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Abstract—Visually mining a large influence graph is appealing
yet challenging. People are amazed by pictures of newscaugi
graph on Twitter, engaged by hidden citation networks in aca
demics, nevertheless often troubled by the unpleasant readility
of the underlying visualization. Existing summarization methods
enhance the graph visualization with blocked views, but has
adverse effect on the latent influence structure. How can we
visually summarize a large graph to maximize influence flows?
In particular, how can we illustrate the impact of an individ ual
node through the summarization? Can we maintain the appeatig
graph metaphor while preserving both the overall influence
pattern and fine readability?

To answer these questions, we first formally define the
influence graph summarization problem. Second, we proposena
end-to-end framework to solve the new problem. Our method
can not only highlight the flow-based influence patterns in tie
visual summarization, but also inherently support rich graph
attributes. Last, we present a theoretic analysis and repdr
our experiment results. Both evidences demonstrate that gu
framework can effectively approximate the proposed influece
graph summarization objective while outperforming previous
methods in a typical scenario of visually mining academic ¢ation
networks.

I. INTRODUCTION

Graphs are prevalent and have become a prevalent plat-
form for the masses to interact and disseminate a variety of

information (e.g., influence, memes, opinions, rumors,)etc

How to make sense of an individual’s influence in the context

of such graphs?his, which is referred asnfluence_G®aph
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done in the context of graph clustering and compression.
These works typically look for coherent/homogeneous megjio
in graphs by optimizing a pre-defined loss function (e.g.,
minimizing the inter-cluster connection, maximizing timera-
cluster density, minimizing the total description costg)et
Despite their own success, most, if not all, of the existing
work on graph summarization tends to ignore the specific
characteristics of influence graphs and how the end userdwoul
visually perceive/read/consume the summarization r@sult

To be specific, we outline the following design objectives
that differentiate our IGS problem from existing works.

e D1. Flow Rate MaximizatiorQuite different from extract-
ing dense clusters on graph, the goal of IGS is to highlight
the flow of influence not only within but also across
clusters. By maximizing the overall flow rate, IGS-based
summarization outlines the strongest interaction among
groups of nodes on a graph. For example, Figlire 1 depicts
the influence of the famous power-law paper presented
at SIGCOMM'99. The evolution of research topics is
revealed, rather than the hot topics themselves.

e D2. Localized VisualizationWhile a large graph can span

millions of nodes and prohibit any readable visual sum-

marization, in IGS objective, we switch to summarize the

influence of a single node on the graph (called the source
node). This localized visualization problem is at least as
important as the overall summarization problem. Consider

a user navigating the citation graph of computer science

papers, after an overview of the entire field, likely she will

drill down to a few interested papers and examine their

Summarization (IGS) problem, is the central problem we aim
to address in this paper. For example, how does a highly-
cited paper impact the research community to raise severaP
topic threads; and consequentially, how do these topiesdnt

with each other and lead to a new multi-disciplinary researc
direction? How does a senior researcher contribute to phelti
research areas by influencing others?

Although closely related, IGS problem bears some subtle

influence separately.

D3. Rich Information Most influence graphs have rich
attributes (e.g., the topic, venue of a scientific paper) and
often evolve over time (e.g., the publication date). Incor-
porating these attributes to enhance the IGS performance
poses additional challenges to our work.

In this paper, we propose a unified framework to generate

difference from the existing work. We briefly review three flow-based localized visualsummarization over large-scale
most relevant topics. Firsinfluence maximizatignin the past influence graphs. The framework provides a seamless, end-
decades, many elegant algorithms have been proposed for tteeend pipeline to solve the IGS problem by decomposing
so-called influence maximization problem [1]. While effeet it into several key building blocks. It is flexible and admits
in identifying who are most influential in the graph, the ques- many existing graph mining algorithms for each of its buitgli
tion of what makes them influentikrgely remains open. Sec- blocks. Meanwhile, theoretic analysis shows that our nettho
ond (@raph visualizatiol, many elaborate layout algorithms is equivalent to the kernel k-mean clustering with a cateful
have been designed and widely applied in recent years. Thalesigned kernel matrix so that the intra-cluster conststen
can draw medium-sized graphs aesthetically and faithfolly is also preserved. Finally, we conduct extensive empirical
can not avoid the huge visual clutter on large influence ggaph evaluations to validate the effectiveness of the framewbhle
Third (graph summarization many interesting work has been main contributions of the paper can be summarized as:
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Influence graph summarization on [Faloutsos SIGCOMI@O] (#Cluster = 20). Topology similarity and venue infaation are integrated. Node label

gives the cluster size and summary on paper title+abst@ehalized by keyword frequency. Link thickness indicaties hormalized flow rate.

Fig. 1.
TABLE I. NOTATIONS.

[ SYMBOL [ DESCRIPTION |
I influence graph as input
I source node selected by user or algorithip
G maximal influence graph of in I
vi, N(i), n nodes, neighbor set and # of nodesGn
A, aij adjacency matrix of5 and its entries
MSE MP MT | similarity, attribute and time matrix of?
S graph summarization of¥
Te, |Te|, clusters, cluster size and # of clustersSn
Es,m(€s), L flows, flow rate and # of flows it
Te(s)s Td(s) the source and target cluster of flay

Problem Definition to fulfill the design objectives listed

above for flow-based visual summarization of large influ-

ence graphs (Sectidd 11);

A Unified Framework and Implementation Detatis solve
the IGS problem (Sectidn ]Il and Sectibn V);

Theoretic Analysisto reveal the intrinsic relationship be-
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Fig. 2. Difference between IGS problem and traditional brajustering
problem. Each dash box in the original graphbecomes a square node in the
summarization grapl¥. (a) traditional graph clustering leading to more intra-
cluster flows; (b) influence graph summarization exposingsdeflows. InS,
the flow rate is labeled above each link and is mapped to thetliickness
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tween IGS problem and the existing work (Sec IV); visually. We assume a uniform link weight of 1 in the origimabphG.

Comprehensive Evaluatiorio demonstrate the effective-
ness and efficiency of the proposed framework (Sectio

).

represents the collection of all the links @& from nodes in
'%Iusterwc(s) to nodes in clusterry(,). The flow rate of¢; is
defined by

1. Z'Ui ETe(s),Vi €EMd(s) @ij

r(€s) =
Table[ lists the notations used throughout the paper. The |7_TC(S)H7Td(S) o _
raw inputs are the influence graphand the source node Note thatS can be a partial summarization 6f, with fewer
f either selected by the user or detected by any existin§ows ( < k) than a full summarizationl (= k?). This is
influence maximization algorithm. Without loss of genegali desirable for influence graph visualization where huge rermb
it is enough to consider a maximal influence graghof f of flows and edge crossings can cause unpleasant visuarclutt

which is an induced subgraph df containing all the nodes — prohlem 1:Thegeneral IGS problemis defined as finding
reachable from/ in I (including f). Though it is easy t0 3 graph summarizatiofi with & clusters and top flows of the

extend the definition to a maximal origin graph by reversingmaximal influence grapt’ to optimize the objective function:
all the links in I or using an union of the two definitions,

for relevancy to the IGS problem we stick to the maximal
influence graph definition in this paper. L&t haven nodes,
denoted aqv;}" ;. G is represented by the adjacency matrix
A= {aij}’-szl in which a,; denotes the link weight;; > 0

if there is a link fromv; to v;.

PROBLEM DEFINITION

l

max Y r(€)y/Ime(s)lITags)|

s=1

(1)

The general IGS problem defined inl (1), although seem-
ingly similar to, is different from the traditional graphuster-
ing problems. Let us explain their difference using the silas
ratio association graph clustering problem, whose objecti
function is shown below.

a3 Y

c=11i,jEm.

Definition 1: The graph summarization of G, denoted
as S, is a super node-link graph af. The node set ofS
containsk disjoint and exhaustive node clusters(@f denoted
as{r.}*_, where|r,| indicates the number of nodes in cluster
m.. The link set of S contains! flows between the nodes
in S (i.e., clusters inG), denoted ag¢; 15:1- Each flowé&,

k
Qi
L= ()|
|7Tc c=1



Maximal Unified Graph
G . Igﬂue:c'e 2 : > (Inﬂuence\ E > (Similarily\ > |Summariza
. Tap Graph G/ Matrix MY/ tion §
N N
1. Pick source node f 1. Compute topology 1. Specify kI (# of clusters/flows)
2. Rooted search on 1 similarity matrix M 2. Compute node summarization by
from f 2. Attribute matrix M” matrix decomposition
3. Time matrix M" 3. Post-process (link pruning, etc.)
Fig. 4. The framework to solve the influence graph summaoizgtroblem.
A. End-to-End Pipeline
S:

We propose an end-to-end pipeline, shown in Fiflire 4. The
framework decomposes the IGS problem into several building
blocks. Initially, the maximal influence graph is computed
Fig. 3. The sample influence graph leading to fragmented flowthe from. the input graphi by a breadth-first or de.pth-ﬂ.rSt search
summarizationk = 5, [ = 4): (a) By the general IGS objective, the resuling Starting from the source nodé Over the maX|m§| influence
graph has two identically-positioned clusters at 1-hopnfthe source node graph G, three processing components work in parallel to
(w2, m3), the normalized flow rate by(X1) is labeled in red, favorifist  generate three matrices on the graph: the topology sityilari
summarization by a sum o3.89 > 3.70; (b) Applying the squared IGS  atriy  and the optional attribute and time matrices. The

objective, the two identical clusters can be merged and msteture of the f f K is the d " f th |
influence graph is revealed. The squared flow rate[by (2) ieldgbin blue ~ COr€ Of our framework is the decomposition of the topology

parentheses, having a sum83 > 3.80. (best viewed in color) similarity matrix to generaté node clusters for the summa-
rization. We carefully design the topology similarity matro
where¢,. denotes the intra-cluster flow from. to itself. ensure that the graph summarization approximates the fkew ra

L L . o maximization objective (See SectibnlIV for detailed anialys
The IGS objective function is designed to maximize theThe attribute and time matrices can be incorporated to aogme
sum ofi selected flows between or within clusters, correspondge similarity matrix before decomposition so as to optieniz
ing to [ arbitrary blocks in the adjacency matrix. On the otherine summarization towards graph attributes. The requintme
hand, the ratio association objective maximizes the sum 0 the; flows in the summarization is handled by link pruning
intra-cluster flows at all thé diagonal matrix blocks. In other using either ranking-based filtering or the maximum spaginin
words, IGS finds dense flows through summarization which fitg;ee “algorithm. The proposed pipeline is flexible and admits
well the goal to highlight flows of influence across the graph.many existing graph mining algorithms for each of its builgli

This is quite different from the traditional graph clust&i  pjocks. On the other hand, by itself, none of these existing
objective that finds dense node clusters. An example is giveQigorithms is sufficient to solve the IGS problem.

in Figure[2 for visual comparison.

Note that both objective functions are normalized by theB. Node Summarization
square root of the size of clusters/blocks in the adjacency pNode summarization is the key building block of our
matrix. While this is good for classical graph clustering hronosed pipeline. It takes the topoliogy similarity mais¢
heuristics, applying the same normalization met_hod on 'G‘éa)s the input and generatds node clusters. We propose a
can lead to fragmented flows on the summarization. Figilire 3yatrix decomposition based solution. Its rationality adlwe
illustrates a case with a small influence graph. as the details of the similarity matrix/C will be discussed

Problem 2:The squared IGS problem improves the def- N Sectionll¥ andV, respectively.
inition of flow contributions by their squared and normatize Over the similarity matrix\/©, the decomposition employs

flow rate. The new objective function is written as: a Symmetric version of the Nonnegative Matrix Factorizatio
; (SymNMF [2]) which optimizes:
max > (&) |Te(s)Imags)| (@) min || M — HH|[% ©)
s=1 =

From the perspective of highlighting influence flows, theWhere.|| || denotes th_e Fro_bemus norm of the matik.= .
squared IGS objective is consistent with the general IGS.{hU.} is an by k mat_rlx. |ndlc_at|ng the cluste_r membershlp
Moreover, by applying the square function to the flow rate 2SSignment of nodes i@ v; will be clustered intor if /i
it favors large flows more than the general objective. In'S the largest entry in théth row of 4.

this sense, heuristically it is better for our influence d¢rap

summarization problem with bounded flow number. C. Generalizations

Our framework can be extended to incorporate node at-
tributes and their time information on graph (e.g., the re-
search field attribute and the publication date of a paper).

In this section, we propose a unified framework to solve theThe extension takes in two separate matrices computed from
IGS problem, including an end-to-end pipeline, the algponit the influence graphz. The attribute augmentation matrix is
to summarize influence structure from graph topology, aed thconstructed to reflect the pairwise similarities among brap
extension to incorporate graph attribute and time inforomat nodes in terms of the specific attribute. Consider an atgibu

IIl. FRAMEWORK



affinity adjacency matrixi” = {a rie1s wherea?) i > 0if v, B. Kernel K-Mean Clustering
andv; have the same value on a selected node attnbute Denote

the attribute augmentation matrix ag” = {m e According to [3], the kernel k-mean clustering (KM) is
=1 defined as follows. Given data vectordz;}?* ; with kernel
is computed fromA” by . ' Hi=1 .
functione(z;), KM method groups the data vectors iritmon-
D { Aaug, =3 or ag >0 overlapping clusterg§r.}*_, based on the objective function
)1 al =
) 1]

k .
where A,,, controls the degree of augmentation. We find i, Z Z l|p(z;) — me||> where m, = M
Aquy = 2 is an effective setting in general. |7e]

c=11€m,
Similarly we construct the time decaying matui "

{mZL i1 =1 to reflect the similarity among graph nodes on the

assomated time. For example, the papers in the same ydar wil . 5) - _ . .

have a high similarity entry od/”. Denote the time attribute ¢(z;) - ¢(x;) — Ljer, O01) 0T5) | Dijien, (b(x;) Pa)

of graph nodes o+ as{t;}}, (unit year), the time decaying el |l

matrix M7 is computed by Because

[ti—1,]

Expand||¢(x;) — m.||? into

T
m - )\Decay

> jer, O@i) - - tex, 0(25) - B(a1)
where Apecay controls the rate of similarity decaying over Z Z = 7o | Z Z Ljte |7T B
time. Using the median of cited half-life time of sci-indexe c=1iem. c=lien ¢

CS journals, we compute a default value)gfe.q, = 1.11.

The objective function of KM clustering can be written as
The attribute and time matrices are then used to extend the
topology similarity matrix to a unified form.

k Z;) - xj
S o) - o) — 2ene A0,

min —
MY =M% o MP o MT (4) c=1i€m. |
The final SymNMF objective becomes A Zk > i ant it alent t
s> x;) - ¢(z;) is constant, it is equivalent to
min ||MF _ HHTH%‘ (5) c=1 1ET, ¢( ) (b( q
H>0
(b I’L : ) 8
IV. EQUIVALENCE ANALYSIS max Z > (8)

. . . . . 1 c
In this section, we present theoretic analysis, to explan t emhnien

rationality behind our matrix decomposition based sohutio Introduce the heuristic of 1-hop bidirectional common ieig
We start with deriving an approximate objective function ofbor as the similarity measure (CommonNeighbor), we can
the IGS problem. Then we show that such an objective iZompute a topology similarity matrix by
equivalent to the kernel k-mean clustering by choosing an
appropriate kernel matrix. Finally, the kernel k-mean @tisg AAT + ATA " @it Gt + Qi

K =————— where ky 227

can be solved by SymNMF. - 2 2
t=1
A. Approximation of IGS problem If we use K as the kernel matrix in KM clustering and
Consider the objective function if](2), the optimization substitutek;; for ¢(z;) - (x;), (B) becomes
requires maximizing over two types of variablest, }*_,, k coisFBrsns
the node cluster membership assignment; éeﬁrl, the max > ., \ﬁ—lc\zi,jeﬂc Doy T
selected top flows. The simultaneous optimization of these _ Zk Y @it +atia;
two classes of variables is hard due to the non-linear and o=l evt=1 £viyjeme 2]

combinatorial nature of the problem. Here we consider a two-
step approximation that first maximizes the sum of all the $low . ,
over the node cluster assignment, then maximizes the sum of = Z’Zzl Z;?:l Fiene “if)z‘:(lzieﬂc %)
the top! flows given the cluster assignment. This is feasible ' ¢

with an appropriatd (e.g.l = 2k), because the top flows
contribute the most part of the overall flow rate after apmyi
the square function, as shown in Sectlod VI. Formally, the
approximate objective function becomes: C. Equivalence

Zk—l Z?—l (Zi€7rc ait)2+(zienc i)’

2[mc]

k (Ciem i)*H(Cien, a5i)”
Zc,d:l Zjerrd re PIEA e 9

- P ag)? Let us compare the objective functions(i (6) ald (9). They
max S (&) 2 e lImage) | = 3 ~=iEred€n 0 () are in similar forms if we re-formulat€X(6) into

s=1 c,d=1 |7TC||7Td| k n
Z a__(zpen,qad %q) _ Z awlGS
1] - 9
max » 1r(€e)?|me(s) llma(s)| given {m.}f_, (7) c,d=1i€mc, jEma eIl ij—1
s=1

The second part of the optimization can be solved by selgctin where wlGS — Zpeﬂc,qeﬁd Gpq (

[ top flows with the largest size-normalized flow rate. A ||| 7al 1€mej €ma)  (10)
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Algorithm 1: Link Pruning Algorithm.

1 1 Input : Initial summarizationSy ~ {V, E}, # of flows
LV ={m}r,, E={&},, flow rater(¢,)
Output: Final summarizatiort
RankFilter(.Sp) :
- begin
cluster c{ i aj, cluster c{ i a”:,i S SO;
" (@) n (b) for s<~1tok>do // rate normalization
a
r —r A mellmal, s ~ (e, mq);
Fig. 5. The weighting schema comparison in two objectivecfioms: (a) L (fs) (58) | CH d|_ & ( N d)
influence graph summarization using the entire block; (bhéek-mean using sort E by 7(E) in decreasing order;
the block’s column and row. for s+ 1+ 1to k% do // pruning
. removel(s) from S;
and re-formulate[{9) into L , ()
i for i < 1 to kdo // link recovery
1 E; < subset ofF havingr; as destination;
Z m[z Z Gij(z apj) + Z Z %‘i(z ajq)] sort E; by r(E;) in decreasing order;
c,d=1 ¢l jengiem, pEm. jETG i€, g™, if £;(0) ¢ S then
n | addE;(0) to S;
= Z aijwfj(-M L
ij=1

KM __ Zpeﬂ'c Qpj ZqEﬂ'd Qiq

h S =
where  w;; 2|7Tc| 2|7le

(0 €me,j €7a)  Thig algorithm runs fast even for very large graphs due to

(11)  a complexity ofO(md?) wherem is the number of links irG
Thus, both IGS and KM aim to maximize the weighted sumandd is the average node degree. We have implemented three
of graph adjacency matrix entries. In IGS, the weight ofversions of the algorithm and it is shown that bidirectional
each entry is defined by the density of the belonging matrixCommonNeighbor is generally better than one-directiooal f
block (or flow). In KM, the weight is defined by the average ward or backward CommonNeighbor.
density of the column and row of the belonging matrix block.
This is illustrated in Figurd]5. Note that the heuristic of . "
the CommonNeighbor based k-mean clustering is to put th%/zlgt'
graph nodes with similar in- and out-neighborhoods togethe (
The resulting matrix blocks after the clustering tend toehav ; ' X N X
uniform density distributions inside each block. Therefor the iterative SymNMF solver with the muItlpI|cat|ve_updaJ|_
the density of the cross shape area in Figdre 5(b) is a goor le in [2] which guarantees convergence. In this iterative

approximation of the density of the shaded block area infigu algorithm, the initialization off is critical to the final result.
B(a), which explains the rationality of using kernel k-mean Ve introduce nonnegative eigenvalue decomposition sirtola

clustering to the general IGS problem. the method in[[4] to compute a good initial factorization.

Node Summarization with SymNMF. The node summa-
on is done by applying SymNMF on similarity matrix
MT), and using the factorized matri¥/ for cluster
membership assignment. In our implementation, we apply

Furthermore, it is known that the kernel k-mean clustering Link Pruning. The graph summarization by SymNMF

problem is equivalent to the trace maximization problem: needs further post-processing to seledop flows for the
final summarizatiorS. According to [(T), the top flows can be

max Tr(H'KH) extracted after ranking by the normalized flow rate. The othe
HTH=I,H>0 flows are then filtered out. This is illustrated in Algorithm

where the kernel matrixx equals the topology similarity @ Notice that in the Iin_k recovery section of the algorit_hm,
matrix M ¢ computed by CommonNeighbor. The trace max-We introduce a constraint to keep a connected graph in the

imization problem can then be solved by SymNMF undersummarization. It is achieved by adding back the most dense
spectral relaxations [2]. flow going to each node cluster. An alternative choice is ® us

the maximum spanning tree (MST) algorithim [5].

V. IMPLEMENTATION DETAILS We implement the proposed framework and algorithms in

In this section, we provide some additional implementatiory@/& Which provides excellent Ul library for visualizatid he
details. As shown in Figurgl 4, our framework involves four Main computation routines are built on ParallelCo_It pael@
kinds of algorithm-driven building blocks. The rooted dgnap to optimize for multi-threading and sparse matrix operaio

search follows the standard BFS/DFS implementation. Below '€ SPeed of some core matrix decompositions (e.g., Eigen-
we describe details for similarity matrix computation, eod value) are further improved by invoking ARPACK (for sparse

summarization and the link pruning for post-processinghef t matrix) and LAPACK (for dense matrix) implementatidni [7]
summarization. through JNI invocations.

Similarity Matrix Computation . In Section 1V, we have Vi
shown that using the heuristic of common neighbors to con- '
struct the similarity matrix (CommonNeighbor) can approx- In this section, we evaluate the proposed IGS frame-
imate the objective function of the squared IGS problemwork and the CommonNeighbor algorithms by comparing

EVALUATION



cluster_type
1,000 Dli-forward+backward_Comimion
Y2-forward_CommonNeighbor

7] [[13-backward_CommonNeighbor

o E84-SimRank
- ® [M5-Ratio_Association
Q= H6-Normalized_Cut
ﬁ 2 100 [J7-Modularity_Top
- o Ns-Metis_K_Way
5%
Eo
3
N3 107

o

(7]

1 : i
598 2509
Graph Size (#Node)
(@) k= 10,1 =10
cluster_type
1,000 [J1-forward+backward_CommonNeighbor
W2-forward_CommonNeighbor

» [[]3-backward_CommonNeighbor

o ﬁé&—swmﬁank
- 5|
- & I} -
S 3 100 O op
= g Ns-Metis_K_Way zZ
%

T
Eo
7S
D35 107

=

(7]

33494

116

(c) k=20,1=20

with alternative graph summarization methods. Nine ap-

proaches are considered: three usgmmonNeighboalgo-
rithms to compute the similarity matrix for SymNMF (i.e.
forward+backward, forward, and backward settings), oregus
SimRankalgorithm [8] to compute the similarity matrix for
SymNMF, the classical graph clustering algorithm wiRatio
Associationand Normalized Cubbjectives[[9], agglomerative
Modularity-based graph clustering [10Metis K-way graph
partition [11] and the Minimal Description LengtiMpDL)
based graph summarizatidn [12]. Note that Ratio Associatio

and Normalized Cut are implemented using their equivalen

similarity matrix computation for SymNMF _[13]. Metis parti
tion is implemented by official open source software packag
[14]. Modularity clustering is executed agglomerativelytil

all clusters stop merging at the top level or the number

cluster_type
[Ji-forward+backward, oiiNeighibor
Y2-forward_CommonNeighbor
[[13-backward_CommonNeighbor
B 4-simRank
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Fig. 6. The performance in maximizing the IGS objective oe Sample graphs. The flow rate is summed from theltipws between all thé: clusters.

TABLE II.

CITATION GRAPHS USED IN THE EXPERIMENT

| Source paper title | Venue/Year | Node | Link |
Analysis of a hybrid cutoff pri-| Wireless Net-| 116 148
ority scheme ... works 1998
Manifold-ranking based imag¢é ACM Multi- 598 895
retrieval media 2004
Stochastic High-Level Petrj IEEE TC | 2509 | 5256
Nets and Applications 1988
Mining Frequent Patterns witht SIGMOD 10892 | 22301
out Candidate Generation 2000

¢ On Power-law Relationships df SIGCOMM 33494 | 86398
the Internet Topology 1999

%\. Flow Rate Maximization

We first pick five source papers from the data set to

of clusters reache&. For MDL, we implement the greedy generate maximal influence graphs, as listed in Table lis&he
algorithm in [12]. The MDL algorithm can not specify the influence graphs are summarized intoclusters, between
number of clusters, in fact, it generates 4,937 clustersr@n o which the topl flow rates are summed according to the squared
medium-sized influence graph. To ensure fair comparison (gS objective in[[R). FigurEl6(a)(d) present the comparisons

larger number of clusters will lead to a much higher overallamong eight summarization methods on the numeric objective
flow rate), we exclude MDL from numeric comparisons, butfynction.

present its visual summarization results.

citation graphs collected from ArnetMiner [15]. The infloen
graphs are obtained by reversing the citation links.

The initial result in FigureJ6(a) with a minimal graph
summarization ¥ = 10,1 = 10) suggests that among three
CommonNeighbor algorithms, the bidirectional setting @din

All the experiments are conducted on the same Linuxalways achieves the best performance in maximizing the 1GS
server with two 8-core 2.9GHz Intel Xeon E5-2690 CPU andobjective (at least- 100% gain[l), except on the largest graph
384GB of memory. All the LAPACK and ARPACK libs are (#Node=33,494), the backward CommonNeighbor obtains a
compiled locally to provide machine-optimized performanc tiny advantage (1%). Further, comparing the bidirectional
Note that the modularity and Metis implementations areg@isin CommonNeighbor to traditional graph summarization meth-
native-version software package, not guaranteed to be optbds, CommonNeighbor achieves much better performance than
mized for multi-threading. The raw experiment data are pape

1percentage of
new_number—original_number
original_number

performance
x 100%, the same below.

gain

(drop) by



cluster_type
100 ++ 1-forward+backward_CommonNeighbor_all_flows —4-SimRank_k_flows
== 1-forward+backward_CommonNeighbor_2k_flows 5-Ratio_Association_k_flows
e, — 1-forward-+backward_CommonNeighbor_k_flows 6-Normalized_Cut_k_flows
‘\\-;-;.\, . — 2-forward_Commonieighbor_k_fiows —7-Moduiarity_Top_k_fiows
% 3-backward_CommonNeighbor_k_flows 8-Metis_K_Way_k_flows

for]
9

k=65

o 4 /
40 = N
k=248
20 .

Sum of Top k/2k/all squared flow
rate (average of each category)
i

T T T T T T T T
100-1000 1001-2000 2001-3000 3001-4000 4001-5000 5001-6000 6001-7000  7001-
(149) (33) (27) (16) 7) 8) (5) 10000 (5)

Graph Size Category (#Graph Count)
Fig. 7. The squared IGS performance of 250 citation graplts thie number of nodes ranging from 100 to 10000. The clusierher is set tdk = 20.

Ratio Association, Normalized Cut and Metis (at leas20%, B. Visualization

in average> 100%). In some cases, the performance of

CommonNeighbor is matched by SimRank (0% gain) or We evaluate the effectiveness of summarization methods
outperformed by Modularity. also by comparing their visualization results: whetherythe

produce a clean influence graph summarization with little
visual clutter and whether the results are meaningful fersis

When we double the number of flows & 10,1 = 20) with domain knowledge. We first pick the famous frequent
in Figure [B(b), the sum of flow rates does horincreas%)attem mining paper by Prof. Jiawei Han et al. as the source
much on all algorithms (in average 15%) and the overall 0 generate the maximal influence graph. Then we execute

. : seven typical summarization methods and depict their tesul
comparative patterns stay unchanged. This shows that t qurelB(a)-(g). At the first glance, the proposed bidirectional

torg kh zam%glr:gzggnce\%ﬂrheemg?r e(:cséhteh ef I%ergéfsofocr;ygggpommon Neighor method generates a connected tree-like influ
?k B 2.1 = 20 k — 40.] — 40). The results in Figure ence graph summarization without edge crossing (Figurg.8(a
M) rovesl that the ahiacti i g Compared to that, SimRank gets a similar visual form (Figure
B(c)(d) reveal that the objection function increases mush aIﬂ(b)) due to the comparable objective function result, bet t

the number of clusters increases (at leas80%, in average ; ; .
; : . e generated graph is not connected. The Metis result is adsmcl
> 90%, comparing Figurél6(c) with Figuid 6(b)), except forO(FigureIB(f)), but all the clusters have a similar number of

Modularity, which remains unchanged because their number hodes, making the summarized graph impractical for usage.

fglésézrri;ree;;%%dxiltﬁrggr igirﬁggeksegtosggb;f'7'io£|3>s(gpspilﬁ’ﬂ%atio Association an_d_NormaIized Cut look inferior d_ue te th

top modularity level. On the comparative pattern, bidi@zal  Foo- gLap?Fpongggzg’)';y l\(/lF'g“TEl.S(C)) gnMthEe flat r:nfluence
. s ! . hierarchy (Figur . Modularity an are the worst

CommonNeighbor regains performance advantage over S'"Eecause of the visual clutter generated from the large numbe

Rank and Modularity under a large number of clusters. of clusters remained in the summarization (Figdre 8(e)())

Taking a closer look at the visual summarizations, we find

During the experiment, we have executed each algorithnthat by CommonNeighbor, most flows represent at least 300
case three times and report their average performance. Howitation links. While by SimRank, the critical flows linking
ever, the results in Figurg] 6 still show some randomnesthe source node are fragmented, two of which only include 52
due to the nature of iterative NMF solver. To obtain moreand 83 citations. The same deficiency is found in the result
accurate result, we carefully sample 250 well-cited sourcéy Metis, where two highlighted flows only have 11 and 12
papers published in KDD and ICDM from the ArnetMiner citations. We also invite a senior researcher from the deab
data set. The size of their maximal influence graphs arand data mining community to evaluate the summarization
within the range of 10810,000 nodes. On each graph, similar result. With our interactive tool, she can switch betwees th
experiments are conducted as above given a setting-oR0.  title+abstract summary and the research field summary. She
Finally in Figure[¥, 250 graphs are categorized into 8 binsan also access paper details in each node cluster witheadsort
according to their size. The average performance in each bilist by citation count. She mainly compares the visual summa
are reported for comparison. Results on the larger data seization by CommonNeighbor and SimRank. In this case, she
demonstrate the same pattern with the five sample graphprefers the result by CommonNeighbor in Figlife 8(a) because
Bidirectional CommonNeighbor in most cases are the besthe influence evolutions make more sense: the initial paper
except for Modularity, which becomes better as the number ofjuickly raises much attention on pattern mining researci su
nodes increases beyond 5,000. As mentioned, this is becauas itemset and association rule mining, then the threatsspli
the Modularity algorithm generates more clusters than thénto four streams on general data management research (such
initial setting of & = 20. As indicated by the labels above as web and uncertainty skyline analysis), trajectory asisly
the Modularity performance (blue line), the number of adust  subgraph analysis and application in software engine¢ery
increases from 24.8 in the first category to 65 among thesargebug analysis). The thread of web data analysis graduallyesiov
graphs. Increasing the number of flows for CommonNeighboto web retrieval and finally leads to tag analysis and anomaly
does not optimize the objective function much. behavior detection. Compared with CommonNeighbor, Sim-
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Fig. 8. Influence graph summarization results on [Han SIGNRDDO] by different methodsk( = 10, ! = 20). Node label gives the number of papers in each
cluster and their content summary by either title+abstkagtwords in (a),(b) or the top 3 research fields in~(f). Link thickness indicates the normalized
flow rate. Some part of the graph is highlighted to show the memof citations as edge labels. Note that the modularitgritgn stops at 62 clusters and can
not merge any further. MDL produces 4,937 clusters, leaarwlf of the visual complexity from the input graph.

: Selected Node List

Rank creates some false links, e.g. the direct flow from the
frequent pattern mining paper to uncertainty data analysis

B Esn
Furthermore, we ask our invited users to study the in- ﬂ /
fluence of the well-known Internet power-law paper in SIG- ggzg;;;;
COMM'1999. The maximal influence graph is summarized oM GRe%)
by the bidirectional CommonNeighbor algorithm into Figure E';'EEEE.Z’)?
[ (in the second page). Note that in this case the influence /

graph topology is augmented by the “venue” field of each
paper to group the papers with similar research topic tageth | #aweitan \_/3,‘3,((%%3/,’)\_/33((%;:1"2;))

From the visual summarization, she learns that the SIGCOMM s o
paper directly influences the research on Internet topology
and simulation. Next, over the Internet topology topic® th [;‘,:.“1755;/;:,

P2P research becomes popular and after that the web-relatec smon iz
research and XML. The most recent hot topic in this thread
appears to be sensor network which corresponds well to his 5‘.5.‘(2&%12, SS‘A*%:%‘S’;,.’,
domain knowledge. e petemd

) ) ) Fig. 9. The summarization of Prof. Jiawei Han’s influence pgreby
Our framework can also visualize one author’s influencevidirectional CommonNeighbork(= 10).

by summarizing the author influence graph. This graph ig, gt girectly influenced field by the number of authors are Al
generated by adding one influence link between two author O'3nd DM, as indicated by the group of 6,575 authors. The most
for each citation between their papers. The maximal authof,jrecily influenced fieid are Net and DM, as indicated by the
influence graph is then computed from a source author by, of 11,013 authors. Through the bridging of a group of
traversing the influence graph. As an example, we select Prob; o +hors (e.g. Rakesh Agrawal), he also impacts the Theory

Jiawei Han as the source author, and collect the influence
L e ' ) he) research, represented by the group of 2,774 authors.
authors within 2 hops. To limit the size of the influence graph ) P y group .

we only keep productive authors (i.2.30 paper publications)
which gives a graph of 26,349 author nodes. The summarlza
tion result applying bidirectional CommonNeighbor algion The overall computation time for different summarization
(k = 10) is shown in Figur€]9. Our invited user acknowledgesmethods is illustrated in Figufel10(a). Our proposed atgors

the validity of the result: Prof. Han has influenced multipleare more costly than efficient modularity clustering altiori
fields with his research, mainly data mining (DM), databasgO(nlog(n)) with small constant) and Metis k-way graph
(DB), Al and networking (Net). On his contribution to DB and partition (O(n + m)). However, the best of our methods can
DM fields, the influence is bidirectional, i.e. he is also hilgav summarize a 10,000-node maximal influence graph in 100
influenced by the researchers there, as indicated by thg@groseconds, and the overall time complexity is only slightlpwdo

of 109 authors in the picture (e.g. Raghu Ramakrishnan). Thiénear. Note thatn here denotes the size of the maximal

. Scalability



cluster_type and Modularity can lead to huge visual clutters that make
iy orward+backward Commonieightor it hard for user to interpret. Within thé-cluster methods,
10004 a2 backward_CommonNelghbor applying bidirectional CommonNeighbor algorithm in our
’ 5 Rato_Associaton framework is shown to be the best in maximizing the I1GS
-Normalize« U - . . . e
C7-Modulariy_Top objective, constantly superior than traditional graphtipan
Be-tets_K Wey and clustering algorithms, such as Ratio Association, Ndrm
ized Cut and Metis. In a few cases, plugging SimRank into
our framework can achieve comparable performance. In fact,

100

A Y

-

W

B gmlm . SimRank has very cllose tie to our mgthod. CommonNeighbor
10 M= i E N considers the similarity of two nodes in one hop beyond, evhil
1 U g g!mg! SimRank computes their similarity in an infinite hop (pruned
1 B ‘m %imgi to four hop_s in thls_ work). Our results show that,_ though
- %ﬁmm. 7 % close to, SimRank is not better than CommonNeighbor in

s e S . M . X
116 598 2509 10892 33494 maximizing the IGS objective, but also it suffers from a hégh

computational complexity o (n2d?).

|

(a) Total computation time (second) by graph size (#node)

1,000-|

Second, we note that the parameteand!/ in the summa-

E rization can be critical for both the objective and user perf
mance. As: becomes large, for example from £ 20,1 = 40)

E to (k = 40,1 = 40) in the cases of Tablelll, the IGS objective

100

100
10

|
! | E K | increases 56% in average while the visual complexity dauble
J . E s IE L Hﬂm | We recommend to set < 20 on this trade-off, because at a
T @ me oo wee C te e me o s te we me s e size larger than 20, the node-link graph visualization maty n
(b) Similarity Matrix  (c) Eigen Initialization (d) SymNMF be a good choice for many graph visual analysis tgsKs [16]. On
Fig. 10. The time cost of different summarization methdes, 20: (a) Total ~ the choice of,, we find that the optimization of IGS objective

time; (b)~(d) Split time of four algorithms in our framework. The siarity is not significant afted > 2k, thereforel = 2k can be an
matrix computation and SymNMF iteration dominate the cost. appropriate setting.

influence graph, which is much smaller than the size of the Last, we target on the academic data sets in this work.
original graph. Most citation graphs from a single paper ardt seems straightforward to apply our framework also to
no larger than the magnitude of 10,000 nodes, while theeentirsocial influence graphs on Twitter and Facebook. However,
data set has millions of papers. we caution that the basic retweeting influence graph can be
summarized clearly by MDL or structural equivalencel[17]

Within our framework, the SimRank algorithm requires they,564 node grouping, because such graphs are all standard
longest computation time. To explain this, we have Iooke(frees with large structural redundancy.

at the split time at three key steps, as shown in Figure
[I0. The eigenvalue decomposition (Figlird 10(c), only top
eigenvectors are computed) are quite fast due to the gparsit
of the influence graph matrix (Tabld Il). On similarity matri  First, graph summarization constructing a smaller ab-
computation (Figure_10(b)), SimRank is slow because instraction to represent the large graph has been a traditiona
worst case it needs to compute an all-to-all similarity matr research topic, e.g. using graph clustering algorithm®s&h
(O(n*d?)), though we have optimized it to only compute gigorithms usually optimize certain association or cut soee
within a 4-hop range. In contrast, CommonNeighbor is muchyyring the k-way graph partition. Several measures hava bee
faster on similarity computation, through the multi-trded  proposed, e.g. ratio association, ratio ¢uf [18] and ndzed!
routine on sparse matrix multiplication. Finally, SymNMF cyt [9]. The similar problem is also studied in the context of
(Figure[10(d)) is the most costly step. In each iteratiorreh  community detection by interdisciplinary researchérg,[19

are a few sparse matrix-matrix multiplication computasion  \hich modularity is one of the most popular quality function

Compared with the time complexity, the space requiremenf® access a community [20]. However, most of the clustering
of our framework is less stringent. The similarity matrix @d community detection methods on graph target at maxi-
computation and iterative SymNMF each needs to store H'ZINg intra-cluster connections while minimizing inteluster
dense matrix at most, giving a space complexity@ffn?) connections. This is fairly different from the IGS problem
with small constant. The eigenvalue decomposition by deyevStudied here. On the other hand, there are also plenty of
routine in LAPACK only need€)(n) space with a relatively works in compressing large graphs for efficient storage and
large constant. Recall that is the number of nodes in the epresentation. In[12], MDL-based compression was pregos

maximal influence graph and can be hundreds of times smalldf Present the graph with an aggregated structure and an erro
than the original input graph. correction list. It is proved to be the best summary from

the information-theoretic objective. While MDL approadmnc
successfully compress web graphs, on influence graphs which
are much sparser (the citation graphs have an average dggree
First, our experiment results demonstrate that the summadess than 3), it performs similarly to a structural equivaie
rization methods specifying the number of clusters providebased grouping[17], leaving huge visual clutters ungkttle
compact influence graph summarizations. In contrast, &pic Another algorithm, SNAP[21], considers the node attrilmre
graph compression and summarization methods such as MDgraph, but again is not tailored for the influence graph stena

VIlI. RELATED WORK

D. Summary and Discussions



Second, visualization over the past few decades, the such as graph clustering and compression algorithms, im bot
methodology to draw node-link graphs has reached its maguantitative performance and qualitative visual effects.

turity. On graphs with less than a few hundred nodes, the
planar graph drawing approach [22] and the force-directed
algorithm [23] can produce visually pleasant graph layoutsy]
in real time, mainly by minimizing edge crossings. On large
graphs with a thousand or more nodes, the force-based alp]
gorithms can be extended by multilevel coarsening and fast
force approximationi[24] and still generate a layout in cgas (3]
able time (e.g. less than a minute for million-node graphs).
However, on real-world large graphs with small-world natur  [4]
including the influence graph discussed here, the resulting[
graph layout still has numerous edge crossings. This leads t 5]
overwhelming visual clutters detrimental to visual datanimg)

tasks. Meanwhile, Shahaf et al. [25][26][27] studied thmeiksir (6]
problem of summarizing large amount of information intoruse 7
friendly visual maps. They developed intriguing methods to (8]
detect hidden linkage and document clusters from the keywor
frequency statistics. On a quite different focus, our mettso 9]
built on the graph with explicit linkage data while the teattu
content of each node can be absent or incomplete.

Third, considerable work has been conducted for studying[m]
the effects ofocial influenceFor example, Bakshy et al. [28] [11]
conducted randomized controlled trials to identify theseffof
social influence on consumer responses to advertising. Bond
et al. [29] used a randomized controlled trial to verify the[12]
social influence on political voting behavior. Tang et &I0][3
presented a Topical Affinity Propagation (TAP) approach tol13]
quantify the topic-level social influence in large networks
Kempe et al.[[l] proposed to use a submodular function 4
formalize the influence maximization problem and develop 5]
greedy algorithm to solve the problem with provable approxi
mation guarantee. Most of these works focus on the existence
of social influence or the nature of the information diffusio [16]
process and do not consider the summarization problem.
Recently, Mehmood et al. proposed C8I1[31], a model that
generalizes the classical Independent Cascade model to tHél
community level, built from the cascade-based community
detection method [32]. CSI can produce similar visual formstls]
to our result. However, the CSI model is computed from
the probabilistic social influence graph and the informatio
propagation log more engaged to the social influence saenarif1g]
In comparison, our method is more focused on the visual
summarization of large influence graphs in the objective of20]
maximizing flows. We do not leverage the information propa-
gation model and the associated log data in such scenarios.[21]

[22]
VIIl. CONCLUSIONS
. . [23]
In this paper, we propose the influence graph summa-

rization problem, study its linkage to the existing clustgr [24]
methods, and present a unified framework to solve it. The
framework achieves all the three design objectives, irinpd [25]
(1) flow rate maximization that highlights the evolution of
influence; (2) a localized visualization from the source atod
and (3) easy to incorporate rich information on graph such ak*l
node attribute and time. The framework is comprehensive anaﬂ
flexible. We provide both the SymNMF based solution and
implementation details. Through comprehensive evalaatio 28]
with real-world academic citation graphs, we demonstraté
that our framework constantly outperforms classical masho
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