
Contrary to Popular Belief Incremental
Discretization can be Sound, Computationally

Efficient and Extremely Useful for Streaming Data

Geoffrey I. Webb
Faculty of Information Technology, Monash University, Victoria, Australia

Abstract—Discretization of streaming data has received sur-
prisingly little attention. This might be because streaming data
require incremental discretization with cutpoints that may vary
over time and this is perceived as undesirable. We argue, to
the contrary, that it can be desirable for a discretization to
evolve in synchronization with an evolving data stream, even
when the learner assumes that attribute values’ meanings remain
invariant over time. We examine the issues associated with
discretization in the context of distribution drift and develop
computationally efficient incremental discretization algorithms.
We show that discretization can reduce the error of a classical
incremental learner and that allowing a discretization to drift in
synchronization with distribution drift can further reduce error.

I. INTRODUCTION

It is surprising that discretization of numeric data streams
has received little attention. One reason may be that the cut
points are likely to have to change as the stream progresses,
because the distribution of values may vary. This may bias
potential users against using discretization because it may seem
unintuitive to use discretized values whose meaning changes
over time. We argue, to the contrary, that changing over time
the cut points associated with each discretized value might
sometimes be necessary if the interval is to retain the relevant
meaning for a given task.

This paper investigates discretization of numeric stream
data. We present two efficient and effective incremental dis-
cretization algorithms. The first approximates equal frequency
discretization over the entire stream to the time step. The
second uses a window of recent values and performs equal
frequency discretization on these, allowing the cut points to
exactly track a non-stationary distribution. Our experiments
demonstrate that discretization can reduce error for the state-
of-the-art streaming learner Logistic Regression (LR) with
Stochastic Gradient Descent. We further demonstrate that for
some streaming data it is indeed useful to have discretizations
whose cut points change over time, tracking the evolution of
the underlying concepts.

II. DISCRETIZATION FOR STREAMING DATA

We wish to incrementally update a model Θ to predict
the posterior probability distribution P (y | xi) of the classes
yi ∈ {c1, . . . ck} for objects xi = 〈x1

i , . . . , x
a
i 〉 while viewing

a large or infinite stream S = {x1, ...xn} of objects. We use
Θi to denote the model at time step i and PΘi

(y | xi) to denote
the class distribution predicted by model Θi for object xi. We

assume that the true class yi for each xi becomes available
after xi is classified and can be used for subsequent training
of the classifier. The attribute values xji of the objects may be
either categorical or numeric.

A discretization δ of a numeric attribute Xi is a set of m
intervals called bins. These bins can be defined by cut points
{κ1, . . . , κm−1}. These cut points divide the domain of Xi into
bins b1 . . . bm using a scheme such as b1 = [−∞, κ1], bm =
(κm−1,∞] and for 1 < i < m, bi = (κi−1, κi]. A discretiza-
tion of attribute Xi defines a mapping between values v of Xi

and bin indexes, δv = z such that v ∈ bz .

Discretization is closely related to both histograms and
quantiles. A histogram of a numeric attribute Xi with respect
to a dataset S can be viewed as a discretization of Xi

augmented with a vector of counts η1, . . . ηm such that ηk
represents |{j : xij ∈ bk}|, the number of records whose value
for the attribute falls within the bin.

A pth quantile Qp
i of an attribute Xi with respect to S

is a value such that |{j : xij < Qp
i }|/n < p ∧ |{j : xij >

Qp
i }|/n < 1 − p. That is, it is the value of xipn if the data

were sorted on the attribute. If pn is not an integer then the
pth quantile may be any value in [xibpnc, x

i
dpne] and is often

set to xibpnc + (xidpne − x
i
bpnc)/2.

III. ISSUES IN DISCRETIZATION FOR STREAMING DATA

The cut points for discretization of streaming data may
need to change over time. This is because the process that
generates the stream S may be non-stationary, in which case
it is not going to be possible to anticipate what the future
distribution of values for an attribute will be and hence
impossible to predetermine what intervals will be relevant in
the future. If the intervals are predetermined and remain static
then they are likely to eventually lose relevance. However, such
changes to the intervals over time may appear undesirable, as
they seem to imply that the meanings of the bins must change.
We suspect that this has been a key reason why there has been
little previous research into discretization for streaming data.

However, this concern may be misguided. If a distribution
is non-stationary then it actually may be desirable for the
discretization to drift in synchronization with the changes in
the distribution. For example, consider a stream of data that
includes an income attribute. The values of this attribute can be
expected to grow over time. For at least some applications it
seems credible that we should want the discretization to reflect
this evolution. For example, it may be necessary for the cut

webb
Typewritten Text

webb
Typewritten Text

webb
Typewritten Text
To be published in Proceedings of the IEEE International Conference on Data Mining 2014. Copyright (c) IEEE 2014.

point on a bin representing high income to increase over time
if that interval is to retain its relevant meaning.

A further issue is that some algorithms do not require
continuity over time in the bins that are used. For example,
Naive Bayes [1] requires at classification time estimates of the
prior probability of each class, P (yi) and of the likelihood
of each attribute value given the class P (xji | yi). These
can be derived from counts of the relative frequency of each
class and of each pair of class and attribute value. It is not
relevant what the intervals were for previous classifications,
only that these necessary statistics be available for the current
discretization. Hence, Naive Bayes can be well served by a
technique that maintains a suitable augmented histogram over
time and it is irrelevant whether the number of bins or their
cut points change. Rather, the key issue is whether the counts
are sufficiently accurate for effective classification [2].

On the other hand, most discriminative learning algorithms
do not operate in this manner and do require that the num-
ber of bins and their meaning be constant over time. For
such algorithms, quantile-based discretization, such as equal
frequency discretization, may be effective. This unsupervised
discretization strategy requires that the number of bins, m,
be pre-specified, together with a set of quantiles that specify
the cutpoints. For equal frequency discretization the range
of attribute Xi is divided into m bins, each containing the
same number of training examples, that is, into bins b1, . . . bm
such that ∀k, l∈(1,m) |{j : xij∈bk}| = |{j : xij∈bl}|. This is
directly related to the problem of finding quantiles, as the kth

bin has an interval (Q
k−1
m

i , Q
k
m
i].

Quantile-based discretization allows at least one type of
meaning of an interval to remain invariant even while the
cut points change. Consider again the case of an attribute for
income. Suppose it is discretized into three bins, the lower,
middle and upper thirds of income. If a streaming discretiza-
tion algorithm is able to maintain such a discretization over
time, varying the cut points as needed, at least one potentially
important meaning of the intervals will remain constant.

Supervised discretization often results in more useful bins
than unsupervised approaches [3]. However, supervised dis-
cretization does not appear feasible for discriminative learners
in a streaming context, as the cuts selected by a supervised
approach may vary dramatically over time and classical dis-
criminative learners cannot track and adjust for this. In contrast
quantile-based discretization can maintain a constant set of
bins, each with a meaning that remains invariant even while the
cut values that define the bins drift. If meaningful quantiles can
be identified for a learning problem then these should be used.
However, we show that even when such information is not
known, simple equal frequency discretization can be effective.

It may appear counter-intuitive that discretization should
improve the performance of a learning algorithm that can han-
dle numeric values directly, because it is clear that discretiza-
tion loses information. However, even though a discretized
variable contains less information than the undiscretized orig-
inal, the models that a learner forms may be able to employ
that information more effectively.

Consider for example a simple linear model such as cre-
ated by Logistic Regression. Such a model requires that the

TABLE I. UPDATE SAMPLES

globals
s: the sample size
n: the number of instances seen in the stream to date
V : a vector of set of samples, indexed by attribute

1: procedure UPDATESAMPLES(x = 〈x1, . . . , xa〉)
2: if rand()≤ s/n then
3: for i = 1 to a do
4: if xi is not missing then
5: if |Vi| = s then
6: remove a random element from Vi

7: end if
8: add xi to Vi

9: end if
10: end for
11: else
12: for i = 1 to a do
13: if |Vi| < sandxi is not missing then
14: add xi to Vi

15: end if
16: end for
17: end if
18: end procedure

predictiveness of a numeric value be proportional to its value.
It cannot directly model the case where only unusually high
values are indicative of one class, and average or low values are
all equally indicative of the other, or where average values are
indicative of one class and either high or low values indicative
of the other. By discretizing the attribute and then treating each
discrete value as a binary variable a linear classifier can model
the predictiveness of individual segments of the number line
irrespective of their relative absolute values.

IV. INCREMENTAL DISCRETIZATION ALGORITHM IDA

The Incremental Discretization Algorithm (IDA) approxi-
mates quantile-based discretization on the entire data stream
encountered to date by maintaining a random sample of the
data which is used to calculate the cut points.

A random sample is used because: 1) it is not feasible for
high-throughput streams to maintain a complete record of all
values observed to date; 2) it is computationally efficient; and
3) it is possible to place tight bounds on the expected variance
of the cut points [4].

We use the reservoir sampling algorithm [5] to maintain
the random sample of s values Vi for each attribute. The
first s values of each Xi are added to the corresponding Vi.
Thereafter, when the nth object 〈xn, yn〉 is encountered, with
probability s/n, each of its values xi

n replaces a randomly
selected value of the corresponding Vi. See Table I.

We store the values of each attribute in a vector of interval
heaps [6], where V j

i stores the values for the jth bin of Xi.
This provides efficient access to the minimum and maximum
values in a bin, and direct access to a random value within a bin
when replacing a value selected at random. This data structure
ensures that insertion and deletion are of order O(log s) and
retrieving a cut point is constant time. The algorithm for
inserting a value v into Vi is presented in Table II. Recall that
m is the number of bins. ↑V j

i and ↓V j
i denote, respectively

the maximum and minimum value in V j
i . Line 2 uses binary

TABLE II. INSERT VALUE

globals
m: the number of bins

1: procedure INSERTVALUE(v, Vi)
2: t = |Vi| mod m
3: j = argminj↑V

j
i ≤ v

4: insert v into V j
i

5: if j < t then
6: for k = j to t− 1 do
7: add ↑V k

i to V k+1
i

8: remove ↑V k
i from V k

i

9: end for
10: else
11: for k = t to j − 1 do
12: add ↓V k+1

i to V k
i

13: remove ↓V k+1
i from V k+1

i

14: end for
15: end if
16: end procedure

search to find the bin in which the value belongs. Line 3 finds
the target bin — the next bin that should increase in size. The
value is inserted into the appropriate bin. If it is not the target
bin, the excess value is shuffled up or down to the target.

Deletion is a minor variation on insertion. The cut points
are accessed in constant time by returning the maximum value
of the appropriate bin.

IDA maintains a random sample of the stream from its
beginning to the current point of time. As suggested in the
introduction, in some contexts it might be valuable to have
the intervals drift, so that the actual cut point associated with
the lowest range of income, for example, drifts upwards as
inflation increases incomes. IDA’s intervals will drift over time
to reflect overall changes in the total distribution to date. How-
ever, it does not directly track the current distribution. A variant
that more precisely tracks the evolution of a data stream is
to maintain S as a window of the s most recent objects.
In this case the discretization will change as the distribution
changes, but will be more subject to frequent random minor
fluctuations than a more gradual update approach. We call the
latter approach the Incremental Discretization Algorithm with
a Window (IDAW). This requires the additional overhead of
maintaining for each value the window of values in time order
so that the oldest value can at each step be identified and
replaced by the newest value.

A. Computational Complexity

The computational complexity of IDA is dominated by the
costs of maintaining the samples and determining the quantiles
from those samples. The required operations are to insert a new
value (only required while the sample is not yet at full size),
to replace a random value with a new value, and to return the
required quantiles.

As each bin is maintained as an interval heap [6], finding
the quantiles takes constant time and inserting or removing
a value from a bin V j

i takes O(log |V j
i |) = O(log(s/m))

time. As replacement requires up to m insertions and deletions,
replacement requires order O(m log(s/m)) time.

However, these relatively expensive updates are only re-
quired on average once every s/t updates, where t is the cur-
rent time step or size of the stream to date. Thus the amortized
cost is O([

∑s
i=1m log i/m+

∑t
i=s+1

s
im log s/m]/t), where

the first term represents the initial s time steps during which
the sample is built up to its operating size and the second term
represents updates to the sample once it reaches operating size.
It is readily apparent that these updates rapidly become very
rare and that as the size of the stream becomes very large the
amortized cost becomes negligibly small.

The situation is more complex for IDAW, which maintains
a window of the s most recent values for each attribute. This
requires that the values be maintained in both time and value
order. Maintaining an order by time can be achieved very
efficiently with a circular buffer, which supports all updates
and accesses in constant time. As the elements to be replaced
in a replacement operation are no longer selected at random, it
is not efficient to maintain the bins as interval heaps, as above.
Rather we need to use slightly more expensive balanced binary
trees for which the time to identify the location of the value to
be removed is O(log(s/m)), which this does not increase the
overall complexity of the update operation relative to that for
IDA. The major computational penalty, however, is that these
updates must be performed for every object encountered in
the queue, which makes the maintenance of the discretization
a non-trivial ongoing overhead.

V. RELATED RESEARCH

As we have noted above, maintaining the i/m-quantiles for
each 1 ≤ i ≤ m is the key requirement in order to discretize
a data stream into m equal frequency bins. These quantiles
provide the required cut points. Algorithms exist for finding
approximate quantiles in data streams with strict bounds on
the error [7] and [8]. However, they rely on the records in
the stream appearing in random order, a requirement that is
likely to be strongly violated in many learning applications.
This renders these algorithms inappropriate for our purposes.

A discretization technique should be matched to the prop-
erties of the learning algorithm. A number of papers have
investigated discretization of streaming data in the context of
naive Bayes (NB) [9]–[11]. NB is an unusual algorithm in
that the model it learns for categorical data can be represented
in the form of an augmented histogram, requiring counts
of both the frequency of each attribute value and the joint
frequency of each combination of an attribute and a class
value. As a consequence it does not matter if there is a
change in either the number of values of an attribute or the
meaning of an attribute value, so long as the appropriate counts
are maintained. In contrast, many other incremental learning
algorithms, such as linear classifiers with weights learned by
stochastic gradient descent, require that the number of attribute
values remains constant and that their meanings do not change.
In the current work we target algorithms that require the
number of bins and their meanings to be invariant.

Partition Incremental Discretization (PID) [10] allows the
number of intervals to remain constant. It operates by forming
two layers of discretization. The top layer is the discretization
used by the learning algorithm. The bottom layer contains
many more bins than the top layer. In their example case

for equal frequency discretization the bottom layer aims to
maintain bins that contain 1/20 the number of instances
required by each bin at the top level. Top level bins are
formed by aggregation of consecutive lower-level bins until
approximately the correct size bin is obtained. The lower-level
bins are initially formed by setting cut points at equal distances
along the number line between an indicative lower and upper
value on the attribute. Then as the stream is consumed, the
counts for the lower-level bins are incremented as appropriate.
When a lower-level bin exceeds a threshold size it is split on
a value mid-way between its minimum and maximum values,
and each count is set to one half the count for the original bin.
This may result in some inaccuracy in the counts, but such
inaccuracy only matters when the two parts of a split lower-
level interval end up in different top-level bins, as otherwise
both of the bins that have been formed will fall within the one
top-level bin and the top-level bin’s total count will remain
accurate. The paper does not specify the threshold for splitting.
In our study we use twice the target size for a lower-level bin.
In other words, a lower-level bin is split in two when it exceeds
1/10th the target size for an upper-level bin.

PID has three potential limitations. First, as lower-level
bins move from one higher-level bin to another, there might
be abrupt changes in the cut points from one update to the
next. Second, if the spread of values on the number line is not
uniform, the number of bins created may become very large.
This is because a small number of initial bins may need to
be repeatedly split to accommodate the majority of the data.
Third, the splitting process might result in major inaccuracies
in the estimated counts when there are very large numbers of
repetitions of a single value v. In this case the lower-level bin
into which v falls will rapidly grow to exceed the size threshold
and be split. However, the division of the counts across the
two resulting bins will be inaccurate, as all the repetitions of
v belong in the same bin but will be attributed equally to
each of the new bins. This may occur repeatedly, causing a
diminishingly small proportion of the true count for v to be
allocated to the correct bin.

VI. EVALUATION

We seek to evaluate three primary contributions — 1) IDA,
a new algorithm for efficient and effective discretization of
streaming data that approximates the maintenance of equal
frequency discretization over all of the data observed up to the
current time; 2) IDAW, a variant of IDA that seeks to maintain
an equal frequency discretization over the data distribution
at the current time; and 3) the hypothesis that discretization
based on quantiles can allow the cut points to drift over time
without changing the relevant meaning of the intervals. It is
also important to understand exactly how much power is lost
by performing incremental rather than batch discretization.
To assess these contributions and issues we evaluate each
component of our new algorithms in turn.

We first compare discretization using the full data (Pre-
Disc) against discretization using all the data encountered up
to the time of classification (All-So-Far). Note that both Pre-
Disc and All-So-Far set hypothetical benchmarks. Neither is
feasible in a real-world streaming data context because the first
requires seeing all data that will ever come through the stream

in advance and the second requires retaining and analyzing all
data in the stream.

The next relevant test is to assess the loss in accuracy that
results from using a random sample rather than discretizing on
all the data encountered to date. To this end we compare IDA
against All-So-Far.

It is also important to compare against the current state-of-
the-art in incremental discretization, PID. This is the only prior
incremental discretization technique capable of supporting
equal frequency discretization. PID requires that the user pro-
vides an initial estimate of the likely minimum and maximum
value for each attribute. To ensure that the evaluation is as
favorable to PID as possible we use the true minimum and
maximum in place of these estimates, values that are often not
known in practice for real streaming data.

In order to understand what advantage, if any, discretization
can confer, we compare LR with IDA to LR performed
on normalized numeric data (No-Disc). To ensure that this
comparison is as favorable as possible to the non-discretization
option we normalize using the minimum and maximum values
of each attribute in the data, replacing each value xi with

2(xi − ↓Xi)/(↑Xi − ↓Xi)− 1.0, (1)

where ↓Xi and ↑Xi denote respectively the minimum and
maximum values for the attribute Xi. This normalizes values
to the interval [−1.0, 1.0]. Such normalization would clearly
often not be possible in practice with streaming data because
it is often not possible to know in advance the minimum and
maximum values for an attribute.

We also wish to investigate the idea of allowing the
discretization to drift over time, closely tracking the current
distribution of values. To this end we compare IDAW to IDA
using sample sizes of 1000.

We perform all experiments using LR with single-pass
Stochastic Gradient Descent (LRSGD) using regularization
rate µ = 0.001 and learning rate or step size λ = 0.001.
These are rates that we have found to be effective in previous
experimental work on the current datasets when not using
discretization. The regularization rate is not reduced over time
as we are seeking to learn in the presence of distribution
and concept drift and hence the target is non-stationary and
so we cannot assume that we are ever approaching a fixed
optimum. LRSGD has been selected as an exemplar of the type
of incremental learning algorithm normally associated with
numeric data that we believe may benefit from discretization.

All experiments use the procedure outlined in Table III.
We use 5 bin discretization because 10 bins obtained the same
overall results and 5 bins provided the best results for Pre-Disc.

A. Comparisons without distribution or concept drift

We are presenting a new approach to discretization. While
it is designed for use with streaming data it is important to es-
tablish how much accuracy is lost relative to the non-streaming
baseline in a situation where there is clearly no distribution
or concept drift. To this end we perform experiments where
the data are shuffled to ensure there is no systematic drift

TABLE III. STREAM LEARNING PROCEDURE

1: procedure STREAMTEST(data stream: S,
discretizer: ∆, learner: λ)

2: initialize the discretization δ as required by ∆
3: for i = 1 to —S— do
4: update δ by applying ∆(δ,xi)
5: apply the learner, ŷ = λ(δ(xi))
6: record the error I(ŷ 6= yi)
7: end for
8: end procedure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pre‐Disc All‐So‐Far IDA PID IDAW No‐Disc

sensor
power‐supply
airlines
electricity
gas‐sensor

Fig. 1. 0-1 loss on data without distribution drift

over time and compare our streaming algorithms against pre-
discretization using all the data and a streaming discretization
that uses all the data up to the current point of time. 20
experiments were performed for each data stream, each time
shuffling the data in advance.

We use the only public real-world stream classification
datasets of which we are aware, airlines and electricity,
obtained from the MOA website [12]; gas-sensor, obtained
from the UCI Repository [13]; and power-supply and sensor,
obtained from the Stream Data Mining Repository [14]. We
present the resulting mean 0-1 loss for each algorithm on
each dataset in Fig. 1, with error bars representing 1 standard
deviation marked, but too close to be readily discerned.

We use two-tailed match-pair t-tests for significance, em-
ploying an adjusted critical value of 0.05/75 = 0.0006̇ after a
Bonferonni correction for the 75 comparisons performed (15
pairs of algorithms times 5 datasets). In no case is there a
significant difference between the error of the discretization
techniques on airlines, electricity, gas-sensor or power-supply
(p = 0.0012 to 0.7931). On sensor, IDAW has significantly
higher error than the other discretization techniques (p =
1.39 × 10−13 to 9.33 × 10−06). This may be due to the
instability of the quantiles as they are continually updated.
On all streams the use of LR without discretization results
in higher error than its use with any discretization technique
(p = 1.92× 10−39 to 4.96× 10−28).

These results demonstrate that our computationally efficient
use of small samples provides performance that is close to
optimal in the absence of concept drift.

B. Comparisons on real world data

To establish the value of our algorithms in the context of
distribution drift, it is useful to assess performance on real-
world stream data. Our final study compares the algorithms
on the real-world data used in the previous experiment.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pre Disc All So Far IDA PID IDAW No Disc

power‐supply

sensor

airlines

electricity

gas‐sensor

Fig. 2. Errors for each approach on each data stream

We process our real-world datasets in their original order.
Because they are in a fixed order it is not possible to have
repeated trials and hence not possible to perform statistical
tests. In consequence, one should be cautious in interpreting
the apparent differences as meaningful unless they are quite
substantial. The 0-1 loss is presented in Figure 2.

All the discretization techniques appear to enjoy a substan-
tial advantage relative to no discretization on all data streams
other than airlines for which the advantage is small.

Maintaining an exact discretization over all the data to the
current point offers similar accuracy to pre-discretization on
all datasets except sensor for which it appears to substantially
increase error. It is not apparent why All-So-Far should be
penalized on this particular data stream.

The two approaches that seek to approximate All-So-Far,
IDA and PID, both achieve error very close to its error.

The IDAW approach of tracking the current distribution
delivers very substantial reductions in error for the electricity
and sensor data streams, but results in substantial increases
in error for gas-sensor and power-supply. The benefit of this
approach on the electricity and sensor data streams supports
our hypothesis that maintaining discretizations based on quan-
tiles as they vary over time can maintain meaning while the
cut-points vary. However, the results for the other data streams
show that some types of distribution drift do not take this form.

C. Running times

Due to the large number of repetitions of processing large
datasets we conducted all experiments on a heterogeneous
grid system. As a result, compute times are only indicative
at best. Nonetheless we present in Figure 3 the compute times
for the experiments on real-world data in order to give a
feel for the computational profiles of the techniques that we
have developed. The software is implemented in C++ but little
attempt has been made to optimize the discretization process.

The key observation is that IDA and its variants in most
cases incur only modest computational overheads relative to no
discretization. The relatively poor performance of PID should
be treated with caution as we have made no attempt to optimize
our reimplementation of the technique.

0

2

4

6

8

10

12

14

16

18

IDA IDAW PID

airlines
electricity
gas-sensor
power-supply
sensor

Fig. 3. Running times for each incremental discretization technique on each
data stream, presented in multiples of time taken without discretization

VII. CONCLUSIONS

We have explored the key issues that surround discretiza-
tion of streaming data and presented two new techniques based
on sampling. Most discriminative algorithms require that the
number and meaning of the bins remain invariant. We argue
that binning on fixed quantiles of the distribution, rather than
fixed absolute values, can maintain an appropriate meaning
over streaming data with distribution drift. Hence one bin can
represent the top p values for the data and so on, even as the
absolute values in that range vary.

Our new stream discretization techniques use a sample
of values for an attribute to maintain an equal frequency
discretization. They differ only in the composition of the
sample. IDA uses the reservoir sampling algorithm to maintain
a sample drawn uniformly at random from the entire stream up
until the current time. This approximates the maintenance of an
equal frequency discretization over the entire stream up to the
current point. Its desirable features include involving negligible
computation once the stream becomes large, as updates to the
sample become very rare. Our results show that it is very
effective in the absence of concept drift and can substantially
reduce the error of LRSGD. Even with a very small sample
it only increases the error very modestly compared with equal
frequency discretization over all data in the stream to date.

IDAW is a variant of IDA that is useful when it is desirable
to more closely track the current distribution of the data.
IDAW maintains a window of the most recent values for an
attribute and discretizes these. This approach incurs greater
computation than IDA, as the sample must be updated at every
time step. Further, the values must be maintained in two orders,
value order to support discretization and time order to allow
maintenance of the window. Nonetheless we show that this
additional computational burden can deliver substantial benefit
in the context of incremental concept drift. It remains an open
topic for future research whether it is possible to identify
when drifting discretization such as that provided by IDAW
is appropriate and when non-drifting discretization such as
provided by IDA will be more effective.

The computational burden of IDAW could be greatly
reduced in contexts where the rate of expected drift relative to
the rate at which objects arrive is low, by only updating with
occasional randomly selected objects.

We conducted our experiments using LRSGD. We have
shown that with this learner discretization can deliver substan-

tial reductions in error relative to learning from undiscretized
data. This is not to claim that more sophisticated treatment of
undiscretized data could not achieve even better results. Our
objective is to show that discretization is a practical addition to
the streaming data toolbox which is worthy of consideration,
rather than to argue that it provides universal benefit.

While our research has only considered classifciation learn-
ing from stream data, discretization is likely to also prove valu-
able for other data mining activities on data streams including
itemset mining [15] and clustering [16]. We leave it to future
research to explore the potential benefits of discretization in
these contexts and the relative merits of alternative stream
discretization strategies.

It is a surprising gap in the data mining literature that
relatively little has been done on discretization for streaming
data. Perhaps the greatest contribution of this paper is to have
shown that it can be done in a computationally efficient manner
and that it can deliver substantial value.

The executable binaries, scripts, datasets and instruc-
tions required to replicate the experiments can be down-
loaded from http://www.csse.monash.edu.au/∼webb/Software/
incremental-discretization.tgz.

REFERENCES

[1] G. I. Webb, “Naive Bayes,” in Encyclopedia of Machine Learning,
C. Sammut and G. I. Webb, Eds. Springer, 2011, pp. 713–714.

[2] Y. Yang and G. I. Webb, “Discretization for naive-Bayes learning:
Managing discretization bias and variance,” Machine Learning, vol. 74,
no. 1, pp. 39–74, 2009.

[3] S. Garcia, J. Luengo, J. Saez, V. Lopez, and F. Herrera, “A survey of dis-
cretization techniques: Taxonomy and empirical analysis in supervised
learning,” IEEE Transactions on Knowledge and Data Engineering,
vol. 25, no. 4, pp. 734–750, April 2013.

[4] A. Stuart and J. K. Ord, Kendall’s Advanced Theory of Statistics, 6th ed.
Edward Arnold, 1994.

[5] J. S. Vitter, “Random sampling with a reservoir,” ACM Trans. Mathe-
matical Software, vol. 11, no. 1, pp. 37–57, 1985.

[6] J. van Leeuwen and D. Wood, “Interval heaps,” The Computer Journal,
vol. 36, no. 3, pp. 209–216, 1993.

[7] S. Guha and A. McGregor, “Stream order and order statistics: Quantile
estimation in random-order streams,” SIAM Journal on Computing,
vol. 38, no. 5, pp. 2044–2059, 2009.

[8] A. Gupta and F. X. Zane, “Counting inversions in lists,” in Proc.
Fourteenth Annual ACM-SIAM Symp. Discrete Algorithms, ser. SODA
’03, 2003, pp. 253–254.

[9] T. Elomaa and P. Lehtinen, “Maintaining optimal multi-way splits for
numerical attributes in data streams,” in PAKDD08, 2008, pp. 544–553.

[10] J. Gama and C. Pinto, “Discretization from data streams: applications
to histograms and data mining,” in Proc. 2006 ACM Symp. Applied
Computing. ACM, 2006, pp. 662–667.

[11] J. Lu, Y. Yang, and G. I. Webb, “Incremental discretization for naive-
Bayes classifier,” in Proc. 2nd Int. Conf. Advanced Data Mining and
Applications (ADMA 2006). Springer, 2006, pp. 223–238.

[12] “MOA,” 2014. [Online]. Available: http://moa.cms.waikato.ac.nz/
[13] K. Bache and M. Lichman, “UCI machine learning repository,” 2013.

[Online]. Available: http://archive.ics.uci.edu/ml
[14] X. Xu, “Stream data mining repository,” 2010. [Online]. Available:

http://www.cse.fau.edu/∼xqzhu/stream.html
[15] N. Jiang and L. Gruenwald, “Cfi-stream: mining closed frequent item-

sets in data streams,” in ACM SIGKDD-06. ACM, 2006, pp. 592–597.
[16] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for clus-

tering evolving data streams,” in Proceedings of the 29th International
Conference on Very Large Data Bases-Volume 29, 2003, pp. 81–92.

