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ABSTRACT
Many factors can affect the predictability of public bus ser-
vices such as traffic, weather and local events. Other as-
pects, such as day of week or hour of day, may influence
bus travel times as well, either directly or in conjunction
with other variables. However, the exact nature of such re-
lationships between travel times and predictor variables is,
in most situations, not known. In this paper we develop
a framework that allows for flexible modeling of bus travel
times through the use of Additive Models. In particular,
we model travel times as a sum of linear as well as nonlin-
ear terms that are modeled as smooth functions of predictor
variables. The proposed class of models provides a princi-
pled statistical framework that is highly flexible in terms of
model building. The experimental results demonstrate uni-
formly superior performance of our best model as compared
to previous prediction methods when applied to a very large
GPS data set obtained from buses operating in the city of
Rio de Janeiro.

1. INTRODUCTION
In this paper we are concerned with the problem of pre-
dicting bus travel/arrival times using GPS data from public
buses. The main challenge in performing this task arises
from the fact that GPS data only provide snapshots of bus
locations at predefined (or in some cases irregular) time
stamps. The observed GPS coordinates are therefore nec-
essarily irregular in space as signal transmissions are not
controlled with respect to bus locations. The difficulty of
the problem is further increased when difference between
time stamps is large.

The raw GPS data permit us to study the relationship be-
tween bus movements in time and space. However, other
factors such as day of week, hour of day, and current traffic
conditions may also influence travel times in some system-
atic way. The exact nature of such relationships between
travel times and predictor variables is usually not known.
Therefore, these factors need to be incorporated into predici-
ton algorithms either indirectly through binned analyses or
through direct modeling.

We propose to model travel times using Additive Models [8,
26], which provide a principled statistical framework for
arrival time predictions. In particular, we model cumula-
tive travel time as a smooth function of route location and
further allow this functional relationship to vary smoothly
across (clock) time. We also construct features that may

seemlessly be incorporated into the Additive Model, either
as direct main effects or interaction effects in conjunction
with other variables.

Previous approaches have used a mixture of statistical and
machine learning algorithms for predicting bus travel times.
[19, 20, 11, 18] based predictions of future travel times on
historical averages, either through binned analysis, e.g., with
respect to hour of day, or by taking averages over similar past
trips. [22, 21, 17, 6] used Kalman filter or time series models
to predict future travel times under the assumption of a
direct relationship with previous travel times. The above
approaches lack the ability to incorporate other features into
the prediction algorithms in a model based manner.

As an alternative regression models provide a simple and
highly interpretable framework for modeling travel time as
a function of several features. However, [18, 9] all demon-
strated that the above models lack the flexibility to deal
with nonlinear features so often present in these types of
data. Artificial Neural Network (ANN) models and Support
Vector Regression (SVR) models address this problem in a
principled manner and have gained recent popularity in pre-
dicting bus arrival times because of their ability to deal with
complex and nonlinear relationships between variables [4, 5,
28, 3]. However, these methods suffer from slow learning
process [1, 7, 3] and are difficult to interpret and implement
unlike regression models.

A recurring problem in the above approaches is that they
assume knowledge of travel times between fixed locations in
space, in particular bus stops. Often times these data are
available (e.g., Automatic Passenger Count (APC) data [17,
4]) and provide information about exact arrival, departure,
and dwelling times at specified bus stops. In the absence of
such data, interpolation is performed to infer these times at
the route’s bus stops [11, 18]. This is reasonable when differ-
ence between time stamps is small, say 20 seconds, but can
lead to larger errors when difference is larger, say few min-
utes. Another problem arises for methods that account for
temporal effects (e.g., Kalman filters) due to discretization
made in the time dimension. This is again reasonable in the
presence of high volumes of data, but may be problematic if
data is sparse with irregularities in the time dimension.

The main advantage of Additive Models in this context is
their ease of interpretability and flexibility in modeling com-
plex non-linear relationships. Factors that are known (or
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suspected) to affect traffic may be included in the model
as traditional linear features, smooth functional effects, or
interactions thereof. Additive Models do not require any
discretization or interpolated observations, but rather are
capable of handling directly the raw observed data. The
only interpolation that applies is made when inferring the
departure time from origin. However, a critical feature of
our proposed solution is the inclusion of a (corrective) ran-
dom intercept in the model that attempts to correct for this
interpolation step thus redefining time zero for each bus.
Experimental results show that the random intercept model
uniformly dominates all other methods in all prediction sce-
narios.

To the best of our knowledge our proposed solution is the
first method that: (1) models bus travel times directly using
raw irregular GPS data; (2) models spatial and temporal ef-
fects through smooth functions thus avoiding any discretiza-
tion; and (3) allows for flexible incorporation of additional
traffic related features in a model based manner. The last
point is an important one as it implies that our proposed
framework may be used as a development framework for
building more accurate travel time models through the in-
corporation of additional (perhaps city dependent) features.

The remainder of the paper is organized as follows: Sec-
tion 2 provides a summary of the motivating GPS data;
background on additive models is provided in Section 3; the
proposed framework for predicting bus travel times is de-
tailed in Section 4; experimental evaluation is provided in
Section 5; related work is described in Section 6; and Sec-
tion 7 concludes the paper.

2. PRELIMINARIES
In this section we start by describing the motivating data.
We then explain how the data are normalized and introduce
mathematical notation.

2.1 Motivating Data
The motivating data consist of GPS measurements collected
from public buses in the city of Rio de Janeiro, Brazil, during
the time period from September 26, 2013 to January 9, 2014.
The complete data set contains information about more than
400 bus routes and 9000 buses. Each GPS data point con-
tains information about the position of the bus (longitude,
latitude), date and time stamp, bus ID, and route ID. In
total there are more than 100 million location entries for
the time period of this study. The time between consecutive
GPS measurements ranges from anywhere under a minute to
over 10 minutes, with an average of ≈ 4 minutes. A sequence
of GPS coordinates of a given bus is called a space-time tra-
jectory and provides information about bus movement in
space and time.

We also had access to GTFS (General Transit Feed Specifi-
cation1) data, which contain general information about the
bus routes, such as bus stop locations. In general, each route
consists of two trips, one going from origin to destination and
the second representing the return trip. The GTFS data
contain a complete definition of each such trip as a sequence
of latitude/longitude points tracing the streets of the route

1http://developers.google.com/transit/gtfs
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Figure 1: Map of the piecewise linear represen-
tations of the four routes analyzed in this paper.
Route 603 (purple), 627 (red), 862 (green) and 121
(blue). Bus stops are marked by black points.

from origin to destination. In Figure 1 we display on map
the bus stops and piecewise linear representations of routes
121 (running from Copacabana to City Center), 603 ( run-
ning from Saens Pena to Usina), 627 (running from Saens
Pena to Inhauma) and 862 (running from Jacarepagua to
Barra da Tijuca).

Note that the observed data did not present itself without
any challenges. For example, for each bus entry we only
observe a general route ID for the round trip. The GPS
data provide no further information about which direction
the buses are travelling. However, by analyzing consecutive
GPS measurements it is possible to infer the bus direction
on the route. Other challenges involved erroneous or non-
informative data entries. For example, for some buses the
GPS measurements were observed far from the given routes
and even at remote locations. We systematically removed
all such non-informative entries in subsequent analyses.

2.2 Data Normalization
The GPS data in conjunction with the GTFS data pro-
vide us with the means to map GPS coordinates onto a
1-dimensional scale measuring distance from origin. For any
given bus coordinate we project it onto the closest line seg-
ment of the corresponding route and then calculate its dis-
tance from origin along the piecewise segments.

By calculating differences between consecutive time stamps
we may infer travel times of each bus between its observed
locations. However, in order to analyze and compare travel
times of buses, running at different hours, we need to nor-
malize the time stamps onto a common cumulative time
scale, i.e., we need to define a common time zero. This



Figure 2: Cumulative space-time trajectories of
the four bus routes analyzed in this paper. For
each route a different transparency factor between 0
(completely transparent) and 1 (completely opaque)
was chosen for plotting. This was done to normal-
ize for varying numbers of data points per route and
further make it possible to see where the bulk of the
points lie. Note the distinct x-scales that reflect the
different route lengths.

may be achieved by interpolating all the observed space-
time trajectories at a common fixed point in space, e.g.,
origin, and defining that point as time zero. Space-time tra-
jectories whose GPS coordinates have been mapped onto a
cumulative distance scale and whose time stamps have been
normalized to a common cumulative time scale are called
cumulative space-time trajectories.

In Figure 2, we see the cumulative space-time trajectories of
all buses (during the specified time period) running on the
four routes analyzed in this paper. Note that the only inter-
polation made is at origin to define the common cumulative
time scale. In all other aspects, the scatter plots represent
raw measurements observed at irregular spatial locations.

2.3 Mathematical Notation
In general, we may normalize the time stamps at any ar-
bitrary fixed point in space, in particular, at any of the
route’s bus stops. Let 0 = p0 < p1 < · · · < pK denote
the distances of all bus stops of a given route from origin
p0, where K denotes the number of on-route bus stops. Cu-
mulative space-time trajectories normalized at pk consist of
cumulative distances pk ≤ dist ijk ≤ pK , and corresponding
cumulative travel times Tijk ≥ 0, j = 1, . . . ,mik, where mik

denotes the number of data points for bus i beyond pk. The
distances may either represent interpolated values at pre-
specified fixed locations (e.g., subsequent bus stops) such as

in [11, 18], or raw GPS coordinates as in this paper. Both
cumulative distances and cumulative times are defined from
pk onward such that dist = 0 and T = 0 at pk. The cumu-
lative time scale is inferred by interpolating two consecutive
time stamps before and after pk. We denote by Traj (pk)
the set of thus normalized historical cumulative space-time
trajectories.

3. THEORETICAL BACKGROUND
Additive models [8, 26] are linear models, which allow the
linear predictor to not only depend on pure linear terms
but also on a sum of unknown smooth functions of predic-
tor variables. This class of models is particularly powerful
when there is an evident smooth relationship between the
response and predictor variables but exact parametric form
can neither be theoretically nor intuitively inferred. How-
ever, we need to specify these functions in some meaningful
way and determine the degree of smoothness. This section
discusses both of these topics.

3.1 Penalized Spline Smoothing
Let us first consider one-dimensional functions through the
simple scatterplot smoothing model

yi = f(xi) + εi, (1)

i = 1, . . . , n. A common approach [26, 16], is to represent the
function as f(x) =

∑q
j=1 βjφj(x), where φj(x) are known

basis functions and βj are coefficients to be estimated. An
intuitive example is the piecewise linear representation, in-
volving basis functions φ1(x) = 1, φ2(x) = x, and φj+2(x) =
(x − τj)+ ≡ max(0, x − τj), j = 1, . . . , q − 2, where τj are
called knots that need to be chosen (e.g., equally spaced
in x-domain). The exact choice of the number of knots and
placement is not generally critical and is not the focus of this
paper. In general the number should be chosen to be large
enough to represent the underlying truth reasonably well,
while at the same time maintaining computational efficiency.
By letting X = [1 xi (xi − τ1)+ . . . (xi − τq−2)+]1≤i≤n the
model function may now be written in matrix form as f(x) =
Xβ. This representation is quite general and there exist sev-
eral families of basis functions that fit into the above frame-
work. For example, a simple cubic regression spline can be
obtained by defining φj+2(x) = |x−τj |3 instead of the trun-
cated linear basis above.

The above model may be estimated by least squares or by
maximizing the loglikelihood function, `(β), under a nor-
mality assumption on ε. However, in order to control the
smoothness of the fit we need to work with the so called
penalized loglikelihood

`P = `(β)− λβ′Dβ, (2)

where D is most often specified as diag(0, 0, 1, . . . , 1) and λ is
a smoothness parameter. If λ is chosen too large the result-
ing fit becomes closer and closer to a linear fit in the above
case. On the other hand, choosing λ too small may lead
to overfitting. In general the smoothness parameter may be
estimated, for example, using Generalized Cross Validation
(GCV).



3.2 Additive Models
The additive models that we consider in this paper have the
form:

yi = X0iβ0 + f1(x1i) + f2(x2i) + f3(x1i, x2i) + εi, (3)

where yi and εi are the response and error term respec-
tively, X0iβ0 represents purely linear terms in the model,
and f1, f2, and f3 represent smooth functions of the predic-
tors x1 and x2. We represent the one-dimensional functions
as in the previous subsection: f1(x1) =

∑q1
j=1 β1jφj(x1) and

f2(x2) =
∑q2

k=1 β2kψk(x2), where φj(x1) and ψk(x2) are
known (possibly distinct) basis functions. In this paper a
tensor product basis [26, 16] is used to represent the bivari-
ate term:

f3(x1, x2) =

q1∑
j=1

q2∑
k=1

β3jkφj(x1)ψk(x2). (4)

Through a similar argument as in the previous subsection,
each of the above functions fi, i = 1, 2, 3, may be repre-
sented by Xiβi, where the Xi matrices are appropriately
specified in terms of the basis functions φj(·), and ψk(·).
The model terms may then be stacked in the traditional
way: X = [X0 X1 X2 X3], and β = (β′0, β

′
1, β
′
2, β
′
3)′, to ob-

tain the linear model:

Y = Xβ + ε. (5)

This demonstrates that with the appropriate specification
of the smooth functions an additive model is simply a linear
model whose smoothness of fit may be controlled by placing
a penalty on the β terms. We may separately control the
smoothness of each function by introducing function specific
smoothness parameters λi. The penalized loglikelihood from
(2) then generalizes naturally to:

`P = `(β)−
3∑

i=1

λiβ
′
iDiβi, (6)

where Di are specified similarly.

Estimation of the additive model may be performed by max-
imizing the penalized likelihood in (6) and estimating the
smoothness parameters through GCV. Once the model has
been estimated using training data, one can predict a new
response in the usual manner.

3.3 Additive Model with Random Intercept
In this paper we also consider an additive model with a
random intercept

yi = b0i +X0iβ0 + f1(x1i) + f2(x2i) + f3(x1i, x2i) + εi, (7)

where b0i ∼ N(0, σ2
b ) and εi ∼ N(0, σ2

ε). Note that the
above model is not overparametrized as the b0i are treated
as random and not fixed. This model falls into the gen-
eral class of Additive Mixed Models [26] (due to the mixed
combination of random and fixed model terms) and we note
that by specifying the smooth functions as before it may be
represented in the matrix form:

Y = Xβ + Zb0 + ε, (8)

where Z is a single column matrix of ones.

The estimation of the above model is not straight forward
and since space is limited we point to [26] for full theoretical
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Figure 3: Cumulative space-time trajectories for
route 121 from September 27, 2013. Upper panel
demonstrates the trajectories from beginning of
route and the lower panel from bus stop p12 onward.
Bus stops are marked by black squares.

coverage. However, we note that through a correct likelihood
specification an iterative maximization algorithm may be
applied to obtain estimates of the parameters β, σ2

b , and σ2
ε .

Given these estimates the prediction formula for the random
effect vector is (see e.g. [16])

b̂0 = σ2
uZ
′V −1(y −Xβ), (9)

where V = σ2
uZZ

′ + σ2
εI.

3.4 Computational Aspects
Additive models, such as (3) using penalized splines and ten-
sor product smooths are implemented in a highly optimized
R-package, mgcv which allows estimation of the model, [23,
24, 25, 27]. Additive mixed models, such as (8) are more
computationally expensive than regular Additive Models, in
particular when the number of random effects becomes large.
However, the mgcv -package also has a optimized routine for
estimation through a call to the lme function of the highly
developed nlme R-package [12] that was specifically designed
to estimate linear mixed models efficiently.

4. PROPOSED SOLUTION
In this section we present additive models for analyzing his-
torical cumulative space-time trajectories such as those ob-
served in Figure 3. In the upper and lower panel, respec-
tively, we see examples of historical trajectories, Traj (pk),
that have been normalized at pk for k = 0 (origin) and
k = 12 (bus stop p12). We note that the cumulative travel
time variance beyond bus stop p12 is reduced dramatically
when normalized at p12 as compared to at p0. Therefore,
we propose to train additive models on each of the histor-
ical trajectories, Traj (pk), for bus stops k = 0, . . . ,K − 1,
where K − 1 corresponds to the second to last bus stop on
route. The objective is then to base future travel time pre-
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Figure 4: Cumulative space-time trajectories of
route 121, stratified by hour, during the time period
September 26 - October 10, 2013. The dots repre-
sent raw measurements and the blue interpolated
curves represent each bus trajectory for illustration
purposes. A smooth mean curve for each time cat-
egory is depicted in red.

dictions of a bus close to bus stop pk on the corresponding
additive model trained on Traj (pk).

In order to make our presentation more coherent, we model
and analyze the bus trajectories of bus route 121 (Copacabana-
Center) for the first two weeks of our observed time pe-
riod. We analyze trajectories starting from origin, Traj (p0)
and for ease of notation we omit the k-subindex of Subsec-
tion 2.3. However, we note that all discussions generalize
to trajectories starting from any given bus stop along the
route, Traj (pk). For the first two weeks of our study we
observed n = 385 trajectories for route 121 with on average
mi = 13 measurements per bus ride. Through statistical
reasoning, we construct three models whose performances
are compared to previous approaches (Section 5). All nu-
merical summaries in this section apply to this data set.

4.1 Basic Additive Model for Travel Times
In Figure 4, we see the cumulative space-time trajectories of
all bus rides of route 121 during the specified time period.
The trajectories are stratified by hour and a smooth mean
curve is fitted through each scatterplot to illustrate travel
time trends. We note that morning travel time duration
peaks between 9am and noon (morning rush hour). Then
a slight reduction in travel times is observed between noon
and 3pm, followed by an afternoon rush hour. We also note
that there is not only a difference in total travel times across
hours, but also in the shapes of the mean curves. This figure
inspires the following model of bus travel time, Tij , as func-
tion of distance from origin, dist ij , and time of departure,
timei:

Model 1: Basic Additive Model (BAM)

Tij = β0 + f1(dist ij) + f2(timei) + f3(dist ij , timei) + εij ,
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Figure 5: A contour plot of estimated travel times
as a smooth function of time of day and cumulative
distance from origin.

i = 1, . . . , n, and j = 1, . . . ,mi, where β0, and εij represent
an overall model mean and error term, respectively. In what
follows we assume the random error terms are mean zero and
normally distributed. The terms f1, f2, f3 denote unknown
smooth functions designed to capture functional relation-
ships such as those observed in Figure 4. The f1, f2-terms
can be thought of as smooth main effects of dist and time
on T , respectively, whereas the f3-term represents an inter-
action effect of the two variables. The interaction allows the
functional relationship between T and dist to change with
time, as observed in Figure 4.

The functions f1, f2 and f3 were represented by cubic re-
gression splines and tensor product smooths (see Section 3).
We placed one knot at each bus stop between origin and
destination to capture smooth transitions from one station
to the next. We placed 5 equally spaced knots in the time
space, which was large enough to capture the two rush hours
trends in the morning and afternoon, respectively. Larger
number of time-knots did not seem to affect the fit of the
model.

We estimated the Basic Additive Model using the mgcv R
package. The numbers showed that each of the functional
effects f1, f2, and f3 was deemed statistically significant by
the F-test (p-values < 10−16) and the overall adjusted R2 of
the model was 0.903. To illustrate the smooth relationship
between the two variables and travel time, Figure 5 shows
a contour plot of estimated travel time with cumulative dis-
tance from origin on x-axis and time of day on y-axis. We
can see that at 10am it takes the bus on average approxi-
mately 30min to travel around 12km, while at 5pm it only
travels around 8km in half an hour. We also see that the
two rush hour peaks, at approximately 10am and 5pm, are
more amplified at 12km than at 2km, as exemplified by the
30min and 10min contour lines, respectively. These obser-
vations demonstrate the importance of including the inter-
action term f3 in the model.
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Figure 6: Cumulative space-time trajectories of
route 121 during week days (left) and weekends
(right). The dots represent raw measurements and
the blue interpolated curves represent each bus tra-
jectory for illustration purposes. Smooth mean
curves are depicted in red.

4.2 Extended Additive Model with Additional
Features

It is well known that traffic patterns in cities are different on
a weekday as compared to the weekend (see Figure 6). This
phenomenon can easily and quite flexibly be incorporated
into our basic additive model above. Let weekend i denote
an indicator variable that determines whether bus ride i oc-
curred on a weekday or on the weekend. Then by adding
the linear term β1 · weekend i into the model we account for
differences in overall mean travel times between weekdays
and weekends. However, there is an evident interaction of
the weekend factor with distance from origin as can be seen
in Figure 6, where the mean difference between weekday
and weekend travel times increases as a function of distance.
Therefore, in addition to the main effect β1 · weekend i, we
propose replacing the functional term f1(dist ij) in Model 1
by the interaction term f1(dist ij ,weekend i). This term in
fact generates two different smooths, one for weekday and
the other for weekend trajectories.

Another feature that intuitively seems likely to correlate well
with travel time of a given bus is the travel time of the last
bus in front of it. We therefore define the feature T last

ij to
be the cumulative travel time at dist ij of the last bus that
passed before time of departure of bus i. It is important
to point out here that it is unlikely that the last bus will
transmit a GPS signal at the same locations dist ij as bus
i. Therefore, interpolation of the cumulative space-time tra-
jectory of the last bus is performed at dist ij to construct the
feature T last

ij . We observed that T last
ij had a strong linear re-

lationship with the observed travel times, Tij , with a sample
correlation of r ≈ 0.92.

The following model extends Model 1 to include the features

discussed above:

Model 2: Extended Additive Model (EAM)

Tij = β0 + β1 · weekend i + f1(dist ij ,weekend i)

+ β2 · T last
ij + f2(timei) + f3(dist ij , timei) + εij .

We fitted the above model to our data set and observed
that all effects, including weekend i, the interaction term
f1(dist ij ,weekend i), and the linear predictor T last

ij were highly

significant (p-values < 10−16). The adjusted R2 increased
from the previous model to 0.919.

4.3 Additive Mixed Model
We recall that in Section 2.3 we normalized all the space-
time trajectories to a common cumulative time scale. Since
the actual times of departure are not known, an approxima-
tion was made by taking two consecutive time stamps be-
fore and after origin and defining T = 0 as the interpolated
time-stamp at origin. However, note that this introduces an
error in the form of a vertical trajectory shift, due to incor-
rect specification of time of departure. One bus driver may,
for example, take a short break at origin, while another may
depart soon after arriving. This error is unpredictable in our
context and can amplify when time resolution is poor such
as in our data, where GPS coordinates are only transmitted
on average every 4 minutes.

In order to correct for the misspecification of time of depar-
ture, we propose an additive mixed model (see section 3.3)
that includes a (corrective) random intercept term b0i for
each and every bus ride i = 1, . . . , n:

Model 3: Additive Mixed Model (AMM)

Tij = β0 + b0i + β1 · weekend i + f1(dist ij ,weekend i)

+ β2 · T last
ij + f2(timei) + f3(dist ij , timei) + εij ,

where b0i ∼ N(0, σ2
b ).

We fitted the above model and found that the random inter-
cept term b0i was indeed highly significant (p-value < 10−16)
and the adjusted R2 value increased significantly to 0.968.
The standard deviation σb was estimated to be 3 minutes,
which indicates that the estimated (interpolated) time of
departure indeed requires adjustment.

5. EXPERIMENTS

5.1 Experimental Data
We performed a prediction analysis on four bus routes in
the city of Rio de Janeiro: 603, 627, 862, and 121 (see Fig-
ure 1). These routes are located in distinct regions of the
city and further have different lengths, number of bus stops,
and frequency of bus rides, see Table 1. Further these routes
demonstrate distinct traffic patterns as can be seen in Fig-
ure 2. We have made all the data sets available in [13], which
we believe this will stimulate further research in the area.

We note that since GPS locations are transmitted on average
every 4 minutes the density of points in the spatial dimen-
sion of Figure 2 provides some insight into traffic behavior
at different route segments. We see, for example, a lighter



Table 1: Route data summary

Route # trajectories # stops Length (in km)

603 1,276 15 4

627 1,325 54 15

862 7,882 24 10

121 2,515 18 15

blue section in the middle of route 121 (due to fewer observa-
tions), which represents an inner city thruway less prone to
traffic congestions. On the other hand, darker sections rep-
resent locations where traffic may experience regular stops or
delays, such as traffic signals or frequently congested road
segments. Locations with no data points represent either
tunnels or regions with poor reception. We note that al-
though both routes 121 and 627 have the same length their
cumulative space-time trajectories are quite different. These
four distinct routes represent a wide range of prediction sce-
narios we want to cover in our experiments.

5.2 Experimental Setup
The total number of trajectories in each route is presented
in Table 1. We randomly selected 14 days after November
1st 2013 as our test data. This guaranteed at least 30 days
of historical data for each test date. For each bus running
on any of these 14 days we performed travel time predictions
using three sets of historical data involving all bus rides in
the last 10, 20, and 30 days, respectively. This was done to
get a sense of whether the size of the historical data set has
an influence on the accuracy of the tested models.

Travel time predictions were made for each bus in test set
from every bus stop until end of route to reflect the real
world problem of predicting bus arrivals from any on-route
location onward. More precisely, for each bus stop pk we
recorded for bus i in test set the first observed bus entry
dist i1k after pk. We then made travel time predictions at all
remaining (observed) points dist ijk, j = 2, . . . ,mik. Since
the data at dist ijk represent the raw data whose cumulative
travel times Tijk (from bus stop pk) are known we could
thus calculate and analyze prediction errors. In order to
get a sense of how error changes as a function of distance
from the bus stop beyond which predictions were made we
recorded the prediction distances |dist ijk − pk|.

5.3 Evaluation Measures
To evaluate overall performance of each method for a given
bus route we calculated the mean absolute relative error,
defined as (1/N)

∑
ij |Tij − T̂ij |/Tij , where N denotes total

number of predictions made. Since the distributions of the
relative errors was right skewed in all cases a median could
have been used instead of mean. However, as the mean is
less robust to outliers it may also provide insight about worst
case errors. Overall conclusions were not affected by replac-
ing the mean with median. We performed a non-parametric
paired Wilcoxon test to compare the overall performances
between methods.

Since error was greater at later parts of route, we also ana-
lyzed the distributions of absolute errors stratified by predic-

tion distances, |dist ijk−pk|. The distance space was binned
into one kilometer bins [0,1), [1,2), [2,3), ... etc. Visual
comparison of distributions was performed using boxplots
and a 95th percentile curve; see Figure 7. Since absolute
errors were right skewed for each method we performed a
two-sided non-parametric paired Wilcoxon test to compare
methods within each distance bin.

To account for multiple testing, p-values were recorded for
each comparison and then adjusted using the Benjamini-
Hochberg method [2]. Statistical significance was deter-
mined if adjusted p-values were < 0.05.

5.4 Implemented Methods
Additive Models: No model selection or parameter tun-
ing was performed during the training. Instead for each
and every training set we estimated the exact same three
models as defined in Section 4. Once estimation had been
performed the estimated model parameters, β̂, along with
a complete set of test features was plugged into the Addi-
tive Model formula (5) to obtain travel time predictions at
subsequent route locations. For AMM, in order to estimate
the random effect b0i of (7) for a new trajectory i in the
test set at least one observed travel time is needed. Since
predictions are always made given the current location of
the bus, the first observation, Ti1, may be used for that pur-
pose. By plugging this value in for y in the formula (9)
we obtain an estimate of b0i. Then the formula (8) may
be used in conjunction with a complete set of test features
to obtain travel time predictions at subsequent route loca-
tions. A minor implementation detail we want to point out
involves predictions beyond bus stops very close to route
destination. In this case the training data Traj (pk) can be-
come scarce and full spline function representation as de-
fined in our three proposed models in Section 4 may lead
to overfitting. Therefore, in these cases, we replaced the
smooth functions with the more simple linear model terms:
α1dist ij +α2dist ij ·weekend i +α3timeij +α4dist ij · timeij .

Support Vector Machine (SVM): Bin et al. [3] used sup-
port vector machine regression to predict the arrival time of
the next bus. They divided the bus trajectories in segments
and then used as features the travel time of current bus at
previous segment and the latest travel time of a previous bus
in the next segment to predict the travel time for the next
segment. Since we are not only interested in predicting the
travel time of the next segment but all subsequent segments
until end of route, we added to the training data the latest
travel times at all subsequent segments. Similar to [3], we
used a linear kernel and the implementation was performed
using the R package “e1071”.

Kernel Regression: Sinn et al. [18] proposed an instance-
based method that uses weighted averages of historical tra-
jectories to make predictions. Trajectories with similar be-
haviour up to the current bus location are given more weight.
Weights are defined by a gaussian kernel: exp(−‖x−y‖2/b),
where x and y are cumulative space-time trajectories, and b
is the bandwidth of the kernel2. For further details, we refer
the reader to [18].

2Similar to [18], we set b = 1 in our experiments



Table 2: Mean Absolute Relative Error
Method

Route # days BAM EAM AMM Kernel SVM

603

10 19.9% 19.7% 18.4% 21.3% 64.4%

20 20.1% 19.8% 18.5% 21.3% 64.7%

30 19.8% 19.6% 18.3% 21.3% 64.8%

627

10 16.3% 14.7% 13.8% 18.1% 28.8%

20 15.2% 14.2% 13.4% 17.3% 30.0%

30 15.1% 14.0% 13.2% 17.1% 29.4%

862

10 22.1% 19.5% 18.0% 23.8% 26.4%

20 22.5% 19.3% 18.0% 23.6% 26.8%

30 22.2% 19.3% 17.9% 23.4% 25.6%

121

10 23.1% 20.9% 19.2% 23.9% 41.5%

20 22.9% 20.7% 19.1% 23.6% 41.4%

30 22.7% 20.3% 18.9% 23.4% 41.2%

Both approaches, SVM and Kernel Regression, perform pre-
dictions only at predefined route segments. However, since
GPS data consist of irregular points in space, both of these
methods relied on interpolation at predefined route loca-
tions, such as bus stops in [3]. We therefore performed
interpolation at all bus stops of the route, which in fact
resulted in a consensus in training data across all meth-
ods. To be more precise, for predictions from bus stop pk
onward, all approaches used as training data the historical
space-time trajectories Traj (pk). The key difference is that
for SVM and Kernel Regression the cumulative distances
dist ijk, underlying Traj (pk), coincide exactly with subse-
quent bus stops beyond pk, whereas in our approach they
correspond directly with the raw GPS measurements.

5.5 Experimental Results
In Table 2 we see the mean absolute relative errors for each
method. The first thing to note is that our Additive Models
(BAM, EAM, and AMM) outperformed the Kernel Regres-
sion and SVM in all scenarios. SVM’s overall performance
was notably worse than any of the other methods. The
main comparisons of interest are thus between the Kernel
Regression approach and each one of our Additive Models.
The Wilcoxon paired test revealed statistically significant
differences between the Kernel Regression and all our pro-
posed three Additive Models, in all scenarios. Further, the
Wilcoxon paired test revealed that in all scenarios the AMM
outperformed all other methods. Another observation from
Table 2 is that the size of the training data does not seem
to affect performance of any of the 5 methods.

To give a more detailed view of the results, we show in
Figure 7 boxplots of absolute prediction errors aggregated
across all training data sets, 10, 20, and 30 days, and further
stratified by route and prediction distance. The boxplots
are displayed for all methods except for SVM as their per-
formance was greatly inferior for larger distances and only
interfered with visualization. It should be noted that the
SVM approach of [3] was specifically designed to predict
only the travel time at next route segment and therefore
inferior performance at larger distances may be expected.
However, even at the smaller bins the SVM approach was
outperformed by all other methods.

As expected, the error increases with distance from bus stops
beyond which the predictions were made. We note that all
distributions were right skewed with several outliers (as de-
fined by the ends of the boxplot whiskers) mostly due to
heavily delayed buses. These outliers are not displayed as
they interfere with visualization and do not reveal any sig-
nificant trends beyond those seen in the boxplots. However,
in order to get a sense of this “outlier effect” we plotted
the 95th percentiles (dashed lines) along with the boxplots.
These lines give us a sense of “worst case” scenario perfor-
mance of each method.

Although perhaps not visually striking in all distance bins,
the AMM statistically outperformed all methods for all routes
and in all distance bins (except for the 14km bin on route
627 where no difference existed between EAM and AMM).
In the first distance bin, [0, 1), the Kernel Regression method
outperformed both BAM and EAM at all routes except for
route 603 (where no statistical difference existed). However,
in all other distance bins the two Additive Models statis-
tically outperformed the Kernel Regression. Thus, on the
whole, the visualization and stratified analysis confirmed the
performance order observed in Table 2.

The fact that Kernel Regression outperformed BAM, and
EAM in the first distance bin suggests that the Additive
Models tend to put more priority on minimizing error in
later parts, when it is in fact larger, at the expense of short
term predictions. Perhaps this may be fixed by placing more
knots at the beginning of the route or through additional
features. However, as we discussed before, AMM performed
statistically better than all other methods in the first dis-
tance bin. This suggests that the random corrective inter-
cept term plays an important roll in rescuing the incorrectly
specified cumulative time scales as obtained by interpola-
tion.

It is interesting to note that route 121 showed the highest
worst-case scenario across all routes, as demonstrated by
the 95th percentile curves. This is further reflected in the
highest relative error in Table 2. This fact can perhaps be
explained by the fact that the destination of route 121 lies
in the heart of the city center.

6. RELATED WORK
A list of related works on bus arrival time prediction may be
found in [29, 14, 1]. In this section we present an overview
of the main methods, but refer to [29, 14, 1] for a more
exhaustive list of references. The discussion is divided into
categories based on the type of models in question.

6.1 Historical Data-Based Models
The models falling into this category base predictions of fu-
ture travel times on historical averages [19, 20, 11, 18]. The
proposed algorithm in [19] combined real-time GPS coordi-
nates and current bus speed with historical average speeds
of individual route segments. The methods proposed in [20,
11, 18] were all based on averages of similar past bus tra-
jectories. These methods work best when current bus has
traveled some distance and its trajectory until current lo-
cation has sufficient data points that can be compared to
historical trajectories. In [19, 11] the analyses were strat-
ified by hour of day by defining time bins. Our proposed
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Figure 7: Boxplots of absolute prediction errors for routes 603, 627, 862, and 121, ordered by overall perfor-
mance of methods. The dashed lines represent 95th percentiles of corresponding absolute errors.

BAM falls into this class of models but in addition models
temporal effects as a smooth function as opposed to using
categorical binning.

6.2 Regression Models
Regression models predict and explain a response variable
through a function of predictor variables. [9] and [15] devel-
oped multiple linear regression models using different sets of
predictors and both studies indicated that regression mod-
els are outperformed by other models. Further, the Kernel
Regression method (analyzed in the Experiments section)
was demonstrated to have superior performance over regres-
sion [18]. However, a great advantage of regression models
is that they reveal which predictors have a significant ef-
fect on the response. Further, they provide a principled
statistical framework for handling features and are highly
interpretable. Our proposed EAM and AMM methods en-
joy all the benefits of regression models but in addition allow
for flexible modeling of nonlinear features through smooth

functions.

6.3 Kalman Filter Models
Kalman filters [10] and other time series models have been
proposed for predicting bus arrival times [22, 21, 17, 6]. For
the bus prediction problem the most common implementa-
tion of Kalman filter involves the assumption that travel
time on a given route segment depends on a previously ob-
served travel time at the same route segment [22, 17, 6].
However, [21] took a different approach and assumed that
travel time on a given route segment depends on the travel
time of a previous route segment. This approach resembles
the SVM approach that was implemented for comparison
purposes in the experiments section, see subsection below.
All of the above methods rely on discretization of either time
or space. [22] developed a seasonal autoregressive moving
average process for short-term traffic forecasts. [6] treated
the average travel time of tagged vehicles in a given time in-
terval as the true value to predict the travel time in the next



time period. In addition to using the travel time in current
time interval, [17] also used the last three-day historical data
of actual running times in the next time period to predict the
next running time. The main limitation of a Kalman filter
in the context of our data is the irregularity of observations.
Large parts of the data contained time periods where no bus
was observed and those time periods of missing data were
generally different across different days. Therefore, a clear
implementation strategy (e.g. time discretization) that cov-
ers all prediction scenarios would require some additional
work. However, as noted in [1] Kalman filter give promis-
ing results on providing a dynamic travel time estimation.
We note that both of our proposed EAM and AMM meth-
ods have a Kalman filter flavor as they include the last bus
travel time as feature.

6.4 Artificial Neural Network Models
Artificial Neural Network (ANN) models have gained recent
popularity in predicting bus arrival times because of their
ability to deal with complex and nonlinear relationships be-
tween variables [15, 4, 5]. [15] developed an ANN model
for prediction of bus travel times using GPS-based data and
demonstrated superior performance over multiple linear re-
gression. [4] developed an ANN model that further applied a
dynamic Kalman filter algorithm to adjust predictions using
bus location information. In order for the models in [4, 5]
to be practically implementable Automatic Passenger Count
data need to be available in addition to the GPS data [1].
Additive Models in general share the ability of ANNs to
flexibly deal with nonlinear relationships. However, they are
further easily interpretable like regression models and do not
suffer from slow learning process as reported for ANNs [1,
7]. As implementation of ANN involves delicate setup of
construction parameters (i.e., input variables, hidden layers,
etc.) and none of the ANNs above were directly applicable
to our setting we did not include ANNs in our experimental
comparison. However, we did implement an SVM, discussed
in the next subsection, which is a method that shares some
functionalities with ANNs.

6.5 Support Vector Regression Models
SVM and Support Vector Regression (SVR) have demon-
strated their success in time-series analysis and statistical
learning [28, 3]. [28] compared their SVR algorithm to base-
line predictors for prediction of travel time on highways and
demonstrated superior performance. [3] proposed SVM for
travel time predictions and pointed out that unlike the tra-
ditional ANN, their method is not amenable to the overfit-
ting problem. However, they also indicated that when SVM
is applied for solving large problems the computation time
becomes a problem.

7. CONCLUSIONS
In this paper we discussed the problem of predicting travel
times of public buses based on GPS data. We proposed
Additive Models as a flexible and a statistically principled
framework for model building. We modelled cumulative
travel time as a sum of linear terms and smooth functions of
predictor variables. We showed that by including a random
intercept in the model we were able to correct for an in-
terpolation error incurred when normalizing space-time tra-
jectories onto a cumulative time scale. We demonstrated

on a large real-world GPS data that our proposed Additive
Models achieved superior performance as compared to other
existing prediction methods.
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