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Multilabel Consensus Classification

Sihong Xié Xiangnan Kong Jing Gad Wei Fari Philip S. Yu'

Abstract— In the era of big data, a large amount of noisy accuracies by exploiting the strengths of different moaels
and incomplete data can be collected from multiple sourcesof  data sources, without access to training or test data.
prediction tasks. Combining multiple models or data source  cqpyentional research on prediction combination has been
helps to counteract the effects of low data quality and the . . .
bias of any single model or data source, and thus can improve f_ocusmg on_s_lng!e label Class!flcatlon_and canno’F handlb mu
the robustness and the performance of predictive models. Qu tilabel classification. MeanWhlIe, multilabel classificat has
of privacy, storage and bandwidth considerations, in certn seen its wide application in text/image categorizatiowjrbi
circumstances one has to combine the predictions from mulle  formatics and so on, and therefore is of practical impoganc
models or data sources to obtain the final predictions withot Although certain ensemble methodsI[25]./[19]./[29] haverbee

accessing the raw data. Consensus-based prediction coméation - e
algorithms are effective for such situations. However, cuent proposed to handle multilabel classification, they focus on

research on prediction combination focuses on the single el building the ensemble from training data, not on prediction
setting, where an instance can have one and only one label.combination. Given the practical needs to combine mukilab
Nonetheless, data nowadays are usually multilabeled, sudhat predictions from multiple models/data sources withouiniray
more than one label have to be predicted at the same time. 54 test data, we identify the following challenges thatrtee
Direct applications of existing prediction combination mehods to - - .

multilabel settings can lead to degenerated performancenl this be addressed In order to *?'f'dg_e the gap. First, althouge-stat
paper, we address the Cha”enges of Combining prediction$dn] Of'the'art mult"abel ClaSSIflcatlon methOdS ShOW thatelab
multiple multilabel classifiers and propose two novel algothms, correlations can help improving classification perfornmesc
MLCM-r (M_ultiL abel Consensus Mimization for ranking) and  how to exploit label correlations solely using predictiafs
MLCM-a (MLCM for microAUC). These algorithms can capture  paqe models has not been addressed before. Second, there are

label correlations that are common in multilabel classificéions, . luati trics f tilabel cl ficati h
and optimize corresponding performance metrics. Experimatal various evaluation metrics tor muitiflabel classificaliGuc

results on popular multilabel classification tasks verify he as MICroAUC, ranking loss, one error, etcl [4], [5], it is raor
theoretical analysis and effectiveness of the proposed nietds.  desirable to design algorithms that can be proved to be aptim

for a specific metric, as different applications requirdediént
quality measures. Although, inl[4], they pointed out that
Combining multiple models or data sources has been @ptimizing different metrics translates into the modeliofy
tracting more and more attentions in data mining and machiggferent label correlations, it is non-trivial to alignemtiction
learning research communities. Real-world data are usuadombination methods with the modeling of label correlafion
massive, noisy and incomplete. To improve the robustnesgier to optimize a specific metric. There is no existing work
and generalization ability of learning methods on thesé reghat addresses the above issues.
world data, one has to combine multiple models and exploitm this paper, we address the above Cha”enges by proposing
the knowledge of multiple data sources. Many methods hango different algorithms that can model label correlations
been proposed for the purpose, such las [16], [1], whigfiven only the predictions of base models. The algorithms
focus on learning ensembles of models from the training dajge designed and proved to optimize two widely used but
and predictions on test data. Due to privacy, bandwidth @fndamentally different evaluation metrics, respectivdlhe
storage issues, there are situations where we cannot hay® algorithm MLCM-r consolidates the predictions of base
access to either the training data nor the testing datattjirecmodels via maximizing model consensus and exploits label
Instead, only the predictions of base models are avail&loie. correlations using random walk in the label space. The algo-
example, in finance, aggregating customers informatiom frrithm is proved to optimize ranking loss, which measures the
multiple banks would benefit customer segmentation aralysjuality of the predictions on a per instance basis (e.g. find
However, it would be unsafe or infeasible to transfer th%]evant labels for a qguery in image search engine). Another
customer information across different banks. One solut®on jmportant multilabel performance metric is microAUC, winic
this problem is that we can apply the analysis at each bagats all instances combined as a single prediction task (e
individually, and then aggregate the predictions from iplét find tags to describe a set of images. Secfidn V describes
banks. Prediction combination is a powerful paradigm f@hsu how microAUC differs from ranking loss). Since a model that
situations with an abundance of studies [8].I[11]./[12].][200ptimizes ranking loss might not be optimal on microAUC,it
[23]. These algorithms combine the predictions of multiplg necessary to develop an alternative model that can c@mnbin
supervised and/or unsupervised models, in hope of impgovigredictions to optimize microAUC. We propose a second algo-
tDepartment of Computer Science, University of lllinois ahi@go ”thm.ca"ed MLCM_? (MultiLabel Consen.sus Maximization
$Department of Computer Science and Engineering, Uniyeisit Buffalo for microAUC) for this purpose. MLCM-a is formulated as a
tHuawei Noah’s Ark Lab, Hong Kong optimization problem that regularizes prediction corgatiion
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TABLE I: Notations value for the label “is employed”. Multilabel classificatio

Symbol Meaning introduces various unique challenges, such as sparsity and
m Number of multilabel classifiers imbalance of labels, multiple performance metrics of a nhode
i N,L\’,Tr%%;?fo}nlsatggl‘;es etc. Among these challenges, how to model and exploit label
x An instance relationships to improve accuracy has been studied intelysi
z Ground truth labels ok in [3], [L3], [14], [22], [27]. There are various types of klb
};-, Aveor:g’:to?{,ihe:t:h ;""de'm relationships, the simplest one is pair-wise correlatiohich
v prediction of thekth model for theith instance specifies how often two labels co-occur. There are also some
Y Consolidated prediction of* k=1,...,m more complicated label relationships, such as hierarthica
) inner product of two vectors organizations of labels or high order relationships. Régen
|} ) h Fr%zteer:&"snﬁgtngfoa} ??;g)t(rix certain types of label relationship_ is showr_1 to be connected
1[] indicator of a predicate to certain corresponding evaluation metrics. For example,
card(A) cardinality of the setd it is shown in [4] that if one can compute the relevance

score of each individual label given an instance, the rapkin
using partial correlations between labels, and we showttigat according to the scores would yield the minimum ranking.loss

objective of this formulation optimizes microAUC. Conventional multilabel classification algorithms maifdgus
The contributions of this paper can be summarized as how to exploit label correlations from training data. $ae
follows. methods cannot directly address the challenge of combining

« We first study the problem of how to combine predictiongultilabel predictions without access to training or teated
of multiple models in multilabel learning without acces
to training and test data.

« We propose two novel algorithms that can jointly model Given the predictions of multiple models, one needs to
correlations among different labels and the consensé@mbine the predictions in order to obtain a single final pre-
among multiple models. As different applications requirgiction. Suppose there are base models, whose predictions
different multilabel performance metrics, we prove tha&an be denoted byY™, ..., Y™} Fork = 1,...,m, Y* is
the two algorithms optimize two multilabel classificatiortn 7 x [ matrix, the (i, /) elementY;, gives the class value
metrics, respectively. As far as we know, this is thef the i-th instance for the/-th label, according to thé-th
first work that addresses the multilabel-label consenst@del. Y* is a binary matrix specifying the presence of a
learning problem and optimize particular metrics. label in an instance. The simplest form of model combination

« We compare the proposed models to 3 baselines orisgnajority voting, where each base model votes in favor of a
multilabel classification tasks, with a maximum of 459gertain class for each label. Afterwards, instances assifiad
percent of reduction in ranking loss and 20% percent §8sed on the votes an instance receives for different dasse

%. Prediction Combination Algorithms

increase in microAUC. Formally, majority voting estimates the posterior proligbi
of seeing a label given an instangéy,¢|x;) using the average
Il. PRELIMINARY of Y% k =1,...,m. Without access to the training and test

In this section we recapitulate model combination and mutata, the final predictions can be improved by exploiting the
tilabel classification algorithms, along with the challeaghat correlations of predictions between two instances, as & ha
we are addressing. Talle | summarizes most of the symbbgen done in[[8],[[11],[12],.[20]. However, under multildbe
and their definitions used in this paper. We use boldfacetoweettings, the correlation between different labels is aso
case letters for vectors (e.¢) and capital letters for matricesimportant piece of information to exploit. To achieve theste

(e.g.,.Y). prediction combination results, one should properly cbesi
] o and model all available information, namely, the correlasi
A. Muliilabel Classification between labels and those between predictions of different

In multilabel-label classification problems, the data are instances. The lack of existing model calls for novel moézis
the form of(x, z), wherex is the feature vector of an instancethis non-trivial task. Furthermore, there are many muitla
and z is the label vector. Supposé is the set of all¢ classification performance metrics to choose from, dependi
possible labels, them is a vector with length L| = [ and the application at hand. Different metrics require fundame
ze € {0,1} denotes the value of théth label. Multilabel tally different ways of modeling of label correlation][4],
classification is different from multiclass classificatiom and how to align different label correlations with various
multiclass classification, an instance have only one labekisting prediction combination methods to optimize aaiert
which can take more than two values (or classes). Howevergarformance metric is another challenge that has not been
multilabel classification, an instance can have more than oexplored before.
label, each of which can take one and only one of the multiple
values (classes). For example, an account on a social retwor
(LinkedIn, Facebook, etc.) can have multiple labels such asGiven the multilabel predictions of base classifiers that do
“sex” and “is employed”, while there can be only one specificot necessarily consider label correlations during trajnor

I1l. PROBLEM FORMULATION



testing, we wish to produce improved consolidated preafisti bl [1,00  [0,1] el [1,0]  [0,1]

via explicitly modeling label correlations without accetss
M I w2

the training or test data. Since the improvements in mbkila
performance can be measured in many different metrics, we
9

further wish we can choose the right algorithm from a set
of algorithms to optimize the desired metric. We propose a
family of algorithms as a solution to the above problem. The
algorithms can infer label correlations and combine préstic

simultaneously, and more importantly, optimize two difet

multilabel performance metrics, namely, ranking loss {Sec
tion[IV) and microAUC (SectiofiLV). Fig. 1: Applying BGCM to multilabel prediction combination

IV. MULTILABEL CONSENSUSMAXIMIZATION FOR
RANKING LoOss

final prediction

node. Specifically, if a group node represents fké class,

o o then it is connected to a class node with class distributinn

A. Prediction combination based on model consensus which has 1 at itg-th position and 0 otherwise. Let thex ¢
Prediction combination methods have been explored inatrix B = [b},...,b]]’. For example, since group nodgs

many previous works [8]/112]/ T11]/ T20][ [23]. Nonetheses andg> respectively represent class 1 for two models, they are

these methods are designed for single-label, multicleass- clconnected to the first group node on the top row, with class

sification, such that prediction combination happens withdistribution|[1, 0].

individual labels. A trivial way to apply these methods to For each label, BGCM solves the following optimization

multilabel tasks is to first combine the predictions of baggroblem to achieve maximal consensus among base models,

models for each label, resulting in the consolidated ptextis no v v

for individual labels. Then these preliminary consolidated min Z Z aijllu; —q;]|* + a Z la; —b;I> (@)

predictions are pooled together as the final prediction lier t ve =i j=1

multilabell t_ask. This process treats Iapels_ iqdependavitiy— st wig > 0,50 _juig=1,i=1,...,n 2)

out exploiting label correlations, and is similar to the &in 0 >0,5° =1

Relevance (BR) method in multilabel classification literat Gt =% 2= 9jt = 5T = 5o o ¥

To illustrate these concepts, we take one of the multiclagsEq.(1),a,; = 1 indicates that theé-th instance node and the

prediction combination algorithms, BGCMI[8], as an examplg-th group node are connected, otherwise = 0. After the

BGCM seeks consolidated predictions that are agreed upgstimization problem is solved, the consolidated predittf

by the base models as much as possible. Without loss thé i-th instance for a single label can be obtained by taking

generality, we assume that the base models are superviged maximal value inu;. The solution of the optimization

models. In particular, foreach label, BGCM constructs a problem achieves maximal consensus among base models, an

bipartite graph to represent the predictions of base diessi objective also pursued by other consensus based prediction

An example of applying BGCM to a prediction combinatiortombination methods [12], [11], [20]. Although this objeet

task with 2 instances, 2 classifiers, 2 classes of each of theah lead to the improvement of performance over base models,

labels is shown in Figurel 1 (only the schemas of the first afislese methods can only combine multilabel predictions Isy fir

last labels are shown). combine the predictions for each label, and then concatenat
In general, given the predictions of. classifiers forn the predictions for individual labels to obtain the final pre

instances, with: classes from a single label, the bipartite grapdiction for multiple labels. Apparently, no label corrétat is

hasn instances nodes and= m x c group nodes. In the abovemodeled in this paradigm. Next we propose a novel method

example, the bipartite graph for the first label is shown & tthased on BGCM to incorporate label correlations in mulélab

left rectangle, where group nodes are annotated with ther leforedictions combination.

g and instance nodes with the letterEach node is associated

with a probability distribution over classes (not shown in B. MLCM-r

Figure[1). The distribution for théth instance node is given According to the last section, one might wish to jointly

by the row vectoru;,i = 1,...,n, which are collectively model label correlations and model consensus to overcoene th
denoted by ther x ¢ matrix U = [u},...,u}]’. Similarly, let drawback of BGCM under multilabel settings while explaitin
the v x ¢ matrix Q = [d},...,d,]’ be the distributions oty the power of BGCM in maximizing model consensus. We

group nodes. The connections of these nodes are determipembose MLCM-r, which adopts the architecture of BGCM
by the predictions of the base modelsx/fis classified into the to achieve this goal. For simplicity, we assume that eachllab
j-th class byk-th model, thei-th instance node is connectedctonsists of two classes. We abuse the notations introduced i
to the (k — 1) x ¢ + j group nodes. In the above bipartiteSection[IV-A. In particular, we let thes by v (v = m x 1)
graph for label 1, instance; is classified into class 1 by connection matrixA encode the multilabel predictions, where
model 1, then the first instance node is connectegl'toFor the (i, (k — 1) x [ + j)-th entry is 1 if thek-th model predicts

a group node to represent a class, it is connected to a clds# thei-th instance takes class 1 on tjih label, otherwise



TABLE II: Notations for MLCM-r

Symbol Meaning
A a; ; is the prediction of labelj(modi) on x; by the [j/I]
B Label node class distribution
U u;e IS the probability that label is relevant tox;
Q q;¢ is the probability of seeing labél given labely
I k dimensional identity matrix

thus infer label correlations. Then we introduce rankirgs|o
(a) MLCM-r (b) Graph of group nodes encoding whl_ch_ is conne_cted to MLCM-r to show that MLCM-r indeed
label relationships optimizes ranking loss.
According to [8], a closed form solution for the optimizatio
Fig. 2: Bipartite graph for MLCM-r and its collapse to grougproblem is
nodes

Q* = (I, — D\D;'A'D,;*A)~'D, B 3)

the entry is 0. ViewingA as a connection matrix betweenyhere D, = diag1’A), D,, = diag1’4’), 1 is a column
instances and labels, a bipartite graph can be construstedviector with all entries being 1D, = D, (ol + D,)~' and
MLCM-r. An example of the bipartite graph of MLCM-r D, , = a(al + D,)~". After Q* is obtained[/* is obtained
for 2 instances, 3 classes and two base multilabel classifigsing

is shown in Figurd 2(). Similar to the bipartite graph, the U* =D, 'AQ* 4)
bipartite graph for MLCM-r has both group nodes and instance L )
nodes, annotated by the lettegysand x. However, there are Eq.(3) actually solves a problem similar to personalizegepa

some differences between two bipartite graphs. Surrounddd Over the graph in Figure 2[b). The graph consists of
by a rectangle with dashed line are the group nodes fronP¥PUP nodes from Figurfe 2{a), with edges indicating stiengt
classifier (e.g. the rectanglé; includes the group nodes from®f connection between group nodes. In particular, the graph

the first classifier). A group node in Figure 2(a) representseépresses the chances of co-occurrence of two labels in

label instead of a class in Figuré 1. An instance node in FiEf—rmS of the proportion of instances that havg b‘?th labels
ure[2(@) can be connected to more than one group nodes frofultaneously. The results of the random walk is simply the
a classifier, naturally representing the multilabel prédifs. probabilities thgt one node hits another node during a ﬁpem
These differences between Fig[ire P(a) and Figlire 1 bringm{)"fmdom walk. Since the_r_1(_)de3 repre_sent labels, the solcaion _
expressive power to MLCM-r, as summarized below: be seen as the probabilities of seeing one label when gjartin
The connections between an instance afidabels are from another label. We analyze this intuition more formally
* . . . . - We wish to establish the solution of the random walk; as
fully given by a single graph in MLCM-r, instead of being - . . :
broken down into multiple bipartite graphs in BGCM the probability of seeing thg-th label given thel-th label.
« most importantly, the relationship between labels can Felxmg j and looking at EG(3) in a column-wise perspective,

derived in MLCM-r using Figur¢ 2(a), as shown in theX' 7/ = L., v, we obtain
graph of group nodes in Figure 2(b). We give more details Q5 = (I, — D\D;'A'D; ' A)""'D1_\B,; (5)
of this property of MLCM-r in Sectiof TV-C. '
According to the newly definedl, we re-define the dis-
tributions associated with the nodesy (the ¢-th entry of
u;) is now defined to be the probability of theth instance
taking class 1 on thé-th label. Similarlyg;, is defined as the
probability of seeing the-th label given thej-th label (the
reason of this definition is explained in the next sectioithé

where@.; and B.; are thej-th column ofQ and B, ); is the

j-th diagonal entry oD,. LetS = D1 A’D, 1 A, which is the
transition matrix. Each row of is a probability distribution
where S;; is the transition probability from group nodeto

group nodej. By the identity(/ — S)~ = 3.7 S*, we can
re-write Eq[(5) as

j-th group node represents tléigh label, it is connected to a . > .
label node with distributiorb;, which hasl on its ¢-th entry Q5 = Z(DAS) DB, ©6)
and 0 for the other entries, leB = [b),...,bl] similarly =0

as in BGCM. With the re-defined variables and constants (se€Qut of Eq.(6), we can construct a random walk where a
Table[Tl), MLCM-r maximizes model consensus by solving€rson takes from O to infinitely many steps to eventually
a similar optimization problem in E@J(1). The closed forngettle down at any one of the group nodes for Igbflote that
optimal solution is given in Eq3) and Eg.(4), which inferda there can be multiple group nodes for labegiven multiple
exploit label correlations to minimize ranking loss, aslgped ~ classifiers, e.g. group nodgs$ and g* represent labef). At

in the next section. each step, the person can choose to settle down with proba-
) bility 1 — A; at group node, or to take one more transition
C. Analysis of MLCM-r with probability \;, given the current position being thieth

In this section, we first analyze the property of MLCM-rgroup node.D,S) can be interpreted similar to traditional
which is shown to perform a random walk in label space amedndom walk. For the base cas@),S)" = I gives the



probability that one starts from any one of the group nodés am [4], it was proved that the expected ranking loss is mini-
reachesany nodes in zero step. AssunféD,S)!~1);; is the mized by the ranks of the relevance scores, which is defined as
probability that the person reaches ngdstarting from nodeé  the posterior probability(y;r = 1|x;). In other words, so long
int—1 steps. Therd(DxS)")ij = A >py Sir((DAS) 1)y, as the probabilityp(y;, = 1|x;) can be estimated accurately,
which can be interpreted as the person chooses to contimne should be able to achieve a low ranking loss. But this is
walking with probability A;, and ends up at nodg with what exactly MLCM-r does, as we show above. Therefore we
probability "7 _, Si((DxS)""1)y;. By induction, (D,S)" conclude that MLCM-r minimizes ranking loss.

gives the probabilities of moving from one node to another
in ¢ steps without settling down. V. MULTILABEL CONSENSUSMAXIMIZATION FOR

Given the above interpretation and fixifig= 1, we obtain MICROAUC

. . In this section, we propose another algorithm for multilabe
(DAS)'D1-xB)i = Z((DAS) Jik (1 = Ak) Bry prediction combination. This algorithm differs from thesfir

k one in that it optimizes microAUC, which is both theoretigal

= Z((DAS)t)ik(l — M)1(Br1 = 1)  and practically different from ranking loss. After briefgumiew

k the differences between two metrics, we describe the second
Note thatB is a matrix with 0 or 1 entries an#,; = 1 iff algorithm based on simple averaging.
the k-th group node for label 1. Also note th@t— \;) is the
probability of settling down at thé-th group node. Then a
summand in the above summation is the probability of sigrtin AUC (Area Under the Curve) is a binary classification
from group node and settling down after steps of transition metric for situations where one class greatly out-numbees t
at thek-th group node belonging to label 1. The sum of theg&her class. In multilabel classification, an instance lighas
probabilities is the probability that settling downaaty of the only a quite small proportion of all labels. For example grtt
group nodes for label 1Q* = (Zio(p/\s)t)]_)l_/\gh and tagging, there can be thousands of tags, yet an articlelysual
Q;, gives the probability that, starting from theth group has only a couple of tags. Since there can be much more

A. microAUC and its properties

node, one reaches any group nodes of class 1. irrelevant label than relevant labels, AUC can be adopted to
According to Eq[(¥4), thei, ¢)-th entry of U is the multilabel setting, where the metric is called microAUC
. Formally, the label matrixZ = [z},...,z]]" for n instances
U, — iza'@* has a total ofn x [ entries. LetP be the set of positive
R —~ Wt (relevant) entries and the set of negative (irrelevant) entries,
! card(P) < card(N). Given a list of relevance scores of all
“n k aij -, entries, microAUCI[2],[[9] is defined as
L D LB e
k=1 " \j=1 : ¢ J
microAUC = 8
I Z Z card(P) x card(N) ®

(&
= > plklxi)p(clk,x;) e
k=1 where f(i) is the relevance score of entiy Observe that
microAUC is the ratio between the number of correctly
ordered pairs and the total pairs. A fundamental difference
between two metrics is that, ranking loss does not compare
the ranks between labels of two different instances, while
microAUC compares the ranks of all possible pairs of labels,
no matter they are from the same instance or not. In this sense
I,'flpproaches that optimize ranking loss does not necessarily
timize microAUC. Next we introduce simple averaging,
ased on which we propose an algorithm that combines
Cwultilabel predictions to directly optimize microAUC.

wheren;, = Zj a;;1[B;jr = 1], which is the total number of
group nodes of labdt thatx; connects top(k|x;) = ni/d; is
the probability thak; has labek according ton base models.
p(llk,xi) = >0 1B = 1](aij/nx)Q;, is simply the
average ofY7,1[B;x = 1], which is probability of going from
label k to labels. These two probabilities depend a&n due to
the termd; andny, which depend on the connectivity betwee
x; and the group nodes. Therefore, MLCM-r computes t
probabilitiesp(y, = 1|x;).

The above results connects MLCM-r to ranking loss, whi
is defined below. Ranking loss measures how much the ramk- simple averaging
ing of the labels violates the relevant-irrelevant relasioip
between pairs of labels. Lg®;, be the set of relevant labels
for x;, andN; the set of irrelevant labeld?;, x N; is the set of

Perhaps the simplest way to consolidate predictions from
multiple models is to take the average of the predictions:

all pairs of relevant and irrelevant labels. Given the refee B 1™ . m . .
scoresf(¢,x;) of label £ of x;,¢0 = 1,...,¢c,i = 1,...,n, YZYZEZY => Y¥(mI) 9)
ranking loss is defined as k=1 k=1

n 100 < (g where]; is thel dimensional identity matrix. The loss function
ranking loss= Z Z [F(6xi) < F( %)) (7) that simple averaging minimizes is the sum of squared error
=1 teP, EN; card(P; x N;) between the consolidated predictidhand the base models’




predictions {Y'*, ..., Y™}, Formally, we adopt the results @
from [11]. e o

K 1
m n m X1 1 1 9 1 1 0
DIYE-YIE=3"> v -yl
k=1 i=1 k=1 x2 | Q 1 0 »0.. ]| 1 0~
= ZZ”}’f—}_’i+}_’i—yiH2 X3 1 1 1 R 1 1T
i=1 k=1
non B LI label 1 label 2 label 3 label 1 label 2 label 3
= > IV -wlP+ > g —vill*  (10) , _
=1 k1 i1 (a) Ranking loss (b) microAUC
The last equality follows fron}~)" , (y¥ —¥:) = 0, asmy; = Fig. 3: Comparison of ranking loss and microAUC

>, yF. Note that the first term in the last line has nothing

to do with Y. Therefore, the minimum of the sum of squaregs one |abel over other labels across different instanagsh s

errors is attained by taking' =Y. . as the pairs indicated by arrosv Without loss of generality,
There have been several applications of simple averagi@en Figuré 3(B) as an example, given two instangeand

in multilabel classification to combine the results of Mk . \ve need to estimate the posterigrey; = 1[x;) for

models, such as ECC [14], Rakel [22], Model-shared subspgcg {2,3},5 € {1,3}, in order to derive preferences between

boosting [24] and BoosTexter [16]. In these methods, labglievant and irrelevant labels. Suppose with high prokigbil
dependencies are modeled in the training phase and the corgbiy ,(y, — 1/x3) > p(y1 = 1|x2) (arrowb). If label 1 and3

nation step does not consider any label dependency. Therefgre correlated, we would like the estimationspéf; = 1|x»)
if be_lse models fa|! to model Iab_eI dependencies in trainimgy a5, p(ys = 1|x3) (arrow d) to reflect such correlations to
testing phases, simple averaging cannot reconstruct B Iazeain extent according to how much these two labels are
dependency information solely from the predictions. correlated. This can be achieved by enforcirigs = 1/x2)
C. MLCM-a andp(ys = 1|x3) to satisfy simil_ar label _pref_erence, na_rr_1ely,
) . . p(ys = 1|x3) > p(ys = 1|x2) with certain high probability

We examine microAUC more closely to motivate theccording to the correlation between two labels. As a by-
method to b_e proposed. In Figure 31 we graphlcally_ demoﬁroduct, we have(ys = 1|x3) > p(y; = 1|x») (arrowc) and
strate the differences between ranking loss and microAUfperefore enforce label preference across label and icessan

Assume we have 3 labels and 3 instan¢gs, ..., x3}. The (g follow the correlation between labels. In summary, we can
ground truth labels of the 3 instances are layed out as iifyle the challenge in two steps:

the 3 x 3 label matrix Z = [z},...,2}] wherez; is a

row vector of the values of all labels fat;. The values

of the entries for a label are grouped in rectangles, while

each row represents the labels of an instance. Ranking loss

accounts the pairwise relationship between the labéisin We describe the second step first. A representation of label

an instance. Therefore, in Figdre 3(a), 3 pairs of relatareks correlation is needed. Here we model all pairs of label eorre

of entries will contribute to the ranking loss, as indicatet@tion using the partial correlation matrix of labels.

by arrows pointing from relevant labels to irrelevant ones Definition 1 (Partial Correlations):Partial correlation be-

within each instance. However, there are more pairs ofentriween labels/ and ¢’ is the correlation between two labels

that microAUC accounts for. Given a relevant label for agiven the other labels.

instance, microAUC pairs it witlll other irrelevant labels of The partial correlations can be captured by &arx |

all instances, including itself. In Figufe 3[b), examplérpaf symmetric matrixQ2~*, which is called precision matrix in

relevant and irrelevant entries are indicated by arrowsl&b multivariate statistics. To estimate the relevance scares

by letters. We do not draw all pairs in Figure 3(b) to avoithe labelsY following the estimated2~', we set up an

untidiness. Note that arrow indicates the sort of pairs of optimization objective that combines two goals. The first

entries considered by ranking loss. Arrdwindicates pairs goal is to minimize certain loss function employed in model

of entries within a label for different instances, and arrow combination algorithms. For example, the loss function in

points from a label of an instance to a different label of simple averaging given in Ef.(10). The second goal is to

different instance. maximize the correlation between the label partial cotieta
Pairs of entries indicated by arrowor d must have been (matrix Q') and the empirical label correlation (given by

handled by any reasonable base models, which predict #&"). The latter goal can be formulated by the inner product

relevance of a label to the instances. Pairs of entriesanelit of two matrices, namelyir(Y'Y Q1) = tr(YQ~1Y’). The

by arrowa consist only a small portion of all pairsiifis large, optimization problem is given by

due to the sparsity of relevant labels. Therefore, the ndjal- ] e

lenge in optimizing microAUC is how to enforce preference min J= {consensus logst- tr(YQ2™'Y") (11)

« estimate the correlations between labels accurately
« optimize microAUC by estimating label relevance accord-
ing to the label correlations estimated above.



whereY is the consolidated labels. An example of the above TABLE III: Datasets

optimization problem is given by taking the consensus Isss a datasets # of instances _ # of features __ # of labels
the loss function Ed.(10). enron 1702 1054 53
medical 978 1449 45
. _ 9 1 revl subset 1 2997 47337 101
min J =Y =-Y|*+tr(YQY) (12) rcvl subset 2 2951 47337 101
v slashdot 3782 1101 22
) o _ bibtex 3701 1995 159
Taking the derivative off with respect to théth row of Y,
yi, we obtain VI. EXPERIMENTS
oJ B B A. Datasets
=2y —yi) +207 'y} (13) . _ _ _ S
ayi With 6 datasets widely used in multilabel classification

community, we demonstrate the effectiveness of the prapose
methods.Their properties are summarized in Table Ill. Note
m that these datasets have a relatively large number of laibels
yi = Z VRO D) = my (7 £ m)”t (14) can be very time-consuming for mult|labe_l cIaSS|f|pat|ono_m_0
=1 els to account for complex label correlations during tragni

Equating the above derivative to 0, we get

By comparing Egl{14) and EQI(9), one can see that label ) _

correlation? is now taken into account when producing th&: Evaluation Metrics

consolidated predictions. We further include certain popular metrics to give some
Note that we assum@ is given in the above optimization émpirical observations as guidance for the use of the peapos

problem. In reality,Q is usually unknown and has to bemethods in practice. For a multilabel classiffgrthe ranking

estimated from data. Below we show how to estinfatesing Of the labels of an instance is given by {¢},...,¢.} where

MLE. In order to set up an MLE problem, one needs to assunfé’},x) > f({5,x) > --- > f(,,x) and f(¢,x) is the

density functions for the observed data given the paramet@levance score of the labélto x according tof.

Here we treaty’ = {yi,...,y.} as the data independently < one error an error occurs when the top-ranked label is
generated from the normal density not a relevant one, otherwise there is no error, regardiess o
how the other labels are ranked.
1 1
, ~N(0,Q) = = ——yiQ 1y, 15 1«
Yi ( ) C eXp{ 2Yz yl} ( ) one error= E Z ]1[5’1 g Zi] (17)

=1
whereC' = (27)1/2|Q|'/2 is the normalization constant. The . .
likelihood of Y given (2 is where/] is the most relevant label te; according tof and

z; is the set of relevant labels of;. 1[-] is 1 if and only if
1 1 the statement in the brackets is true. The lower the one,error
p(Y1Q) = [[ p(yil®) = o exp{—3 > v 'y} (16) the better an algorithm performs.
i=1 i=1 e average precisionevaluates the precision averaged over

) ) ) __allinstances and all possible numbers of retrieved labels.
According to the MLE of the covariance matrix of multivagat

n

ian distributi is esti D IR B (A N A
Gaussian distributiond) is estimated as average precisions — Z 1 Z {t,...;0yNz (18)
1 o €3 5
QMLE = —YIY / 7 . .
n where{¢}, ..., ¢.} is the tops labels retrieved for instance;

(the subscript is ignored in the retrieved labels). The higher

Now we can put the above two steps together to build thig, 5yerage precision, the better an algorithm performs.
MLCM-a algorithm, as described in Algorithid 1.

C. Baselines

Algorithm 1 MLCM-a We compare the proposed methods to two baselines. First,

1: Input: Predictions from base modefd’?, ..., Y™} evaluation metrics are computed for each base mode_l, the

2: Output: Consolidated prediction¥. averaged performance of base models (denoted by BM in the

3. EstimateY = V' sequel) are obtained as one of the baselines. Second, we also
4 fort=1-—T do report the performance of majority voting method (MV in the

5. Estimate covarianc® = Y'Y sequel). The predictions of all base models are averaged and

6. EstimateY using Equ evaluation metrics are computed using the averaged predic-

7. end for tions. By comparison of these two methods, we would be

able to see how model averaging improves the performance
in the multilabel setting. This confirm the effectiveness of



TABLE |V: Results on enron dataset TABLE V: Results on medical dataset

Metrics Metrics
Methods microAUC  one error ranking foss  avg precision Methods microAUC  one error ranking foss  avg precision
BM 0.7342 0.5024 0.2967 0.4592 BM 0.8887 0.2041 0.0989 0.7953
MV 0.8289 0.3398 0.1848 0.6020 MV 0.9321 0.1410 0.0582 0.8639
MLCM-r 0.8759 0.6233 0.1003 0.5252 MLCM-r 0.9536 0.1327 0.0494 0.8750
MLCM-a 0.8931 0.2675 0.1070 0.6556 MLCM-a 0.9556 0.1322 0.0530 0.8649
ensemble method used in multilabel classification [14]].[22 TABLE VI: Results on rcvl subset 1 dataset
Since we do not assume the base models have considered labet ————
correlatio.n in training or tes_ting phase, wh!le majorityting Methods | 5c——one error ranking Toss —avg precision
cannot discover and exploit label correlations, the predos BM 0.6194 0.6036 0.3373 0.3218
methods should be able to outperform the base models and MV 06787 04792 0.2838 0.4164
o . MLCM-r 0.7867 0.3554 0.2316 0.5017
majority voting. MLCM-a | 0.8069 03120  0.2605 0.4967
D. Experiment settings VII. RELATED WORK

A base model is obtained by first randomly shuffling the To the best of our knowledge, this work is the first attempt
dataset, followed by 10-fold CV. For each dataset, we tn@nito address the challenge of combining multilabel preditio
10 such base models. For each base model, one can calcwétan ensemble of base models. The proposed algorithms is
its performance using the metrics mentioned above. Thferent from but related to ensemble learning and multil-
predictions of these base models are used as input to M¥jel classification, We briefly discuss these areas and how
MLCM-r and MLCM-a, each of which produces consolidatethey related to this work below. In multilabel classificatjo
predictions. Based on the consolidated predictions, we can instance have more than one label, contrasting to bi-
evaluate the performance of MV, MLCM-r and MLCM-a. Thisnary/multiclass classification where there is only one llabe
experiment is repeated for 10 times for each dataset and themultilabel classifier predicts the value of all labels as

averaged performance is reported next. output. Depending on how label relationships are dealt,with
multilabel classification methods can be roughly categatiz
E. Results as following. (1) Binary Relevance. Labels are treated ds-in

pendent and prediction of each label is handled by indididua

We show the performance of the proposed algorithms agghary/multiclass model. Using this principle, in SectiSBA]
baselines in Table IV-IX. We have a couple of observationge pointed out a naive way to combine multilabel predictions
First, by comparing results in the rows for BM and MV, ongf pase models. That is to apply any prediction combination
can see that combining model can boost the performancepgéthod to each label and then output the predictions on
multilabel classification, even only using the simplest vedly a|| |abels. The binary relevance paradigm does not consider
combination (simple averaging here). The maximum improvgghel dependency and thus might be inferior to methods that
ments of MV over BM are 41% and 12.8% for ranking losgonsider label dependency in terms of prediction perfoaan
and microAUC, respectively. This is not surprising, as thi®) pairwise relationship. This category of methods model
method is widely used in ensemble multilabel classificatighe relationships between two labels. [n][27], they propose
methods like [[14], [[22], [[24], [[18],[]25],[[19],[[29]. Secdn g method to learn label relationships using Bayesian nétwor
by comparing the results of the proposed methods and simggich is later utilized to learn a binary classifiers for eatbel

averaging, we observe that simple averaging is not sufficigjlven that label’s parent labels. (3) Powerset Methodss $at
to fully exploit label correlations, especially when thesba

models do not take the correlations into account. The maxi- TABLE VII: Results on rcvl subset 2 dataset
mum improvement of either the proposed algorithms over MV-

. . . . . . Metrics
is 45% in ranking Ios_s and 20% in microAUC. T_h|rd, out  Methods e e—gne erfor — ranking 1655 avg precision
of 6 tasks, MLCM-r wins MLCM-a 5 times in ranking loss, BM 0.6220 0.5652 0.5652 0.3659
with a maximum of 12% improvement, and MLCM-a wins ML’Vé\’(A 8-?23 g-ggg 8-‘21;2;) ogifésg

_ . f . . . 0 -r . . . .
MLCM-r 4 times in microAUC, with a maximum of 5.8% "<\ - 0.8020 0.2830 02830 05073

improvement. The above comparisons show the superiority
of the proposed methods over the baselines for multilabel

L S TABLE VIII: Results on slashdot dataset
predictions combination tasks, and also how to choose from

the proposed methods when different metrics are considered ;. irods Metrics

Lastly, besides ranking loss and microAUC, the proposed microAUC _ one error_ ranking loss _avg precision
hods al terf the baseli ih the other t BM 0.7377 0.4875 0.2062 0.5856

methods also outperform the baselines wi e other two 0.8210 0.4085 01482 0.6689

metrics, and this shows the wide applicability of the praabs  MLCM-r 0.8782 0.4123 0.1203 0.6736

methods. MLCM-a | 0.8702  0.3887  0.1289 0.6800




TABLE IX: Results on bibtex dataset VIIl. CONCLUSION

Methods Metrics In this paper, we aim at combining multilabel predictions
microAUC  one error ranking foss  avg precision ; ; ;
BT 5555 EAEG 57055 N SETE from ml_JItlpIe mod(.als.. The challgnge is how to explqlt label
MV 0.7266 0.4329 0.2508 0.4567 correlations to optimize a certain performance metric when
MLCM-r 0.8668 0.4713 0.1599 0.4828 consolidating predictions. Existing multilabel ensemalgo-
ML.CM-a | 08645 0.3790 0.1755 0.4937 rithms fail to do so. We address the challenge via two methods

MLCM-r and MLCM-a. The former uses random walk in

. : the
of methods try to fully consider all possible co-occurrente

labels. In particular, a set of labels is considered as ascl
and the multilabel problem is reduced to a multiclass proble
A classifier needs to map an instance into a class, which |
a set of labels. The drawback of these methods is that IEI&
number of label sets increases exponentially in the numt}%
of labels. Example algorithms in this category include th
in [14], [22].

There have been an extensive study of ensemble methods,
which combines the knowledge of multiple models to improvéll
performance.[[30] provides an excellent review of ensembl
methods, here we discuss those methods that are only relevgn
to this paper. The simplest ensemble method is majority
voting. In [1], bootstrap sampling is used to create mustipl 4
copies of training data to derive an ensemble of models. It
is shown that bagging improves performance via reduction in
variance. Another famous ensemble method is boosting [16[f,
which builds the ensemble via sequential training of basg]
models to exploit model correlation. The success of bogstin
can be explained by the margin theory |[17],1[15]. EnsembI%]
methods have some important applications, such as in fifassi
cation with skew class distribution [26] data stream mifiéihg
knowledge transfei [7]

(8]

Combining predictions without access to training or tesada o
has been researched for at least a decadk. [20] is probablylthl
most well known paper in this topic. They present three meth-
ods, CSPA, HGPA and MCLA for cluster ensemble. [In [23&2]
they propose a Bayesian framework to infer the ground truths
of the instances given the predictions of base models. I [1 3
matrix factorization is employed to obtain a low dimensiona
representation of the instances given the similarity matril4]
derived from the predictions. Iri_|[7], they propose BGCM
which maximizes the consensus among models. None of these
methods can directly address to the multilabel predictidis]

combination problem. [17]

In [28], they explore the idea of modeling the diversity of
multiple kernels and the correlations of pairwise labelsisT [18]
idea is similar to the proposed methods and thus can not ?9(3
applied to the problem we are solving in this paper.[In [215,
they treat the learning of a model for a label as a stanpo]
along task. Then their algorithm learns a linear combimaticbl]
of multiple kernels for each task. The only thing that redate
multilabel is the set of kernels to be combined for each labéd?2]
The drawback of these methods and those proposed In [10],
[29], [25], [19] assume that training and test data are atel 23]
and therefore cannot address the challenge of this paper.

label space to explicitly infer label correlation, whnim

turn results in consolidated multilabel predictions ojtiea
R ranking loss. The latter uses an optimization framework
to_estimate the partial label correlations, which regaksi
Fedictions consolidation to optimize microAUC. We analyz
h algorithms to establish these optimal properties.eExp
ntal results affirmatively demonstrate the superioritthe
0?:)roposed algorithms.
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