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Abstract—We propose database-aware regression methods
for extrapolation from few measurements in the context of
quantitative prognosis. The idea is to leverage a database of
patients with similar conditions to increase the effective number
of samples when we train a predictive model. Applying the
proposed method to a database of glaucoma patients, we were
able to predict the disease condition at a future time point
significantly more accurately than the conventional patient-
wise linear regression approach. In fact, our prediction was
50% more accurate than the conventional approach when
three or less measurements were available and with only two
measurements at least as accurate as the conventional approach
with six measurements. Moreover, the proposed method can
provide spatially localized prediction and also the (localized)
speed of progression, which are valuable for doctors in making
decisions.

Keywords-quantitative prognosis, multi-task learning, clus-
tering, spatio-temporal data, extrapolation

I. INTRODUCTION

Quantitative prognosis is crucial for the treatment of

progressive diseases, such as glaucoma. Since the cost for

a measurement (e.g., a doctor visit) can be expensive and

time-consuming, it would be valuable if we could precisely

predict how fast the disease is progressing from few mea-

surements.

To this end, we propose a class of learning algorithms that

leverages the similarity between patients so that we can train

a shared predictive model to make a quantitatively accurate

prediction for the patient in question with few measurements

using data from other patients. We call our approach a

database-aware approach in this sense.

We apply the proposed modeling framework to the quan-

titative prediction of visual field loss of glaucoma patients.

Glaucoma is a chronic progressive disease in which the

visual field is damaged along the retinal nerve fiber bun-

dle [1]. Since it is clinically challenging to restore defects

caused by glaucoma, making accurate prediction with lim-

ited measurements at an early stage is crucially important.

A conventional approach for predicting visual field loss is

the patient-wise linear regression. Accurate prediction from

few measurements is especially challenging for glaucoma,

because the reliability of the commonly used visual field test

method [2] could be compromised by the so called learning

effect [3], which is a false improvement in the patients’

visual field due to adaptation.

The proposed database-aware approach goes beyond the

conventional patient-wise approach in two ways. First, we

combine the medical records in the database with the current

patient to make accurate prediction at the very early stage

of the disease; quantitatively, with only two measurement

points, our method is at least as accurate as the conventional

patient-wise approach with seven measurements; since the

average interval between measurements is 6–12 moths, this

could significantly affect the quality of life of a patient.

Second, our method predicts not only the global loss of the

visual field (known as the mean deviation; MD), but also the

local counterpart (known as the total deviation; TD), and the

speed of progression; thus it would tell in which area the

disease is progressing most rapidly, a more detailed insight

that could guide doctors in making decisions. Figure 1 shows

two typical outcomes of the prediction of the complete visual

field achieved with the proposed method.

A. Related Work

Chan et al. [4] compared various traditional machine

learning classifiers for supervised classification for determin-

ing the presence of glaucomatous optic neuropathy (GON).

Unsupervised classification frameworks based on variational

mixture of factor analysis (Ghahramani and Beal [5]) and

variational independent component analysis (Chan et al. [6])

are also proposed, whose discrimination performance were

comparable to the result of glaucoma hemifield test (GHT),

a commonly used empirical criteria. However the above

studies did not deal with quantitative prediction of future

disease condition.

Patient-wise linear regression analysis with various crite-

ria has been conducted [7]–[10]. One of the most commonly

used progression analysis method in clinical is point-wise

linear regression with sensitivity threshold measurements

obtained by Humphrey Visual Field Analyzer (HFA); see

Section III.

B. Organization

In the next section, we describe the problem and the

proposed method. In Section III, we empirically show that

the proposed method clearly outperforms the conventional
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(a) Prediction is based on the three measurements up to the 399th day. The
predicted time point is 2462th day. The obtained RMSEs are 19.1 for LR
and 7.5 for the proposed method.
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(b) Prediction is based on the three measurements up to the 487th day. The
predicted day is th 3477th day. The obtained RMSEs are 18.2 for LR and
6.76 for the proposed method.

Figure 1. Complete visual field prediction we achieved using the proposed
spatio-temporal clustering approach. The left panel shows the true result
of the visual field test for one of the eyes for a glaucoma patient. The
middle panel shows the prediction made only using the test records
up to a certain time point. The right panel shows the prediction result
obtained by combining the data from the target patient with a database
of roughly 1000 follow-up studies. The SVD-EM method for spatial
clustering was combined with SC method for temporal extrapolation (see
Section II). Darker color indicates lower sensitivity (visual field loss); the
two constantly dark pixels in the center left correspond to the blind spot.

patient-wise approach and it can predict the complete visual

field accurately. We conclude the paper in Section IV

II. MODELING AND METHOD

A. Problem Setting

Assume that we are given a collection of measurements

of D features for N patients. The measurements for the

ith patient is a time series consisting of time stamps

ti = (ti1, ti2, . . . , tiLi
) and the observed feature values

Xi ∈ R
D×Li , where Li is the number of measurements

for the ith patient. We denote the whole data set as

D = {{X1, t1}, {X2, t2}, . . . , {XN , tN}}. Note that both

the time stamps ti and the number of measurements Li

are individual to each patient, and the time stamps are not

uniformly spaced. We call the rows of X spatial dimension,

because the D features in visual field test for glaucoma

correspond to spatial features known as the total deviation

(TD), though our model can be applied to arbitrary feature

vectors.

Our goal is to estimate the measurement value of a new

patient, which we call target patient, with few measurements

at an arbitrary time point in the future, with his or her own

data {X∗, t∗} combined with the above mentioned database.

Patient Data {X, t}

SVD-k-NN SVD-EM uv-EM

Spatial Feature Clustering

Temporal-shift Slope

TSLR SC

Temporal Extrapolation

Linear Regression Clustering

FS-EM

Figure 2. Overall flow of the proposed method.

In this paper, we propose a two-step analysis procedure.

The first step is called the spatial feature clustering step,

in which we gather patients similar to the target patient X
from the dataset D. We propose four alternative approaches,

namely, SVD-k-NN, SVD-EM, uv-EM, and FS-EM, for

spatial feature clustering. The second step is called the tem-

poral extrapolation step, in which we fit the parameters of

predictive models to the subset D′(⊆ D) of patients who are

similar to the target patient found in the first step, and predict

the future disease condition. We propose two alternative

approaches, namely, temporal-shift linear regression (TSLR)

and slope clustering (SC), for the temporal extrapolation

step. The proposed framework is schematically illustrated

in Figure 2

B. Spatial Feature Clustering

Our method first gathers patients who have similar spatial

features. Since the number of measurements for each patient

is in general not equal, the challenge here is to derive a

patient descriptor having the same length for each patient

to make a patient comparable with other patients in the

database D. To this end, we propose four spatial feature

clustering methods: SVD-k-NN, SVD-EM, uv-EM, FS-EM

in this subsection. The first three methods uses SVD-style

matrix factorization methods for obtaining patient descrip-

tors and the last FS-EM method uses the Fisher score [11].

1) SVD-k-NN and SVD-EM: SVD-k-NN and SVD-EM

start from an application of singular value decomposition

(SVD) to the data matrix Xi:

Xi ≃ UriΣriV
⊤
ri =

r
∑

j=1

σji uji vji
⊤,

where Σi = diag(σ1i, . . . , σri) , (σ1i ≥ · · · ≥ σLii > 0)
and Uri = [u1i, . . . ,uri], Σri = diag(σ1i, . . . , σri), Vri =
[v1i, . . . ,vri]. Here, u1i, . . . ,uri represent spatial features

of patient i.
Next we take r = 1 for simplicity and denote the

spatial feature vector for the target patient by u∗
1, and the

collection of spatial feature vectors of all the patients in D
by U = [u11,u12, . . . ,u1N ] ∈ R

D×N . Taking only the first
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(a) The first principal axis is corre-
lated with the vertical localization of
visual field loss. Patients who have
more visual field loss on the upper
(lower) half of their eyes are plotted
as blue (red) crosses, respectively.
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(b) The second principal axis is cor-
related with the horizontal localiza-
tion of visual field loss. Patients who
have more visual field loss on the left
(right) half of their eyes are plotted
as blue (red) crosses, respectively.

Figure 3. Preliminary analysis of the spatial pattern vectors u1i using
PCA. The number of eyes N = 1086.

SVD component is not as restrictive as it may sound. In our

dataset, the first SVD component contained nearly 85 % of

the original signal. Note that taking r greater than one is not

straightforward because the ordering of the singular values

may not be stable when some singular values are close to

each other.

Finally we gather patients in D that are similar to u∗
1 by

either performing k-nearest neighbor (k-NN) search in U

or clustering the patients in the dataset by fitting a full-

covariance Gaussian mixture model with K components

using the EM algorithm (Dempster et al. [12]). However, it is

known that applying such methods can be challenging when

D is large (Beyer et al. [13]). To this end, we reduced the

dimension by applying principal component analysis (PCA,

Pearson [14]) to U as a preprocessing step. A preliminary

analysis of the spatial pattern vectors u1i is shown in

Figure 3. The first three PCA components contain roughly

50% of the variance and the first 20 PCA components are

enough to capture 90% of the variance. We call the above

methods SVD-k-NN and SVD-EM, respectively.

2) uv-EM: The next approach for spatial feature clus-

tering called uv-EM performs the SVD-like factorization

and clustering in a single optimization problem. Let K
be the number of clusters and {uk}

K
k=1

be the cluster

centers. Additionally let zi ∈ {0, 1}K be the latent cluster

index variable for the ith subject. Then the complete data

likelihood can be written as follows:

p(D, {zi}|{πk}, {uk}) =

N
∏

i=1

K
∏

k=1

{πkp(Xi|uk)}
zki , (1)

where

p(Xi|uk) =
1

Ai
exp

{

−
1

2
‖Xi − uk(σivi)

⊤‖2F

}

.

Here πk is the prior class probability for the kth cluster

and Ai = (2π)DLi/2 is the normalization term. Similarly

to the SVD-k-NN and SVD-EM, the data matrix Xi is

approximated at r = 1, but the approximation and clustering

are expressed in a single objective function. Figure 4(a)

shows the proposed uv-EM algorithm as a graphical model.

Xi

ΣiVi
⊤

Uk

N

zi

K

(a) uv-EM

xid

w0id

wc

|D′| ×D

ydi

C

(b) SC

Figure 4. Graphical models for uv-EM and slope clustering (SC).

Following the standard recipe (see e.g., [15]), an EM

algorithm can be derived as follows:

πk
new =

∑

i γ(zki)/N,

uk
new =

∑

i γ(zki)Xi(σivi)
∑

i γ(zki)‖σivi‖2
,

(σivi)
new =

∑

k γ(zki)X
⊤
i uk

∑

k γ(zki)‖uk‖2
,

where γ(zki) is the posterior class probability given as

γ(zki) = p(zki = 1|Xi) = πkp(Xi|uk)/
∑

k πkp(Xi|uk).
We call the above method uv-EM in the following.

3) FS-EM: Finally, we employ the Fisher score (Jaakkola

and Haussler [11]) for deriving a yet another patient descrip-

tor. Consider the following generative model corresponding

to K = 1 in the uv-EM model (1):

p(Xi|uk) =
1

Ai
exp

{

−
1

2
‖Xi − uvi

⊤‖2
F

}

. (2)

The Fisher score for the target patient with the data matrix

Xi can be written as follows:

s(X |û) =
∂

∂u
log p(X |u,vi)

∣

∣

∣

∣

u=û,vi=v̂i

,

where û is the maximum likelihood estimator of the gener-

ative model (2) with respect to D and v̂i is the maximum

likelihood estimator for Xi given û. The maximum like-

lihood estimators can be obtained by computing the rank

one SVD of an auxiliary matrix X̄ = [X1, . . . , XN , X∗].
Note that the Fisher score is independent of the number of

measurements Li.

Finally we fit a Gaussian mixture model with K compo-

nents on the Fisher score vectors in a similar manner to the

SVD-EM method described above. It is also straightforward

to compute the k-NN search based on the Fisher score.

C. Temporal extrapolation

Here we propose two temporal extrapolation models,

temporal-shift linear regression (TSLR) and slope clustering

(SC).

Let D′ be the subset of the entire dataset consisting of only

patients who are found to be similar to the target patient in

the spatial feature clustering step including the target patient.



1) Temporal-shift linear regression (TSLR): Let

φm(t)(m = 1, . . . ,M) be some fixed basis functions

defined over time. The first model assumes the following

linear model:

Xi = WΦi +wi01
⊤
Li

+ Ei (∀{Xi, ti} ∈ D′),

where Φi = {φm(tij)}mj is an M × Li design matrix

containing the M predictors, W ∈ R
D×M is a coefficient

matrix, wi0 is a patient specific intercept vector, 1Li
is an Li

dimensional vector containing ones, and Ei is some noise.

Since W does not depend on the patient index i, assuming

that the noise Ei is zero mean, we can analytically eliminate

wi0 as follows:

X̃i = W Φ̃i + Ei (∀{Xi, ti} ∈ D′),

where X̃i := Xi−
1

Li

Xi1Li
and Φ̃i := Φi−

1

Li

Φ1Li
are the

centered versions of the measurements and the predictors.

The above transformation corresponds to removing the mean

from the target variable Xi and the predictor Φi.

Then assuming that the number of total measurements
∑

i∈D′ Li is greater than the number of basis functions M ,

the regression coefficient W can be obtained as follows:

W = X̄Φ̄⊤(Φ̄Φ̄⊤)−1,

where X̄ and Φ̄ are the concatenations of X̃i and Φ̃i for

all patients belonging to the cluster D′ along columns,

respectively.

When the predictor is linear φ(t) = t, the estimation of

patient specific intercept is equivalent to the estimation of

“temporal shift” or time-of-reference; see Figure 6. This

is because of the identity at + b = a(t + b/a), in which

t0 := −b/a can be considered as a time-of-reference. For a

nonlinear predictor (e.g., sigmoid function), this is not the

case anymore.

2) Slope Clustering (SC): The above TSLR model as-

sumes coherence over patients belonging to the same cluster

D′ but allows different features D to have different coef-

ficients. The second predictive model assumes that there

are C stereotypical progression patterns represented by the

regression vectors {wc}
C
c=1; thus this model allows variation

over different patients in the same cluster D′ and at the

same time suppresses excess variation over the features; a

graphical model for the proposed SC model is shown in

Figure 4(b).

More precisely, let yid ∈ {0, 1}C be the latent cluster

index variable for the dth feature of the ith patient. Then

the complete data likelihood can be written as follows:

p(D′, {yid}|{ρc}, {wc}) =
∏

i∈D′

D
∏

d=1

C
∏

c=1

{ρcp(x̃id|wc)}
ycid ,

where
p(x̃id|wc) =

1

Bi
exp

{

−
1

2
‖x̃⊤

id −w⊤
c Φ̃i‖

2

}

.

Here ρc is the prior class probability for class c, x̃id = (xidj)
is an Li dimensional vector containing the centered time

evolution of the dth feature for patient i, and Bi = (2π)Li/2

is a normalization constant. Note that we have analytically

eliminated the patient (and feature) specific intercept wi0 by

centering xid and Φi as above.

Again following the standard derivation, an EM algorithm

for the parameters can be obtained as follows:

ρc
new =

∑

i∈D′

∑

d γ(ycid)/(D · |D′|),

wc
new =

(

∑

i∈D′

D
∑

d=1

γ(ycid)Φ̃iΦ̃
⊤
i

)−1
∑

i∈D′

D
∑

d=1

γ(ycid)Φ̃ix̃id,

where γ(ycid) = ρc p(x̃id|wc)/
∑

c ρc p(x̃id|wc) is the

posterior class probability.

III. EXPERIMENTS

In this section, we conduct numerical experiments to

evaluate our model described in Section II quantitatively.

A. Data

We applied our two-step model to a glaucoma data set.

The data set we analyzed is a sensitivity measurements of

74 locations from 1086 glaucomatous eyes in various stages

that had been followed up at Department of Ophthalmology,

Graduate School of Medicine, The University of Tokyo. Age

at the time of first visual field test was 54.9±13.4 years old

and observation follow-up period was 6.6± 1.4 years.

The Humphrey Visual Field Analyzer (HFA, Zeiss

Humphrey Systems, Dublin, CA), which is the most popular

diagnostic system for automated static threshold perimetry,

was used to collect the data.

Each patient (or more precisely eye) was measured in total

11.3± 3.0 times (measurement interval was 233.3± 133.7
days). We evaluated the prediction accuracy of patients

at their last visual field observation based on the first d
measurements , where d = 2, . . . , 10. For patients who have

only Li ≤ 10 measurements, we evaluated them based on

the first d = 2, . . . , L− 1 measurements.

The observed vector contains 74 sensitivity thresholds

over all visual field locations, which are acquired at each

time of visual field test by HFA central 30-2 full thresh-

old (C30-2) program. This 74-dimensional measurement is

called the total deviation (TD) and it quantifies the sensitivity

of different locations of the visual field of one eye. Another

metric commonly used by clinicians is called the mean

deviation (MD) and it is a weighted average of TD with a

fixed weight. We present results for predicting both the MD

and the TD, in which case D = 1 and D = 74, respectively.

B. Evaluation Procedure

We split the data into the training set (80%), validation

set (10%), and the test set (10%). The training set was

used to learn the spatial clustering parameters, namely PCA



projections for SVD-k-NN and SVD-EM, Gaussian mixture

model with full covariance for the SVD-EM and FS-EM,

cluster centers and mixture weights for uv-EM, maximum

likelihood parameter û for FS-EM.

We used the validation set for the selection hyper-

parameters, namely the number of neighbors k for the

SVD-k-NN, and the number of clusters K for the SVD-

EM and uv-EM, and FS-EM. Here, the candidate values

were k = 10, 20, 30, 40 for SVD-k-NN, K = 10, 30, 50
for SVD-EM, uv-EM, and FS-EM. The number of PCA

dimension was fixed at three, which captures roughly 50%

of the variance. We used C = 3 for the number of clusters

in the SC method in the final evaluation. For simplicity,

we use a single basis function φ1(t) = t (i.e., M = 1) in

the following experiments; thus in the case of TSLR, the

complexity of the temporal extrapolation step is the same

as the conventional patient-wise linear regression approach.

The best hyper-parameter values chosen on the validation

set were used for the test set, and we repeated the above

procedure ten times.

When we evaluated the performance on the test set,

we only used the data of the target eye up to the first

d measurements, and applied the spatial feature clustering

step, which involves SVD, PCA projection, and cluster

assignment in the case of SVD-EM method, for example.

Note that the clustering parameters were learned on the

training set (80%) and fixed. Then we applied the temporal

extrapolation methods jointly on the target eye and the

eyes belonging to the same cluster (or within the k-nearest

neighbor) from the database. The performance is measured

by the root mean squared error (RMSE) on the latest visual

field measurement of the target eye.

C. Result on the mean deviation (MD)

Predictive errors of all the combinations of the proposed

spatial clustering and temporal extrapolation methods, and

that of the conventional patient-wise linear regression (LR)

are shown in Figure 5(a). We can clearly see that all the

proposed methods outperform LR when the number of

measurements is smaller than seven. In fact, with only two

measurements, all the proposed methods achieve errors that

are at least comparable to that of LR with six measurements.

This is significant because clinically it is important to

provide accurate prediction as early as possible so that

the doctors can make necessary actions. The errors of the

methods based on SC are slightly lower than those based

on the TSLR, especially when the number of measurements

is large. This is probably because SC is more flexible than

TSLR.

Figure 6 compares the fits obtained by the conventional

patient-wise linear regression and the proposed spatial-

clustering-based TSLR.We can see that the first couple of

MD values for the target patient keep improving due to the

learning effect. Thus the patient-wise approach predicts steep
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Figure 5. Prediction error for MD and TD by various methods against the
number of known measurements. The center of error-bar is the median of
error and the upper end and lower end of the error-bar corresponds to the
25%- and 75%-quartiles.

improvement, though clinically the visual field loss caused

by glaucoma is known to be unrecoverable. On the other

hand, the proposed method can predict a downward trend

because it looks at not only the target patient but also at a

collection of similar patients; the predicted line agrees well

with the true future measurement. Note also that since we

estimate the intercept for each patient individually, we can

align the patients along the temporal axis and show in which

stage the target patient is in in comparison to other patients

in the same cluster.

D. Result on the total deviation (TD)

Predictive errors of all the methods for the prediction

of total deviation are shown in Figure 5(b). We see sim-

ilar trends to the result for MD, but the improvement is

larger. In fact, with only two measurements the proposed

TSLR method combined with any spatial clustering method

achieved a performance that is comparable to the LR method

with eight measurements. The error of the SC method is

slightly larger than that of TSLR method when the number
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Figure 6. Visualization of the predictions made by the conventional patient-
wise linear regression and the proposed TSLR for one patient. The target
patient with d = 4 measurements is plotted as red squares. The future
measurement to be predicted is plotted as a red circle. The fit obtained by
the conventional method is shown as a blue line. The fit obtained by the
proposed TSLR method is shown as a red line. The data from other patients
are plotted as diamonds with individual colors.

of known measurements is small, but they become close for

larger number of measurements.

IV. CONCLUSION

In this paper, we have proposed a method to accurately

predict the condition of a patient with a progressive disease

in the future from few measurements. The main idea is to

exploit the similarity between patients and effectively obtain

a larger number of samples by applying a spatio-temporal

clustering. We have also addressed several issues that typ-

ically arise in dealing with medical records, namely, non-

uniform sampling, high-dimensionality, and lack of time-of-

reference, in a principled manner.

We have applied the proposed method to visual field

measurements from glaucoma patients. Our approach was

overall 10–70% more accurate than the conventional patient-

wise approach depending on the number of measurements.

The improvement for TD reached 70% when the number of

measurements d = 2; this is as accurate as the prediction

made by the conventional approach with d = 8 (see

Figure 5(b)). Considering that the average interval between

measurements is half a year to a year, we argue that we have

pushed the prediction of complete visual field forward to a

practical regime for the first time.

Possible future directions include taking the profile of

the patients (age, gender, records of other illnesses) into

account, making the predictive model more sophisticated,

and tackling other types of progressive diseases.
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