Figure [3] plots the Brier scores for each base classifier
against its performance for the GI dataset as well as the
ensemble Brier scores for each iteration of CES and greedy
selection. This shows that classifiers and ensembles with
calibrated outputs generally perform better. Note in particular
the calibration and performance of simple greedy selection,
with initial iterations in the upper left of the panel showing
high performing well-calibrated base classifiers chosen for
the ensemble, but moving to the lower right as sub-optimal
classifiers are forced into the ensemble. In contrast, CES starts
with points in the lower right and moves to the upper left
as both ensemble calibration and performance improve each
iteration. The upper left of the CES plot suggests the benefit
of additional classifiers outweighs a loss in calibration during
its final iterations.

Stacking produces a layer 1 classifier with approximately
half the Brier score (0.083) of CES or the best base classifiers.
Since this approach learns a function over probabilities it is
able to adjust to the different scales used by potentially ill-
calibrated classifiers in a heterogeneous ensemble. This ex-
plains the difference in the final weights assigned by stacking
and CES to the base classifiers in Table Though the
relative weights are mostly the same, logistic regression is able
to correct for the lack of calibration across classifiers and better
incorporate the predictions of MultilayerPerceptron whereas



CES cannot. In this case, a calibrated MultilayerPerceptron
serves to improve performance of the ensemble and thus
stacking outperforms CES.

In summary, this section demonstrates the tradeoff between
performance and diversity made by CES and examines its
connection with stacking. There is significant overlap in the
relative weights of the most important base classifiers selected
by both methods. From this set of classifiers, stacking often
assigns more weight to a particular classifier as compared to
CES and this result holds across our datasets. We attribute the
superior performance of stacking to this difference, originat-
ing from its ability to accommodate differences in classifier
calibration that are likely to occur in large heterogeneous
ensembles. This claim is substantiated by its significantly
lower Brier score compared to CES as well as the correlation
between ensemble calibration and performance. This suggests
the potential for improving ensemble methods by accommo-
dating differences in calibration.

V. CONCLUSIONS AND FUTURE WORK

The aim of ensemble techniques is to combine diverse clas-
sifiers in an intelligent way such that the predictive accuracy
of the ensemble is greater than that of the best base classifier.
Since enumerating the space of all classifier combinations
quickly becomes infeasible for even relatively small ensemble
sizes, other methods for finding well performing ensembles
have been widely studied and applied in the last decade.

In this paper we apply a variety of ensemble approaches
to two difficult problems in computational genomics: The
prediction of genetic interactions and the prediction of pro-
tein functions. These problems are notoriously difficult for
their extreme class imbalance, prevalence of missing values,
integration of heterogeneous data sources of different scale,
and overlap between feature distributions of the majority and
minority classes. These issues are amplified by the inherent
complexity of the underlying biological mechanisms and in-
complete domain knowledge.

We find that stacking and ensemble selection approaches
offer statistically significant improvements over the previous
state-of-the-art for GI prediction [9] and moderate improve-
ments over tuned random forest classifiers which are par-
ticularly effective in this domain [5]]. Here, even small im-
provements in accuracy can contribute directly to biomedical
knowledge after wet-lab verification: These include 988 addi-
tional genetic interactions predicted by aggregated stacking at
a 10% false discovery rate. We also uncover a novel connection
between stacking and Caruana et al’s ensemble selection
method (CES) [18]], [19], demonstrating how these two dis-
parate methods converge to nearly the same final base classifier
weights by balancing diversity and performance in different
ways. We explain how variations in these weights are related to
the calibration of base classifiers in the ensemble, and finally
describe how stacking improves accuracy by accounting for
differences in calibration. This connection also shows how the
utilization of diversity is an emergent, not explicit, property
of how CES maximizes ensemble performance and suggests

directions for future work including formalizing the effects of
calibration on heterogeneous ensemble performance, modifica-
tions to CES which explicitly incorporate diversity [49], and an
optimization-based formulation of the diversity/performance
tradeoff for improving cluster-based stacking methods.
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