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Multilabel Consensus Classification
Sihong Xie† Xiangnan Kong† Jing Gao§ Wei Fan‡ Philip S. Yu†

Abstract— In the era of big data, a large amount of noisy
and incomplete data can be collected from multiple sources for
prediction tasks. Combining multiple models or data sources
helps to counteract the effects of low data quality and the
bias of any single model or data source, and thus can improve
the robustness and the performance of predictive models. Out
of privacy, storage and bandwidth considerations, in certain
circumstances one has to combine the predictions from multiple
models or data sources to obtain the final predictions without
accessing the raw data. Consensus-based prediction combination
algorithms are effective for such situations. However, current
research on prediction combination focuses on the single label
setting, where an instance can have one and only one label.
Nonetheless, data nowadays are usually multilabeled, suchthat
more than one label have to be predicted at the same time.
Direct applications of existing prediction combination methods to
multilabel settings can lead to degenerated performance. In this
paper, we address the challenges of combining predictions from
multiple multilabel classifiers and propose two novel algorithms,
MLCM-r (M ultiL abel Consensus Maximization for ranking) and
MLCM-a (MLCM for microAUC). These algorithms can capture
label correlations that are common in multilabel classifications,
and optimize corresponding performance metrics. Experimental
results on popular multilabel classification tasks verify the
theoretical analysis and effectiveness of the proposed methods.

I. I NTRODUCTION

Combining multiple models or data sources has been at-
tracting more and more attentions in data mining and machine
learning research communities. Real-world data are usually
massive, noisy and incomplete. To improve the robustness
and generalization ability of learning methods on these real-
world data, one has to combine multiple models and exploit
the knowledge of multiple data sources. Many methods have
been proposed for the purpose, such as [16], [1], which
focus on learning ensembles of models from the training data
and predictions on test data. Due to privacy, bandwidth or
storage issues, there are situations where we cannot have
access to either the training data nor the testing data directly.
Instead, only the predictions of base models are available.For
example, in finance, aggregating customers information from
multiple banks would benefit customer segmentation analysis.
However, it would be unsafe or infeasible to transfer the
customer information across different banks. One solutionto
this problem is that we can apply the analysis at each bank
individually, and then aggregate the predictions from multiple
banks. Prediction combination is a powerful paradigm for such
situations with an abundance of studies [8], [11], [12], [20],
[23]. These algorithms combine the predictions of multiple
supervised and/or unsupervised models, in hope of improving
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accuracies by exploiting the strengths of different modelsor
data sources, without access to training or test data.

Conventional research on prediction combination has been
focusing on single label classification and cannot handle mul-
tilabel classification. Meanwhile, multilabel classification has
seen its wide application in text/image categorization, bioin-
formatics and so on, and therefore is of practical importance.
Although certain ensemble methods [25], [19], [29] have been
proposed to handle multilabel classification, they focus on
building the ensemble from training data, not on prediction
combination. Given the practical needs to combine multilabel
predictions from multiple models/data sources without training
and test data, we identify the following challenges that need to
be addressed in order to bridge the gap. First, although state-
of-the-art multilabel classification methods show that label
correlations can help improving classification performances,
how to exploit label correlations solely using predictionsof
base models has not been addressed before. Second, there are
various evaluation metrics for multilabel classification,such
as microAUC, ranking loss, one error, etc. [4], [5], it is more
desirable to design algorithms that can be proved to be optimal
for a specific metric, as different applications require different
quality measures. Although, in [4], they pointed out that
optimizing different metrics translates into the modelingof
different label correlations, it is non-trivial to align prediction
combination methods with the modeling of label correlationin
order to optimize a specific metric. There is no existing work
that addresses the above issues.

In this paper, we address the above challenges by proposing
two different algorithms that can model label correlations
given only the predictions of base models. The algorithms
are designed and proved to optimize two widely used but
fundamentally different evaluation metrics, respectively. The
first algorithm MLCM-r consolidates the predictions of base
models via maximizing model consensus and exploits label
correlations using random walk in the label space. The algo-
rithm is proved to optimize ranking loss, which measures the
quality of the predictions on a per instance basis (e.g. find
relevant labels for a query in image search engine). Another
important multilabel performance metric is microAUC, which
treats all instances combined as a single prediction task (e.g.
find tags to describe a set of images. Section V describes
how microAUC differs from ranking loss). Since a model that
optimizes ranking loss might not be optimal on microAUC,it
is necessary to develop an alternative model that can combine
predictions to optimize microAUC. We propose a second algo-
rithm called MLCM-a (MultiLabel Consensus Maximization
for microAUC) for this purpose. MLCM-a is formulated as a
optimization problem that regularizes prediction consolidation
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TABLE I: Notations

Symbol Meaning
m Number of multilabel classifiers
n Number of instances
l Number of labels
x An instance
z Ground truth labels ofx
Y k output of thekth model
Ȳ Average ofY k, k = 1, . . . ,m
y
k
i prediction of thekth model for theith instance
Y Consolidated prediction ofY k, k = 1, . . . ,m

〈·, ·〉 inner product of two vectors
| · | Determinant of a matrix
‖ · ‖ Frobenius norm of a matrix
1[·] indicator of a predicate

card(A) cardinality of the setA

using partial correlations between labels, and we show thatthe
objective of this formulation optimizes microAUC.

The contributions of this paper can be summarized as
follows.

• We first study the problem of how to combine predictions
of multiple models in multilabel learning without access
to training and test data.

• We propose two novel algorithms that can jointly model
correlations among different labels and the consensus
among multiple models. As different applications require
different multilabel performance metrics, we prove that
the two algorithms optimize two multilabel classification
metrics, respectively. As far as we know, this is the
first work that addresses the multilabel-label consensus
learning problem and optimize particular metrics.

• We compare the proposed models to 3 baselines on 6
multilabel classification tasks, with a maximum of 45%
percent of reduction in ranking loss and 20% percent of
increase in microAUC.

II. PRELIMINARY

In this section we recapitulate model combination and mul-
tilabel classification algorithms, along with the challenges that
we are addressing. Table I summarizes most of the symbols
and their definitions used in this paper. We use boldface lower-
case letters for vectors (e.g.,x) and capital letters for matrices
(e.g.,Y ).

A. Multilabel Classification

In multilabel-label classification problems, the data are in
the form of(x, z), wherex is the feature vector of an instance
and z is the label vector. SupposeL is the set of all ℓ
possible labels, thenz is a vector with length|L| = l and
zℓ ∈ {0, 1} denotes the value of theℓ-th label. Multilabel
classification is different from multiclass classification. In
multiclass classification, an instance have only one label,
which can take more than two values (or classes). However, in
multilabel classification, an instance can have more than one
label, each of which can take one and only one of the multiple
values (classes). For example, an account on a social network
(LinkedIn, Facebook, etc.) can have multiple labels such as
“sex” and “is employed”, while there can be only one specific

value for the label “is employed”. Multilabel classification
introduces various unique challenges, such as sparsity and
imbalance of labels, multiple performance metrics of a model,
etc. Among these challenges, how to model and exploit label
relationships to improve accuracy has been studied intensively
in [3], [13], [14], [22], [27]. There are various types of label
relationships, the simplest one is pair-wise correlation,which
specifies how often two labels co-occur. There are also some
more complicated label relationships, such as hierarchical
organizations of labels or high order relationships. Recently,
certain types of label relationship is shown to be connected
to certain corresponding evaluation metrics. For example,
it is shown in [4] that if one can compute the relevance
score of each individual label given an instance, the ranking
according to the scores would yield the minimum ranking loss.
Conventional multilabel classification algorithms mainlyfocus
on how to exploit label correlations from training data. These
methods cannot directly address the challenge of combining
multilabel predictions without access to training or test data.

B. Prediction Combination Algorithms

Given the predictions of multiple models, one needs to
combine the predictions in order to obtain a single final pre-
diction. Suppose there arem base models, whose predictions
can be denoted by{Y 1, . . . , Y m}. For k = 1, . . . ,m, Y k is
an n × l matrix, the(i, ℓ) elementYiℓ gives the class value
of the i-th instance for theℓ-th label, according to thek-th
model. Y k is a binary matrix specifying the presence of a
label in an instance. The simplest form of model combination
is majority voting, where each base model votes in favor of a
certain class for each label. Afterwards, instances are classified
based on the votes an instance receives for different classes.
Formally, majority voting estimates the posterior probability
of seeing a label given an instance,p(yiℓ|xi) using the average
of Y k

iℓ , k = 1, . . . ,m. Without access to the training and test
data, the final predictions can be improved by exploiting the
correlations of predictions between two instances, as it has
been done in [8], [11], [12], [20]. However, under multilabel
settings, the correlation between different labels is alsoan
important piece of information to exploit. To achieve the best
prediction combination results, one should properly consider
and model all available information, namely, the correlations
between labels and those between predictions of different
instances. The lack of existing model calls for novel modelsfor
this non-trivial task. Furthermore, there are many multilabel
classification performance metrics to choose from, depending
the application at hand. Different metrics require fundamen-
tally different ways of modeling of label correlation [4],
and how to align different label correlations with various
existing prediction combination methods to optimize a certain
performance metric is another challenge that has not been
explored before.

III. PROBLEM FORMULATION

Given the multilabel predictions of base classifiers that do
not necessarily consider label correlations during training or



testing, we wish to produce improved consolidated predictions
via explicitly modeling label correlations without accessto
the training or test data. Since the improvements in multilabel
performance can be measured in many different metrics, we
further wish we can choose the right algorithm from a set
of algorithms to optimize the desired metric. We propose a
family of algorithms as a solution to the above problem. The
algorithms can infer label correlations and combine predictions
simultaneously, and more importantly, optimize two different
multilabel performance metrics, namely, ranking loss (Sec-
tion IV) and microAUC (Section V).

IV. M ULTILABEL CONSENSUSMAXIMIZATION FOR

RANKING LOSS

A. Prediction combination based on model consensus

Prediction combination methods have been explored in
many previous works [8], [12], [11], [20], [23]. Nonetheless,
these methods are designed for single-label, multiclass clas-
sification, such that prediction combination happens within
individual labels. A trivial way to apply these methods to
multilabel tasks is to first combine the predictions of base
models for each label, resulting in the consolidated predictions
for individual labels. Then these preliminary consolidated
predictions are pooled together as the final prediction for the
multilabel task. This process treats labels independentlywith-
out exploiting label correlations, and is similar to the Binary
Relevance (BR) method in multilabel classification literature.
To illustrate these concepts, we take one of the multiclass
prediction combination algorithms, BGCM [8], as an example.
BGCM seeks consolidated predictions that are agreed upon
by the base models as much as possible. Without loss of
generality, we assume that the base models are supervised
models. In particular, foreach label, BGCM constructs a
bipartite graph to represent the predictions of base classifiers.
An example of applying BGCM to a prediction combination
task with 2 instances, 2 classifiers, 2 classes of each of the 3
labels is shown in Figure 1 (only the schemas of the first and
last labels are shown).

In general, given the predictions ofm classifiers forn
instances, withc classes from a single label, the bipartite graph
hasn instances nodes andv = m×c group nodes. In the above
example, the bipartite graph for the first label is shown in the
left rectangle, where group nodes are annotated with the letter
g and instance nodes with the letterx. Each node is associated
with a probability distribution overc classes (not shown in
Figure 1). The distribution for thei-th instance node is given
by the row vectorui, i = 1, . . . , n, which are collectively
denoted by then× c matrix U = [u′

1
, . . . ,u′

n]
′. Similarly, let

the v × c matrix Q = [q′

1, . . . ,q
′

v]
′ be the distributions ofv

group nodes. The connections of these nodes are determined
by the predictions of the base models. Ifxi is classified into the
j-th class byk-th model, thei-th instance node is connected
to the (k − 1) × c + j group nodes. In the above bipartite
graph for label 1, instancex1 is classified into class 1 by
model 1, then the first instance node is connected tog1. For
a group node to represent a class, it is connected to a class

Fig. 1: Applying BGCM to multilabel prediction combination

node. Specifically, if a group node represents thej-th class,
then it is connected to a class node with class distributionbj ,
which has 1 at itsj-th position and 0 otherwise. Let thev× c
matrix B = [b′

1
, . . . ,b′

v]
′. For example, since group nodesg1

andg3 respectively represent class 1 for two models, they are
connected to the first group node on the top row, with class
distribution [1, 0].

For each label, BGCM solves the following optimization
problem to achieve maximal consensus among base models,

min
U,Q

n
∑

i=1

v
∑

j=1

aij‖ui − qj‖
2 + α

v
∑

j=1

‖qj − bj‖
2 (1)

s.t. uiℓ ≥ 0,
∑c

ℓ=1
uiℓ = 1, i = 1, . . . , n (2)

qjℓ ≥ 0,
∑c

ℓ=1
qjℓ = 1, j = 1, . . . , v

In Eq.(1),aij = 1 indicates that thei-th instance node and the
j-th group node are connected, otherwiseaij = 0. After the
optimization problem is solved, the consolidated prediction of
the i-th instance for a single label can be obtained by taking
the maximal value inui. The solution of the optimization
problem achieves maximal consensus among base models, an
objective also pursued by other consensus based prediction
combination methods [12], [11], [20]. Although this objective
can lead to the improvement of performance over base models,
these methods can only combine multilabel predictions by first
combine the predictions for each label, and then concatenate
the predictions for individual labels to obtain the final pre-
diction for multiple labels. Apparently, no label correlation is
modeled in this paradigm. Next we propose a novel method
based on BGCM to incorporate label correlations in multilabel
predictions combination.

B. MLCM-r

According to the last section, one might wish to jointly
model label correlations and model consensus to overcome the
drawback of BGCM under multilabel settings while exploiting
the power of BGCM in maximizing model consensus. We
propose MLCM-r, which adopts the architecture of BGCM
to achieve this goal. For simplicity, we assume that each label
consists of two classes. We abuse the notations introduced in
Section IV-A. In particular, we let then by v (v = m × l)
connection matrixA encode the multilabel predictions, where
the (i, (k− 1)× l+ j)-th entry is 1 if thek-th model predicts
that thei-th instance takes class 1 on thej-th label, otherwise



(a) MLCM-r (b) Graph of group nodes encoding
label relationships

Fig. 2: Bipartite graph for MLCM-r and its collapse to group
nodes

the entry is 0. ViewingA as a connection matrix between
instances and labels, a bipartite graph can be constructed for
MLCM-r. An example of the bipartite graph of MLCM-r
for 2 instances, 3 classes and two base multilabel classifiers
is shown in Figure 2(a). Similar to the bipartite graph, the
bipartite graph for MLCM-r has both group nodes and instance
nodes, annotated by the lettersg and x. However, there are
some differences between two bipartite graphs. Surrounded
by a rectangle with dashed line are the group nodes from a
classifier (e.g. the rectangleM1 includes the group nodes from
the first classifier). A group node in Figure 2(a) represents a
label instead of a class in Figure 1. An instance node in Fig-
ure 2(a) can be connected to more than one group nodes from
a classifier, naturally representing the multilabel predictions.
These differences between Figure 2(a) and Figure 1 bring more
expressive power to MLCM-r, as summarized below:

• The connections between an instance andall labels are
fully given by a single graph in MLCM-r, instead of being
broken down into multiple bipartite graphs in BGCM.

• most importantly, the relationship between labels can be
derived in MLCM-r using Figure 2(a), as shown in the
graph of group nodes in Figure 2(b). We give more details
of this property of MLCM-r in Section IV-C.

According to the newly definedA, we re-define the dis-
tributions associated with the nodes.uiℓ (the ℓ-th entry of
ui) is now defined to be the probability of thei-th instance
taking class 1 on theℓ-th label. Similarlyqjℓ is defined as the
probability of seeing theℓ-th label given thej-th label (the
reason of this definition is explained in the next section). If the
j-th group node represents theℓ-th label, it is connected to a
label node with distributionbj , which has1 on its ℓ-th entry
and 0 for the other entries, letB = [b′

1
, . . . ,b′

v]
′ similarly

as in BGCM. With the re-defined variables and constants (see
Table II), MLCM-r maximizes model consensus by solving
a similar optimization problem in Eq.(1). The closed form
optimal solution is given in Eq.(3) and Eq.(4), which infer and
exploit label correlations to minimize ranking loss, as analyzed
in the next section.

C. Analysis of MLCM-r

In this section, we first analyze the property of MLCM-r,
which is shown to perform a random walk in label space and

TABLE II: Notations for MLCM-r

Symbol Meaning
A ai,j is the prediction of label (j mod l) on xi by the ⌊j/l⌋
B Label node class distribution
U uiℓ is the probability that labelℓ is relevant toxi

Q qjℓ is the probability of seeing labelℓ given labelj
Ik k dimensional identity matrix

thus infer label correlations. Then we introduce ranking loss,
which is connected to MLCM-r to show that MLCM-r indeed
optimizes ranking loss.

According to [8], a closed form solution for the optimization
problem is

Q∗ = (Iv −DλD
−1

v A′D−1

n A)−1D1−λB (3)

whereDv = diag(1′A), Dn = diag(1′A′), 1 is a column
vector with all entries being 1.Dλ = Dv(αI + Dv)

−1 and
D1−λ = α(αI+Dv)

−1. After Q∗ is obtained,U∗ is obtained
using

U∗ = D−1

n AQ∗ (4)

Eq.(3) actually solves a problem similar to personalized pager-
ank over the graph in Figure 2(b). The graph consists of
group nodes from Figure 2(a), with edges indicating strength
of connection between group nodes. In particular, the graph
expresses the chances of co-occurrence of two labels in
terms of the proportion of instances that have both labels
simultaneously. The results of the random walk is simply the
probabilities that one node hits another node during a specific
random walk. Since the nodes represent labels, the solutioncan
be seen as the probabilities of seeing one label when starting
from another label. We analyze this intuition more formally.
We wish to establish the solution of the random walkQ∗

ℓj as
the probability of seeing thej-th label given theℓ-th label.
Fixing j and looking at Eq.(3) in a column-wise perspective,
for j = 1, . . . , v, we obtain

Q∗

·j = (Iv −DλD
−1

v A′D−1

n A)−1D1−λB·j (5)

whereQ·j andB·j are thej-th column ofQ andB, λj is the
j-th diagonal entry ofDλ. LetS = D−1

v A′D−1
n A, which is the

transition matrix. Each row ofS is a probability distribution
whereSij is the transition probability from group nodei to
group nodej. By the identity(I − S)−1 =

∑

∞

t=0
St, we can

re-write Eq.(5) as

Q∗

·j =

(

∞
∑

t=0

(DλS)
t

)

D1−λB·j (6)

Out of Eq.(6), we can construct a random walk where a
person takes from 0 to infinitely many steps to eventually
settle down at any one of the group nodes for labelj (note that
there can be multiple group nodes for labelj given multiple
classifiers, e.g. group nodesg1 and g4 represent labelj). At
each step, the person can choose to settle down with proba-
bility 1 − λi at group nodei, or to take one more transition
with probability λi, given the current position being thei-th
group node.(DλS)

t can be interpreted similar to traditional
random walk. For the base case,(DλS)

0 = I gives the



probability that one starts from any one of the group nodes and
reachesany nodes in zero step. Assume((DλS)

t−1)ij is the
probability that the person reaches nodej starting from nodei
in t−1 steps. Then((DλS)

t)ij = λi

∑v
k=1

Sik((DλS)
t−1)kj ,

which can be interpreted as the person chooses to continue
walking with probability λi, and ends up at nodej with
probability

∑v
k=1

Sik((DλS)
t−1)kj . By induction, (DλS)

t

gives the probabilities of moving from one node to another
in t steps without settling down.

Given the above interpretation and fixingj = 1, we obtain

((DλS)
tD1−λB)i1 =

∑

k

((DλS)
t)ik(1− λk)Bk1

=
∑

k

((DλS)
t)ik(1− λk)1(Bk1 = 1)

Note thatB is a matrix with 0 or 1 entries andBk1 = 1 iff
thek-th group node for label 1. Also note that(1−λk) is the
probability of settling down at thek-th group node. Then a
summand in the above summation is the probability of starting
from group nodei and settling down aftert steps of transition
at thek-th group node belonging to label 1. The sum of these
probabilities is the probability that settling down atanyof the
group nodes for label 1.Q∗

·1
= (
∑

∞

t=0
(DλS)

t)D1−λB·1, and
Q∗

ℓ1 gives the probability that, starting from theℓ-th group
node, one reaches any group nodes of class 1.

According to Eq.(4), the(i, ℓ)-th entry ofU is

Uiℓ =
1

di

v
∑

j=1

aijQ
∗

jℓ

=
c
∑

k=1

nk

di





v
∑

j=1

1[Bjk = 1]
aij
nk

Q∗

jℓ





=

c
∑

k=1

p(k|xi)p(ℓ|k,xi)

wherenk =
∑

j aij1[Bjk = 1], which is the total number of
group nodes of labelk thatxi connects to.p(k|xi) = nk/di is
the probability thatxi has labelk according tom base models.
p(ℓ|k,xi) =

∑v
j=1

1[Bjk = 1](aij/nk)Q
∗

jℓ is simply the
average ofQ∗

jℓ1[Bjk = 1], which is probability of going from
labelk to labelℓ. These two probabilities depend onxi due to
the termdi andnk, which depend on the connectivity between
xi and the group nodes. Therefore, MLCM-r computes the
probabilitiesp(yℓ = 1|xi).

The above results connects MLCM-r to ranking loss, which
is defined below. Ranking loss measures how much the rank-
ing of the labels violates the relevant-irrelevant relationship
between pairs of labels. LetPi be the set of relevant labels
for xi, andNi the set of irrelevant labels.Pi×Ni is the set of
all pairs of relevant and irrelevant labels. Given the relevance
scoresf(ℓ,xi) of label ℓ of xi, ℓ = 1, . . . , c, i = 1, . . . , n,
ranking loss is defined as

ranking loss=
n
∑

i=1

∑

ℓ∈Pi,ℓ′∈Ni

1[f(ℓ,xi) ≤ f(ℓ′,xi)]

card(Pi ×Ni)
(7)

In [4], it was proved that the expected ranking loss is mini-
mized by the ranks of the relevance scores, which is defined as
the posterior probabilityp(yiℓ = 1|xi). In other words, so long
as the probabilityp(yiℓ = 1|xi) can be estimated accurately,
one should be able to achieve a low ranking loss. But this is
what exactly MLCM-r does, as we show above. Therefore we
conclude that MLCM-r minimizes ranking loss.

V. M ULTILABEL CONSENSUSMAXIMIZATION FOR

MICROAUC

In this section, we propose another algorithm for multilabel
prediction combination. This algorithm differs from the first
one in that it optimizes microAUC, which is both theoretically
and practically different from ranking loss. After briefly review
the differences between two metrics, we describe the second
algorithm based on simple averaging.

A. microAUC and its properties

AUC (Area Under the Curve) is a binary classification
metric for situations where one class greatly out-numbers the
other class. In multilabel classification, an instance usually has
only a quite small proportion of all labels. For example, in text
tagging, there can be thousands of tags, yet an article usually
has only a couple of tags. Since there can be much more
irrelevant label than relevant labels, AUC can be adopted to
the multilabel setting, where the metric is called microAUC.
Formally, the label matrixZ = [z′

1
, . . . , z′n]

′ for n instances
has a total ofn × l entries. LetP be the set of positive
(relevant) entries andN the set of negative (irrelevant) entries,
card(P ) ≪ card(N). Given a list of relevance scores of all
entries, microAUC [2], [9] is defined as

microAUC=
∑

i∈P

∑

j∈N

1[f(i) > f(j)]

card(P )× card(N)
(8)

where f(i) is the relevance score of entryi. Observe that
microAUC is the ratio between the number of correctly
ordered pairs and the total pairs. A fundamental difference
between two metrics is that, ranking loss does not compare
the ranks between labels of two different instances, while
microAUC compares the ranks of all possible pairs of labels,
no matter they are from the same instance or not. In this sense,
approaches that optimize ranking loss does not necessarily
optimize microAUC. Next we introduce simple averaging,
based on which we propose an algorithm that combines
multilabel predictions to directly optimize microAUC.

B. Simple averaging

Perhaps the simplest way to consolidate predictions from
multiple models is to take the average of the predictions:

Y = Ȳ =
1

m

m
∑

k=1

Y k =

m
∑

k=1

Y k(mIl)
−1 (9)

whereIl is thel dimensional identity matrix. The loss function
that simple averaging minimizes is the sum of squared error
between the consolidated predictionY and the base models’



predictions{Y 1, . . . , Y m}. Formally, we adopt the results
from [11].

m
∑

k=1

‖Y k − Y ‖2 =

n
∑

i=1

m
∑

k=1

‖yk
i − yi‖

2

=

n
∑

i=1

m
∑

k=1

‖yk
i − ȳi + ȳi − yi‖

2

=

n
∑

i=1

m
∑

k=1

‖yk
i − ȳi‖

2 +

n
∑

i=1

‖ȳi − yi‖
2 (10)

The last equality follows from
∑m

k=1
(yk

i − ȳi) = 0, asmȳi =
∑m

k=1
yk
i . Note that the first term in the last line has nothing

to do withY . Therefore, the minimum of the sum of squared
errors is attained by takingY = Ȳ .

There have been several applications of simple averaging
in multilabel classification to combine the results of multiple
models, such as ECC [14], Rakel [22], Model-shared subspace
boosting [24] and BoosTexter [16]. In these methods, label
dependencies are modeled in the training phase and the combi-
nation step does not consider any label dependency. Therefore,
if base models fail to model label dependencies in training and
testing phases, simple averaging cannot reconstruct the label
dependency information solely from the predictions.

C. MLCM-a

We examine microAUC more closely to motivate the
method to be proposed. In Figure 3, we graphically demon-
strate the differences between ranking loss and microAUC.
Assume we have 3 labels and 3 instances{x1, . . . ,x3}. The
ground truth labels of the 3 instances are layed out as in
the 3 × 3 label matrix Z = [z′1, . . . , z

′

3]
′ where zi is a

row vector of the values of all labels forxi. The values
of the entries for a label are grouped in rectangles, while
each row represents the labels of an instance. Ranking loss
accounts the pairwise relationship between the labelswithin
an instance. Therefore, in Figure 3(a), 3 pairs of relative ranks
of entries will contribute to the ranking loss, as indicated
by arrows pointing from relevant labels to irrelevant ones
within each instance. However, there are more pairs of entries
that microAUC accounts for. Given a relevant label for an
instance, microAUC pairs it withall other irrelevant labels of
all instances, including itself. In Figure 3(b), example pairs of
relevant and irrelevant entries are indicated by arrows labeled
by letters. We do not draw all pairs in Figure 3(b) to avoid
untidiness. Note that arrowa indicates the sort of pairs of
entries considered by ranking loss. Arrowb indicates pairs
of entries within a label for different instances, and arrowc
points from a label of an instance to a different label of a
different instance.

Pairs of entries indicated by arrowb or d must have been
handled by any reasonable base models, which predict the
relevance of a label to the instances. Pairs of entries indicated
by arrowa consist only a small portion of all pairs ifn is large,
due to the sparsity of relevant labels. Therefore, the majorchal-
lenge in optimizing microAUC is how to enforce preference

(a) Ranking loss (b) microAUC

Fig. 3: Comparison of ranking loss and microAUC

of one label over other labels across different instances, such
as the pairs indicated by arrowc. Without loss of generality,
taken Figure 3(b) as an example, given two instancesx2 and
x3, we need to estimate the posteriorsp(yj = 1|xi) for
i ∈ {2, 3}, j ∈ {1, 3}, in order to derive preferences between
relevant and irrelevant labels. Suppose with high probability
that p(y1 = 1|x3) > p(y1 = 1|x2) (arrow b). If label 1 and3
are correlated, we would like the estimations ofp(y3 = 1|x2)
and p(y3 = 1|x3) (arrow d) to reflect such correlations to
certain extent according to how much these two labels are
correlated. This can be achieved by enforcingp(y3 = 1|x2)
andp(y3 = 1|x3) to satisfy similar label preference, namely,
p(y3 = 1|x3) > p(y3 = 1|x2) with certain high probability
according to the correlation between two labels. As a by-
product, we havep(y3 = 1|x3) > p(y1 = 1|x2) (arrowc) and
therefore enforce label preference across label and instances
to follow the correlation between labels. In summary, we can
tackle the challenge in two steps:

• estimate the correlations between labels accurately
• optimize microAUC by estimating label relevance accord-

ing to the label correlations estimated above.

We describe the second step first. A representation of label
correlation is needed. Here we model all pairs of label corre-
lation using the partial correlation matrix of labels.

Definition 1 (Partial Correlations):Partial correlation be-
tween labelsℓ and ℓ′ is the correlation between two labels
given the other labels.

The partial correlations can be captured by anl × l
symmetric matrixΩ−1, which is called precision matrix in
multivariate statistics. To estimate the relevance scoresof
the labelsY following the estimatedΩ−1, we set up an
optimization objective that combines two goals. The first
goal is to minimize certain loss function employed in model
combination algorithms. For example, the loss function in
simple averaging given in Eq.(10). The second goal is to
maximize the correlation between the label partial correlation
(matrix Ω−1) and the empirical label correlation (given by
Y ′Y ). The latter goal can be formulated by the inner product
of two matrices, namely,tr(Y ′Y Ω−1) = tr(Y Ω−1Y ′). The
optimization problem is given by

min
Y

J = {consensus loss}+ tr(Y Ω−1Y ′) (11)



whereY is the consolidated labels. An example of the above
optimization problem is given by taking the consensus loss as
the loss function Eq.(10).

min
Y

J = ‖Ȳ − Y ‖2 + tr(Y Ω−1Y ′) (12)

Taking the derivative ofJ with respect to theith row of Y ,
yi, we obtain

∂J

∂yi
= −2(ȳi − yi)

′ + 2Ω−1y′

i (13)

Equating the above derivative to 0, we get

yi =

m
∑

k=1

yk
i (Ω

−1 +mIl)
−1 = mȳi(Ω

−1 +mIl)
−1 (14)

By comparing Eq.(14) and Eq.(9), one can see that label
correlationΩ is now taken into account when producing the
consolidated predictions.

Note that we assumeΩ is given in the above optimization
problem. In reality,Ω is usually unknown and has to be
estimated from data. Below we show how to estimateΩ using
MLE. In order to set up an MLE problem, one needs to assume
density functions for the observed data given the parameter.
Here we treatY = {y1, . . . ,yn} as the data independently
generated from the normal density

yi ∼ N (0,Ω) =
1

C
exp{−

1

2
y′

iΩ
−1yi} (15)

whereC = (2π)l/2|Ω|1/2 is the normalization constant. The
likelihood of Y givenΩ is

p(Y |Ω) =
n
∏

i=1

p(yi|Ω) =
1

Cn
exp{−

1

2

n
∑

i=1

y′

iΩ
−1yi} (16)

According to the MLE of the covariance matrix of multivariate
Gaussian distributions,Ω is estimated as

Ω̂MLE =
1

n
Y ′Y

Now we can put the above two steps together to build the
MLCM-a algorithm, as described in Algorithm 1.

Algorithm 1 MLCM-a

1: Input : Predictions from base models{Y 1, . . . , Y m}
2: Output : Consolidated predictionsY .
3: EstimateY = Ȳ
4: for t = 1 → T do
5: Estimate covarianceΩ = 1

nY
′Y

6: EstimateY using Eq.(14)
7: end for

TABLE III: Datasets

datasets # of instances # of features # of labels
enron 1702 1054 53

medical 978 1449 45
rcv1 subset 1 2997 47337 101
rcv1 subset 2 2951 47337 101

slashdot 3782 1101 22
bibtex 3701 1995 159

VI. EXPERIMENTS

A. Datasets

With 6 datasets widely used in multilabel classification
community, we demonstrate the effectiveness of the proposed
methods.Their properties are summarized in Table III. Note
that these datasets have a relatively large number of labels, it
can be very time-consuming for multilabel classification mod-
els to account for complex label correlations during training.

B. Evaluation Metrics

We further include certain popular metrics to give some
empirical observations as guidance for the use of the proposed
methods in practice. For a multilabel classifierf , the ranking
of the labels of an instancex is given by{ℓ′

1
, . . . , ℓ′c} where

f(ℓ′1,x) ≥ f(ℓ′2,x) ≥ · · · ≥ f(ℓ′c,x) and f(ℓ,x) is the
relevance score of the labelℓ to x according tof .

• one error: an error occurs when the top-ranked label is
not a relevant one, otherwise there is no error, regardless of
how the other labels are ranked.

one error=
1

n

n
∑

i=1

1[ℓ′
1
6∈ zi] (17)

whereℓ′
1

is the most relevant label toxi according tof and
zi is the set of relevant labels ofxi. 1[·] is 1 if and only if
the statement in the brackets is true. The lower the one error,
the better an algorithm performs.

• average precision: evaluates the precision averaged over
all instances and all possible numbers of retrieved labels.

average precision=
1

n

n
∑

i=1

1

c

c
∑

s=1

{ℓ′
1
, . . . , ℓ′s} ∩ zi

s
(18)

where{ℓ′
1
, . . . , ℓ′s} is the tops labels retrieved for instancexi

(the subscripti is ignored in the retrieved labels). The higher
the average precision, the better an algorithm performs.

C. Baselines

We compare the proposed methods to two baselines. First,
evaluation metrics are computed for each base model, the
averaged performance of base models (denoted by BM in the
sequel) are obtained as one of the baselines. Second, we also
report the performance of majority voting method (MV in the
sequel). The predictions of all base models are averaged and
evaluation metrics are computed using the averaged predic-
tions. By comparison of these two methods, we would be
able to see how model averaging improves the performance
in the multilabel setting. This confirm the effectiveness of



TABLE IV: Results on enron dataset

Methods Metrics
microAUC one error ranking loss avg precision

BM 0.7342 0.5024 0.2967 0.4592
MV 0.8289 0.3398 0.1848 0.6020

MLCM-r 0.8759 0.6233 0.1003 0.5252
MLCM-a 0.8931 0.2675 0.1070 0.6556

ensemble method used in multilabel classification [14], [22].
Since we do not assume the base models have considered label
correlation in training or testing phase, while majority voting
cannot discover and exploit label correlations, the proposed
methods should be able to outperform the base models and
majority voting.

D. Experiment settings

A base model is obtained by first randomly shuffling the
dataset, followed by 10-fold CV. For each dataset, we training
10 such base models. For each base model, one can calculate
its performance using the metrics mentioned above. The
predictions of these base models are used as input to MV,
MLCM-r and MLCM-a, each of which produces consolidated
predictions. Based on the consolidated predictions, we can
evaluate the performance of MV, MLCM-r and MLCM-a. This
experiment is repeated for 10 times for each dataset and the
averaged performance is reported next.

E. Results

We show the performance of the proposed algorithms and
baselines in Table IV-IX. We have a couple of observations.
First, by comparing results in the rows for BM and MV, one
can see that combining model can boost the performance of
multilabel classification, even only using the simplest wayof
combination (simple averaging here). The maximum improve-
ments of MV over BM are 41% and 12.8% for ranking loss
and microAUC, respectively. This is not surprising, as this
method is widely used in ensemble multilabel classification
methods like [14], [22], [24], [18], [25], [19], [29]. Second,
by comparing the results of the proposed methods and simple
averaging, we observe that simple averaging is not sufficient
to fully exploit label correlations, especially when the base
models do not take the correlations into account. The maxi-
mum improvement of either the proposed algorithms over MV
is 45% in ranking loss and 20% in microAUC. Third, out
of 6 tasks, MLCM-r wins MLCM-a 5 times in ranking loss,
with a maximum of 12% improvement, and MLCM-a wins
MLCM-r 4 times in microAUC, with a maximum of 5.8%
improvement. The above comparisons show the superiority
of the proposed methods over the baselines for multilabel
predictions combination tasks, and also how to choose from
the proposed methods when different metrics are considered.
Lastly, besides ranking loss and microAUC, the proposed
methods also outperform the baselines with the other two
metrics, and this shows the wide applicability of the proposed
methods.

TABLE V: Results on medical dataset

Methods Metrics
microAUC one error ranking loss avg precision

BM 0.8887 0.2041 0.0989 0.7953
MV 0.9321 0.1410 0.0582 0.8639

MLCM-r 0.9536 0.1327 0.0494 0.8750
MLCM-a 0.9556 0.1322 0.0530 0.8649

TABLE VI: Results on rcv1 subset 1 dataset

Methods Metrics
microAUC one error ranking loss avg precision

BM 0.6194 0.6036 0.3373 0.3218
MV 0.6787 0.4792 0.2838 0.4164

MLCM-r 0.7867 0.3554 0.2316 0.5017
MLCM-a 0.8069 0.3120 0.2605 0.4967

VII. R ELATED WORK

To the best of our knowledge, this work is the first attempt
to address the challenge of combining multilabel predictions
of an ensemble of base models. The proposed algorithms is
different from but related to ensemble learning and multil-
abel classification, We briefly discuss these areas and how
they related to this work below. In multilabel classification,
an instance have more than one label, contrasting to bi-
nary/multiclass classification where there is only one label.
A multilabel classifier predicts the value of all labels as
output. Depending on how label relationships are dealt with,
multilabel classification methods can be roughly categorized
as following. (1) Binary Relevance. Labels are treated as inde-
pendent and prediction of each label is handled by individual
binary/multiclass model. Using this principle, in SectionIV-A
we pointed out a naive way to combine multilabel predictions
of base models. That is to apply any prediction combination
method to each label and then output the predictions on
all labels. The binary relevance paradigm does not consider
label dependency and thus might be inferior to methods that
consider label dependency in terms of prediction performance.
(2) Pairwise relationship. This category of methods model
the relationships between two labels. In [27], they propose
a method to learn label relationships using Bayesian network,
which is later utilized to learn a binary classifiers for eachlabel
given that label’s parent labels. (3) Powerset Methods. This set

TABLE VII: Results on rcv1 subset 2 dataset

Methods Metrics
microAUC one error ranking loss avg precision

BM 0.6220 0.5652 0.5652 0.3659
MV 0.6678 0.4730 0.4730 0.4389

MLCM-r 0.7581 0.2955 0.2955 0.5146
MLCM-a 0.8020 0.2830 0.2830 0.5073

TABLE VIII: Results on slashdot dataset

Methods
Metrics

microAUC one error ranking loss avg precision
BM 0.7377 0.4875 0.2062 0.5856
MV 0.8210 0.4085 0.1482 0.6689

MLCM-r 0.8782 0.4123 0.1203 0.6736
MLCM-a 0.8702 0.3887 0.1289 0.6800



TABLE IX: Results on bibtex dataset

Methods Metrics
microAUC one error ranking loss avg precision

BM 0.6620 0.5469 0.3095 0.3575
MV 0.7266 0.4329 0.2508 0.4567

MLCM-r 0.8668 0.4713 0.1599 0.4828
MLCM-a 0.8645 0.3790 0.1755 0.4937

of methods try to fully consider all possible co-occurrenceof
labels. In particular, a set of labels is considered as a class,
and the multilabel problem is reduced to a multiclass problem.
A classifier needs to map an instance into a class, which is
a set of labels. The drawback of these methods is that the
number of label sets increases exponentially in the number
of labels. Example algorithms in this category include those
in [14], [22].

There have been an extensive study of ensemble methods,
which combines the knowledge of multiple models to improve
performance. [30] provides an excellent review of ensemble
methods, here we discuss those methods that are only relevant
to this paper. The simplest ensemble method is majority
voting. In [1], bootstrap sampling is used to create multiple
copies of training data to derive an ensemble of models. It
is shown that bagging improves performance via reduction in
variance. Another famous ensemble method is boosting [16],
which builds the ensemble via sequential training of base
models to exploit model correlation. The success of boosting
can be explained by the margin theory [17], [15]. Ensemble
methods have some important applications, such as in classifi-
cation with skew class distribution [26] data stream mining[6],
knowledge transfer [7]

Combining predictions without access to training or test data
has been researched for at least a decade. [20] is probably the
most well known paper in this topic. They present three meth-
ods, CSPA, HGPA and MCLA for cluster ensemble. In [23]
they propose a Bayesian framework to infer the ground truths
of the instances given the predictions of base models. In [12],
matrix factorization is employed to obtain a low dimensional
representation of the instances given the similarity matrix
derived from the predictions. In [7], they propose BGCM,
which maximizes the consensus among models. None of these
methods can directly address to the multilabel prediction
combination problem.

In [28], they explore the idea of modeling the diversity of
multiple kernels and the correlations of pairwise labels. This
idea is similar to the proposed methods and thus can not be
applied to the problem we are solving in this paper. In [21],
they treat the learning of a model for a label as a stand-
along task. Then their algorithm learns a linear combination
of multiple kernels for each task. The only thing that related
multilabel is the set of kernels to be combined for each label.
The drawback of these methods and those proposed in [10],
[29], [25], [19] assume that training and test data are available
and therefore cannot address the challenge of this paper.

VIII. C ONCLUSION

In this paper, we aim at combining multilabel predictions
from multiple models. The challenge is how to exploit label
correlations to optimize a certain performance metric when
consolidating predictions. Existing multilabel ensemblealgo-
rithms fail to do so. We address the challenge via two methods:
MLCM-r and MLCM-a. The former uses random walk in
the label space to explicitly infer label correlation, which in
turn results in consolidated multilabel predictions optimized
for ranking loss. The latter uses an optimization framework
to estimate the partial label correlations, which regularizes
predictions consolidation to optimize microAUC. We analyze
both algorithms to establish these optimal properties. Experi-
mental results affirmatively demonstrate the superiority of the
proposed algorithms.
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