
ar
X

iv
:1

40
8.

24
01

v3
 [

cs
.S

I]
 3

0
O

ct
 2

01
4

Flow-based Influence Graph Visual Summarization

Lei Shi
SKLCS, Institute of Software
Chinese Academy of Sciences

Beijing 100190, China
shil@ios.ac.cn

Hanghang Tong
Computer Science

City College, CUNY
New York, USA

tong@cs.ccny.cuny.edu

Jie Tang and Chuang Lin
Computer Science

Tsinghua University
Beijing 100084, China

{jietang, chlin}@tsinghua.edu.cn

Abstract—Visually mining a large influence graph is appealing
yet challenging. People are amazed by pictures of newscasting
graph on Twitter, engaged by hidden citation networks in aca-
demics, nevertheless often troubled by the unpleasant readability
of the underlying visualization. Existing summarization methods
enhance the graph visualization with blocked views, but have
adverse effect on the latent influence structure. How can we
visually summarize a large graph to maximize influence flows?
In particular, how can we illustrate the impact of an individ ual
node through the summarization? Can we maintain the appealing
graph metaphor while preserving both the overall influence
pattern and fine readability?

To answer these questions, we first formally define the
influence graph summarization problem. Second, we propose an
end-to-end framework to solve the new problem. Our method
can not only highlight the flow-based influence patterns in the
visual summarization, but also inherently support rich graph
attributes. Last, we present a theoretic analysis and report
our experiment results. Both evidences demonstrate that our
framework can effectively approximate the proposed influence
graph summarization objective while outperforming previous
methods in a typical scenario of visually mining academic citation
networks.

I. I NTRODUCTION

Graphs are prevalent and have become a prevalent plat-
form for the masses to interact and disseminate a variety of
information (e.g., influence, memes, opinions, rumors, etc.).
How to make sense of an individual’s influence in the context
of such graphs?This, which is referred as Influence Graph
Summarization (IGS) problem, is the central problem we aim
to address in this paper. For example, how does a highly-
cited paper impact the research community to raise several
topic threads; and consequentially, how do these topics interact
with each other and lead to a new multi-disciplinary research
direction? How does a senior researcher contribute to multiple
research areas by influencing others?

Although closely related, IGS problem bears some subtle
difference from the existing work. We briefly review three
most relevant topics. First (influence maximization), in the past
decades, many elegant algorithms have been proposed for the
so-called influence maximization problem [1]. While effective
in identifying who are most influential in the graph, the ques-
tion of what makes them influentiallargely remains open. Sec-
ond (graph visualization), many elaborate layout algorithms
have been designed and widely applied in recent years. They
can draw medium-sized graphs aesthetically and faithfully, but
can not avoid the huge visual clutter on large influence graphs.
Third (graph summarization), many interesting work has been

done in the context of graph clustering and compression.
These works typically look for coherent/homogeneous regions
in graphs by optimizing a pre-defined loss function (e.g.,
minimizing the inter-cluster connection, maximizing the intra-
cluster density, minimizing the total description cost, etc).
Despite their own success, most, if not all, of the existing
work on graph summarization tends to ignore the specific
characteristics of influence graphs and how the end user would
visually perceive/read/consume the summarization results.

To be specific, we outline the following design objectives
that differentiate our IGS problem from existing works.

• D1. Flow Rate Maximization. Quite different from extract-
ing dense clusters on graph, the goal of IGS is to highlight
the flow of influence not only within but also across
clusters. By maximizing the overall flow rate, IGS-based
summarization outlines the strongest interaction among
groups of nodes on a graph. For example, Figure 1 depicts
the influence of the famous power-law paper presented
at SIGCOMM’99. The evolution of research topics is
revealed, rather than the hot topics themselves.
• D2. Localized Visualization. While a large graph can span

millions of nodes and prohibit any readable visual sum-
marization, in IGS objective, we switch to summarize the
influence of a single node on the graph (called the source
node). This localized visualization problem is at least as
important as the overall summarization problem. Consider
a user navigating the citation graph of computer science
papers, after an overview of the entire field, likely she will
drill down to a few interested papers and examine their
influence separately.
• D3. Rich Information. Most influence graphs have rich

attributes (e.g., the topic, venue of a scientific paper) and
often evolve over time (e.g., the publication date). Incor-
porating these attributes to enhance the IGS performance
poses additional challenges to our work.

In this paper, we propose a unified framework to generate
flow-based, localized visualsummarization over large-scale
influence graphs. The framework provides a seamless, end-
to-end pipeline to solve the IGS problem by decomposing
it into several key building blocks. It is flexible and admits
many existing graph mining algorithms for each of its building
blocks. Meanwhile, theoretic analysis shows that our method
is equivalent to the kernel k-mean clustering with a carefully
designed kernel matrix so that the intra-cluster consistency
is also preserved. Finally, we conduct extensive empirical
evaluations to validate the effectiveness of the framework. The
main contributions of the paper can be summarized as:

http://arxiv.org/abs/1408.2401v3

Fig. 1. Influence graph summarization on [Faloutsos SIGCOMM’1999] (#Cluster = 20). Topology similarity and venue information are integrated. Node label
gives the cluster size and summary on paper title+abstract normalized by keyword frequency. Link thickness indicates the normalized flow rate.

TABLE I. N OTATIONS.

SYMBOL DESCRIPTION

I influence graph as input
f source node selected by user or algorithm
G maximal influence graph off in I
vi, N(i), n nodes, neighbor set and # of nodes inG

A, aij adjacency matrix ofG and its entries
MG,MD ,MT similarity, attribute and time matrix ofG
S graph summarization ofG
πc, |πc|, k clusters, cluster size and # of clusters inS
ξs, r(ξs), l flows, flow rate and # of flows inS
πc(s), πd(s) the source and target cluster of flowξs

• Problem Definition, to fulfill the design objectives listed
above for flow-based visual summarization of large influ-
ence graphs (Section II);

• A Unified Framework and Implementation Details, to solve
the IGS problem (Section III and Section V);

• Theoretic Analysis, to reveal the intrinsic relationship be-
tween IGS problem and the existing work (Section IV);

• Comprehensive Evaluation, to demonstrate the effective-
ness and efficiency of the proposed framework (Section
VI).

II. PROBLEM DEFINITION

Table I lists the notations used throughout the paper. The
raw inputs are the influence graphI and the source node
f either selected by the user or detected by any existing
influence maximization algorithm. Without loss of generality,
it is enough to consider a maximal influence graphG of f
which is an induced subgraph ofI containing all the nodes
reachable fromf in I (including f). Though it is easy to
extend the definition to a maximal origin graph by reversing
all the links in I or using an union of the two definitions,
for relevancy to the IGS problem we stick to the maximal
influence graph definition in this paper. LetG haven nodes,
denoted as{vi}ni=1. G is represented by the adjacency matrix
A = {aij}

n
i,j=1 in which aij denotes the link weight.aij > 0

if there is a link fromvi to vj .

Definition 1: The graph summarization of G, denoted
as S, is a super node-link graph ofG. The node set ofS
containsk disjoint and exhaustive node clusters ofG, denoted
as{πc}

k
c=1 where|πc| indicates the number of nodes in cluster

πc. The link set ofS contains l flows between the nodes
in S (i.e., clusters inG), denoted as{ξs}ls=1. Each flowξs

1 32

1 2 3

1 32

1 2 3

0.16

0.2

0.16

0.2 0.33 0.33

0.22

Fig. 2. Difference between IGS problem and traditional graph clustering
problem. Each dash box in the original graphG becomes a square node in the
summarization graphS. (a) traditional graph clustering leading to more intra-
cluster flows; (b) influence graph summarization exposing denser flows. InS,
the flow rate is labeled above each link and is mapped to the link thickness
visually. We assume a uniform link weight of 1 in the originalgraphG.

represents the collection of all the links inG from nodes in
clusterπc(s) to nodes in clusterπd(s). The flow rate ofξs is
defined by

r(ξs) =

∑

vi∈πc(s),vj∈πd(s)
aij

|πc(s)||πd(s)|

Note thatS can be a partial summarization ofG, with fewer
flows (l < k2) than a full summarization (l = k2). This is
desirable for influence graph visualization where huge number
of flows and edge crossings can cause unpleasant visual clutter.

Problem 1:Thegeneral IGS problem is defined as finding
a graph summarizationS with k clusters andl top flows of the
maximal influence graphG to optimize the objective function:

max

l
∑

s=1

r(ξs)
√

|πc(s)||πd(s)| (1)

The general IGS problem defined in (1), although seem-
ingly similar to, is different from the traditional graph cluster-
ing problems. Let us explain their difference using the classic
ratio association graph clustering problem, whose objective
function is shown below.

max

k
∑

c=1

∑

i,j∈πc

aij

|πc|
=

k
∑

c=1

r(ξc)|πc|

5

1

1

1 (1)

3

4

5

4

2

2

3
1 (1)

1 (1)

1

3

4

2

5

0.89

(0.8)

1

1.41 (2)

3

2

1 (1)

0.71

(0.5) 4

5
0.58

(0.33)

Fig. 3. The sample influence graph leading to fragmented flowsin the
summarization (k = 5, l = 4): (a) By the general IGS objective, the resulting
graph has two identically-positioned clusters at 1-hop from the source node
(π2, π3), the normalized flow rate by (1) is labeled in red, favoring this
summarization by a sum of3.89 > 3.70; (b) Applying the squared IGS
objective, the two identical clusters can be merged and morestructure of the
influence graph is revealed. The squared flow rate by (2) is labeled in blue
parentheses, having a sum of3.83 > 3.80. (best viewed in color)

whereξc denotes the intra-cluster flow fromπc to itself.

The IGS objective function is designed to maximize the
sum ofl selected flows between or within clusters, correspond-
ing to l arbitrary blocks in the adjacency matrix. On the other
hand, the ratio association objective maximizes the sum of
intra-cluster flows at all thek diagonal matrix blocks. In other
words, IGS finds dense flows through summarization which fits
well the goal to highlight flows of influence across the graph.
This is quite different from the traditional graph clustering
objective that finds dense node clusters. An example is given
in Figure 2 for visual comparison.

Note that both objective functions are normalized by the
square root of the size of clusters/blocks in the adjacency
matrix. While this is good for classical graph clustering
heuristics, applying the same normalization method on IGS
can lead to fragmented flows on the summarization. Figure 3
illustrates a case with a small influence graph.

Problem 2:The squared IGS problem improves the def-
inition of flow contributions by their squared and normalized
flow rate. The new objective function is written as:

max

l
∑

s=1

r(ξs)
2|πc(s)||πd(s)| (2)

From the perspective of highlighting influence flows, the
squared IGS objective is consistent with the general IGS.
Moreover, by applying the square function to the flow rate,
it favors large flows more than the general objective. In
this sense, heuristically it is better for our influence graph
summarization problem with bounded flow number.

III. F RAMEWORK

In this section, we propose a unified framework to solve the
IGS problem, including an end-to-end pipeline, the algorithm
to summarize influence structure from graph topology, and the
extension to incorporate graph attribute and time information.

1. Pick source node f

2. Rooted search on I

from f

1. Specify k,l (# of clusters/flows)

2. Compute node summarization by

matrix decomposition

3. Post-process (link pruning, etc.)

Influence

Graph I

f

1 2 3

Graph

Summariza

tion S

f

Maximal

Influence

Graph G

f

1. Compute topology

similarity matrix MG

2. Attribute matrix MD

3. Time matrix MT

f

Unified

Similarity

MatrixM
F

Fig. 4. The framework to solve the influence graph summarization problem.

A. End-to-End Pipeline

We propose an end-to-end pipeline, shown in Figure 4. The
framework decomposes the IGS problem into several building
blocks. Initially, the maximal influence graphG is computed
from the input graphI by a breadth-first or depth-first search
starting from the source nodef . Over the maximal influence
graph G, three processing components work in parallel to
generate three matrices on the graph: the topology similarity
matrix, and the optional attribute and time matrices. The
core of our framework is the decomposition of the topology
similarity matrix to generatek node clusters for the summa-
rization. We carefully design the topology similarity matrix to
ensure that the graph summarization approximates the flow rate
maximization objective (See Section IV for detailed analysis).
The attribute and time matrices can be incorporated to augment
the similarity matrix before decomposition so as to optimize
the summarization towards graph attributes. The requirement
of the l flows in the summarization is handled by link pruning
using either ranking-based filtering or the maximum spanning
tree algorithm. The proposed pipeline is flexible and admits
many existing graph mining algorithms for each of its building
blocks. On the other hand, by itself, none of these existing
algorithms is sufficient to solve the IGS problem.

B. Node Summarization

Node summarization is the key building block of our
proposed pipeline. It takes the topology similarity matrixMG

as the input and generatesk node clusters. We propose a
matrix decomposition based solution. Its rationality as well
as the details of the similarity matrixMG will be discussed
in Section IV and V, respectively.

Over the similarity matrixMG, the decomposition employs
a Symmetric version of the Nonnegative Matrix Factorization
(SymNMF [2]) which optimizes:

min
H≥0
||MG −HHT ||2F (3)

where|| · ||F denotes the Frobenius norm of the matrix.H =
{hij} is a n by k matrix indicating the cluster membership
assignment of nodes inG: vi will be clustered intoπc if hic

is the largest entry in theith row of H .

C. Generalizations

Our framework can be extended to incorporate node at-
tributes and their time information on graph (e.g., the re-
search field attribute and the publication date of a paper).
The extension takes in two separate matrices computed from
the influence graphG. The attribute augmentation matrix is
constructed to reflect the pairwise similarities among graph
nodes in terms of the specific attribute. Consider an attribute

affinity adjacency matrixAD = {aDij}
n
i,j=1, whereaDij > 0 if vi

andvj have the same value on a selected node attribute. Denote
the attribute augmentation matrix asMD = {mD

ij}
n
i,j=1, MD

is computed fromAD by

mD
ij =

{

Λaug, i = j or aDij > 0
1, aDij = 0

where Λaug controls the degree of augmentation. We find
Λaug = 2 is an effective setting in general.

Similarly, we construct the time decaying matrixMT =
{mT

ij}
n
i,j=1 to reflect the similarity among graph nodes on the

associated time. For example, the papers in the same year will
have a high similarity entry onMT . Denote the time attribute
of graph nodes onG as{ti}ni=1 (unit year), the time decaying
matrix MT is computed by

mT
ij = λDecay

−|ti−tj |

where λDecay controls the rate of similarity decaying over
time. Using the median of cited half-life time of sci-indexed
CS journals, we compute a default value ofλDecay = 1.11.

The attribute and time matrices are then used to extend the
topology similarity matrix to a unified form.

MF = MG ⊙MD ⊙MT (4)

The final SymNMF objective becomes

min
H≥0
||MF −HHT ||2F (5)

IV. EQUIVALENCE ANALYSIS

In this section, we present theoretic analysis, to explain the
rationality behind our matrix decomposition based solution.
We start with deriving an approximate objective function of
the IGS problem. Then we show that such an objective is
equivalent to the kernel k-mean clustering by choosing an
appropriate kernel matrix. Finally, the kernel k-mean clustering
can be solved by SymNMF.

A. Approximation of IGS problem

Consider the objective function in (2), the optimization
requires maximizing over two types of variables:{πc}

k
c=1,

the node cluster membership assignment; and{ξs}ls=1, the
selected top flows. The simultaneous optimization of these
two classes of variables is hard due to the non-linear and
combinatorial nature of the problem. Here we consider a two-
step approximation that first maximizes the sum of all the flows
over the node cluster assignment, then maximizes the sum of
the top l flows given the cluster assignment. This is feasible
with an appropriatel (e.g. l = 2k), because the topl flows
contribute the most part of the overall flow rate after applying
the square function, as shown in Section VI. Formally, the
approximate objective function becomes:

max

k2
∑

s=1

r(ξs)
2|πc(s)||πd(s)| =

k
∑

c,d=1

(
∑

i∈πc,j∈πd
aij)

2

|πc||πd|
(6)

max

l
∑

s=1

r(ξs)
2|πc(s)||πd(s)| given {πc}

k
c=1 (7)

The second part of the optimization can be solved by selecting
l top flows with the largest size-normalized flow rate.

B. Kernel K-Mean Clustering

According to [3], the kernel k-mean clustering (KM) is
defined as follows. Givenn data vectors{xi}

n
i=1 with kernel

functionφ(xi), KM method groups the data vectors intok non-
overlapping clusters{πc}

k
c=1 based on the objective function

min
k

∑

c=1

∑

i∈πc

||φ(xi)−mc||
2 where mc =

∑

i∈πc
φ(xi)

|πc|

Expand||φ(xi)−mc||
2 into

φ(xi) · φ(xi)−
2
∑

j∈πc
φ(xi) · φ(xj)

|πc|
+

∑

j,l∈πc
φ(xj) · φ(xl)

|πc|2

Because

k
∑

c=1

∑

i∈πc

∑

j∈πc
φ(xi) · φ(xj)

|πc|
=

k
∑

c=1

∑

i∈πc

∑

j,l∈πc
φ(xj) · φ(xl)

|πc|2

The objective function of KM clustering can be written as

min
k

∑

c=1

∑

i∈πc

[φ(xi) · φ(xi)−

∑

j∈πc
φ(xi) · φ(xj)

|πc|
]

As
∑k

c=1

∑

i∈πc
φ(xi) · φ(xi) is constant, it is equivalent to

max
k

∑

c=1

∑

i,j∈πc

φ(xi) · φ(xj)

|πc|
(8)

Introduce the heuristic of 1-hop bidirectional common neigh-
bor as the similarity measure (CommonNeighbor), we can
compute a topology similarity matrix by

K =
AAT +ATA

2
where kij =

n
∑

t=1

aitajt + atiatj

2

If we use K as the kernel matrix in KM clustering and
substitutekij for φ(xi) · φ(xj), (8) becomes

max
∑k

c=1
1

|πc|

∑

i,j∈πc

∑n

t=1
aitajt+atiatj

2

=
∑k

c=1

∑n

t=1

∑

i,j∈πc

aitajt+atiatj

2|πc|

=
∑k

c=1

∑n

t=1

(
∑

i∈πc
ait)

2+(
∑

i∈πc
ati)

2

2|πc|

=
∑k

c=1

∑n

j=1

(
∑

i∈πc
aij)

2+(
∑

i∈πc
aji)

2

2|πc|

=
∑k

c,d=1

∑

j∈πd

(
∑

i∈πc
aij)

2+(
∑

i∈πc
aji)

2

2|πc|
(9)

C. Equivalence

Let us compare the objective functions in (6) and (9). They
are in similar forms if we re-formulate (6) into

k
∑

c,d=1

∑

i∈πc,j∈πd

aij(

∑

p∈πc,q∈πd
apq

|πc||πd|
) =

n
∑

i,j=1

aijw
IGS
ij

where wIGS
ij =

∑

p∈πc,q∈πd
apq

|πc||πd|
(i ∈ πc, j ∈ πd) (10)

nj

d

nj

i

n

aij

d

caiji

n

c

Fig. 5. The weighting schema comparison in two objective functions: (a)
influence graph summarization using the entire block; (b) kernel k-mean using
the block’s column and row.

and re-formulate (9) into

k
∑

c,d=1

1

2|πc|
[
∑

j∈πd

∑

i∈πc

aij(
∑

p∈πc

apj) +
∑

j∈πd

∑

i∈πc

aji(
∑

q∈πc

ajq)]

=

n
∑

i,j=1

aijw
KM
ij

where wKM
ij =

∑

p∈πc
apj

2|πc|
+

∑

q∈πd
aiq

2|πd|
(i ∈ πc, j ∈ πd)

(11)
Thus, both IGS and KM aim to maximize the weighted sum
of graph adjacency matrix entries. In IGS, the weight of
each entry is defined by the density of the belonging matrix
block (or flow). In KM, the weight is defined by the average
density of the column and row of the belonging matrix block.
This is illustrated in Figure 5. Note that the heuristic of
the CommonNeighbor based k-mean clustering is to put the
graph nodes with similar in- and out-neighborhoods together.
The resulting matrix blocks after the clustering tend to have
uniform density distributions inside each block. Therefore,
the density of the cross shape area in Figure 5(b) is a good
approximation of the density of the shaded block area in Figure
5(a), which explains the rationality of using kernel k-mean
clustering to the general IGS problem.

Furthermore, it is known that the kernel k-mean clustering
problem is equivalent to the trace maximization problem:

max
HT H=I,H≥0

Tr(HTKH)

where the kernel matrixK equals the topology similarity
matrix MG computed by CommonNeighbor. The trace max-
imization problem can then be solved by SymNMF under
spectral relaxations [2].

V. I MPLEMENTATION DETAILS

In this section, we provide some additional implementation
details. As shown in Figure 4, our framework involves four
kinds of algorithm-driven building blocks. The rooted graph
search follows the standard BFS/DFS implementation. Below
we describe details for similarity matrix computation, node
summarization and the link pruning for post-processing of the
summarization.

Similarity Matrix Computation . In Section IV, we have
shown that using the heuristic of common neighbors to con-
struct the similarity matrix (CommonNeighbor) can approx-
imate the objective function of the squared IGS problem.

Algorithm 1: Link Pruning Algorithm.

Input : Initial summarizationS0 ∼ {V,E}, # of flows
l, V = {πi}

k
i=1, E = {ξs}

k2

s=1, flow rater(ξs)
Output : Final summarizationS
RankFilter(S0):
begin

S ← S0;
for s← 1 to k2 do // rate normalization

r(ξs)← r(ξs)
√

|πc||πd|, ξs ∼ (πc, πd);

sortE by r(E) in decreasing order;
for s← l + 1 to k2 do // pruning

removeE(s) from S;

for i← 1 to k do // link recovery

Ei ← subset ofE havingπi as destination;
sortEi by r(Ei) in decreasing order;
if Ei(0) 6∈ S then

addEi(0) to S;

This algorithm runs fast even for very large graphs due to
a complexity ofO(md2) wherem is the number of links inG
andd is the average node degree. We have implemented three
versions of the algorithm and it is shown that bidirectional
CommonNeighbor is generally better than one-directional for-
ward or backward CommonNeighbor.

Node Summarization with SymNMF. The node summa-
rization is done by applying SymNMF on similarity matrix
MG(MF), and using the factorized matrixH for cluster
membership assignment. In our implementation, we apply
the iterative SymNMF solver with the multiplicative updating
rule in [2] which guarantees convergence. In this iterative
algorithm, the initialization ofH is critical to the final result.
We introduce nonnegative eigenvalue decomposition similar to
the method in [4] to compute a good initial factorization.

Link Pruning. The graph summarization by SymNMF
needs further post-processing to selectl top flows for the
final summarizationS. According to (7), the top flows can be
extracted after ranking by the normalized flow rate. The other
flows are then filtered out. This is illustrated in Algorithm
1. Notice that in the link recovery section of the algorithm,
we introduce a constraint to keep a connected graph in the
summarization. It is achieved by adding back the most dense
flow going to each node cluster. An alternative choice is to use
the maximum spanning tree (MST) algorithm [5].

We implement the proposed framework and algorithms in
Java, which provides excellent UI library for visualization. The
main computation routines are built on ParallelColt package [6]
to optimize for multi-threading and sparse matrix operations.
The speed of some core matrix decompositions (e.g., Eigen-
value) are further improved by invoking ARPACK (for sparse
matrix) and LAPACK (for dense matrix) implementation [7]
through JNI invocations.

VI. EVALUATION

In this section, we evaluate the proposed IGS frame-
work and the CommonNeighbor algorithms by comparing

(a) k = 10, l = 10 (b) k = 10, l = 20

(c) k = 20, l = 20 (d) k = 40, l = 40

Fig. 6. The performance in maximizing the IGS objective on five sample graphs. The flow rate is summed from the topl flows between all thek clusters.

with alternative graph summarization methods. Nine ap-
proaches are considered: three usingCommonNeighboralgo-
rithms to compute the similarity matrix for SymNMF (i.e.
forward+backward, forward, and backward settings), one using
SimRankalgorithm [8] to compute the similarity matrix for
SymNMF, the classical graph clustering algorithm withRatio
AssociationandNormalized Cutobjectives [9], agglomerative
Modularity-based graph clustering [10],Metis K-way graph
partition [11] and the Minimal Description Length (MDL)
based graph summarization [12]. Note that Ratio Association
and Normalized Cut are implemented using their equivalent
similarity matrix computation for SymNMF [13]. Metis parti-
tion is implemented by official open source software package
[14]. Modularity clustering is executed agglomeratively until
all clusters stop merging at the top level or the number
of clusters reachesk. For MDL, we implement the greedy
algorithm in [12]. The MDL algorithm can not specify the
number of clusters, in fact, it generates 4,937 clusters on one
medium-sized influence graph. To ensure fair comparison (a
larger number of clusters will lead to a much higher overall
flow rate), we exclude MDL from numeric comparisons, but
present its visual summarization results.

All the experiments are conducted on the same Linux
server with two 8-core 2.9GHz Intel Xeon E5-2690 CPU and
384GB of memory. All the LAPACK and ARPACK libs are
compiled locally to provide machine-optimized performance.
Note that the modularity and Metis implementations are using
native-version software package, not guaranteed to be opti-
mized for multi-threading. The raw experiment data are paper
citation graphs collected from ArnetMiner [15]. The influence
graphs are obtained by reversing the citation links.

TABLE II. C ITATION GRAPHS USED IN THE EXPERIMENT.

Source paper title Venue/Year Node Link

Analysis of a hybrid cutoff pri-
ority scheme ...

Wireless Net-
works 1998

116 148

Manifold-ranking based image
retrieval

ACM Multi-
media 2004

598 895

Stochastic High-Level Petri
Nets and Applications

IEEE TC
1988

2509 5256

Mining Frequent Patterns with-
out Candidate Generation

SIGMOD
2000

10892 22301

On Power-law Relationships of
the Internet Topology

SIGCOMM
1999

33494 86398

A. Flow Rate Maximization

We first pick five source papers from the data set to
generate maximal influence graphs, as listed in Table II. These
influence graphs are summarized intok clusters, between
which the topl flow rates are summed according to the squared
IGS objective in (2). Figure 6(a)∼(d) present the comparisons
among eight summarization methods on the numeric objective
function.

The initial result in Figure 6(a) with a minimal graph
summarization (k = 10, l = 10) suggests that among three
CommonNeighbor algorithms, the bidirectional setting almost
always achieves the best performance in maximizing the IGS
objective (at least> 100% gain1), except on the largest graph
(#Node=33,494), the backward CommonNeighbor obtains a
tiny advantage (1%). Further, comparing the bidirectional
CommonNeighbor to traditional graph summarization meth-
ods, CommonNeighbor achieves much better performance than

1Percentage of performance gain (drop) by
new number−original number

original number
× 100%, the same below.

k=24.8

k=45.1

k=58.4

k=65

Fig. 7. The squared IGS performance of 250 citation graphs with the number of nodes ranging from 100 to 10000. The cluster number is set tok = 20.

Ratio Association, Normalized Cut and Metis (at least> 20%,
in average> 100%). In some cases, the performance of
CommonNeighbor is matched by SimRank (< 10% gain) or
outperformed by Modularity.

When we double the number of flows (k = 10, l = 20)
in Figure 6(b), the sum of flow rates does not increase
much on all algorithms (in average< 15%) and the overall
comparative patterns stay unchanged. This shows that the
top k flows already capture most of the flow rates on the
graph summarization. We then increase the number of clusters
(k = 20, l = 20; k = 40, l = 40). The results in Figure
6(c)(d) reveal that the objection function increases much as
the number of clusters increases (at least> 30%, in average
> 90%, comparing Figure 6(c) with Figure 6(b)), except for
Modularity, which remains unchanged because their number of
clusters are already larger thank and kept stable. For example,
the sample graph with 33,494 nodes stops at 71 clusters in the
top modularity level. On the comparative pattern, bidirectional
CommonNeighbor regains performance advantage over Sim-
Rank and Modularity under a large number of clusters.

During the experiment, we have executed each algorithm
case three times and report their average performance. How-
ever, the results in Figure 6 still show some randomness
due to the nature of iterative NMF solver. To obtain more
accurate result, we carefully sample 250 well-cited source
papers published in KDD and ICDM from the ArnetMiner
data set. The size of their maximal influence graphs are
within the range of 100∼10,000 nodes. On each graph, similar
experiments are conducted as above given a setting ofk = 20.
Finally in Figure 7, 250 graphs are categorized into 8 bins
according to their size. The average performance in each bin
are reported for comparison. Results on the larger data set
demonstrate the same pattern with the five sample graphs.
Bidirectional CommonNeighbor in most cases are the best,
except for Modularity, which becomes better as the number of
nodes increases beyond 5,000. As mentioned, this is because
the Modularity algorithm generates more clusters than the
initial setting of k = 20. As indicated by the labels above
the Modularity performance (blue line), the number of clusters
increases from 24.8 in the first category to 65 among the largest
graphs. Increasing the number of flows for CommonNeighbor
does not optimize the objective function much.

B. Visualization

We evaluate the effectiveness of summarization methods
also by comparing their visualization results: whether they
produce a clean influence graph summarization with little
visual clutter and whether the results are meaningful for users
with domain knowledge. We first pick the famous frequent
pattern mining paper by Prof. Jiawei Han et al. as the source
to generate the maximal influence graph. Then we execute
seven typical summarization methods and depict their results in
Figure 8(a)∼(g). At the first glance, the proposed bidirectional
CommonNeighor method generates a connected tree-like influ-
ence graph summarization without edge crossing (Figure 8(a)).
Compared to that, SimRank gets a similar visual form (Figure
8(b)) due to the comparable objective function result, but the
generated graph is not connected. The Metis result is also clean
(Figure 8(f)), but all the clusters have a similar number of
nodes, making the summarized graph impractical for usage.
Ratio Association and Normalized Cut look inferior due to the
poor graph connectivity (Figure 8(c)) and the flat influence
hierarchy (Figure 8(d)). Modularity and MDL are the worst
because of the visual clutter generated from the large number
of clusters remained in the summarization (Figure 8(e)(g)).

Taking a closer look at the visual summarizations, we find
that by CommonNeighbor, most flows represent at least 300
citation links. While by SimRank, the critical flows linking
the source node are fragmented, two of which only include 52
and 83 citations. The same deficiency is found in the result
by Metis, where two highlighted flows only have 11 and 12
citations. We also invite a senior researcher from the database
and data mining community to evaluate the summarization
result. With our interactive tool, she can switch between the
title+abstract summary and the research field summary. She
can also access paper details in each node cluster with a sorted
list by citation count. She mainly compares the visual summa-
rization by CommonNeighbor and SimRank. In this case, she
prefers the result by CommonNeighbor in Figure 8(a) because
the influence evolutions make more sense: the initial paper
quickly raises much attention on pattern mining research such
as itemset and association rule mining, then the thread splits
into four streams on general data management research (such
as web and uncertainty skyline analysis), trajectory analysis,
subgraph analysis and application in software engineering(e.g.
bug analysis). The thread of web data analysis gradually moves
to web retrieval and finally leads to tag analysis and anomaly
behavior detection. Compared with CommonNeighbor, Sim-

(a) CommonNeighbor (proposed) (b) SimRank (c) Ratio Association

(d) Normalized Cut (e) Modularity (f) Metis K-way (g) MDL

Fig. 8. Influence graph summarization results on [Han SIGMOD’2000] by different methods (k = 10, l = 20). Node label gives the number of papers in each
cluster and their content summary by either title+abstractkeywords in (a),(b) or the top 3 research fields in (c)∼(f). Link thickness indicates the normalized
flow rate. Some part of the graph is highlighted to show the number of citations as edge labels. Note that the modularity algorithm stops at 62 clusters and can
not merge any further. MDL produces 4,937 clusters, leavinga half of the visual complexity from the input graph.

Rank creates some false links, e.g. the direct flow from the
frequent pattern mining paper to uncertainty data analysis.

Furthermore, we ask our invited users to study the in-
fluence of the well-known Internet power-law paper in SIG-
COMM’1999. The maximal influence graph is summarized
by the bidirectional CommonNeighbor algorithm into Figure
1 (in the second page). Note that in this case the influence
graph topology is augmented by the “venue” field of each
paper to group the papers with similar research topic together.
From the visual summarization, she learns that the SIGCOMM
paper directly influences the research on Internet topology
and simulation. Next, over the Internet topology topics, the
P2P research becomes popular and after that the web-related
research and XML. The most recent hot topic in this thread
appears to be sensor network which corresponds well to his
domain knowledge.

Our framework can also visualize one author’s influence
by summarizing the author influence graph. This graph is
generated by adding one influence link between two authors
for each citation between their papers. The maximal author
influence graph is then computed from a source author by
traversing the influence graph. As an example, we select Prof.
Jiawei Han as the source author, and collect the influenced
authors within 2 hops. To limit the size of the influence graph,
we only keep productive authors (i.e.≥ 30 paper publications)
which gives a graph of 26,349 author nodes. The summariza-
tion result applying bidirectional CommonNeighbor algorithm
(k = 10) is shown in Figure 9. Our invited user acknowledges
the validity of the result: Prof. Han has influenced multiple
fields with his research, mainly data mining (DM), database
(DB), AI and networking (Net). On his contribution to DB and
DM fields, the influence is bidirectional, i.e. he is also heavily
influenced by the researchers there, as indicated by the group
of 109 authors in the picture (e.g. Raghu Ramakrishnan). The

Fig. 9. The summarization of Prof. Jiawei Han’s influence graph by
bidirectional CommonNeighbor (k = 10).

most directly influenced field by the number of authors are AI
and DM, as indicated by the group of 6,575 authors. The most
indirectly influenced field are Net and DM, as indicated by the
group of 11,013 authors. Through the bridging of a group of
21 authors (e.g. Rakesh Agrawal), he also impacts the Theory
(The) research, represented by the group of 2,774 authors.

C. Scalability

The overall computation time for different summarization
methods is illustrated in Figure 10(a). Our proposed algorithms
are more costly than efficient modularity clustering algorithm
(O(nlog(n)) with small constant) and Metis k-way graph
partition (O(n +m)). However, the best of our methods can
summarize a 10,000-node maximal influence graph in 100
seconds, and the overall time complexity is only slightly above
linear. Note thatn here denotes the size of the maximal

(a) Total computation time (second) by graph size (#node)

(b) Similarity Matrix (c) Eigen Initialization (d) SymNMF

Fig. 10. The time cost of different summarization methods,k = 20: (a) Total
time; (b)∼(d) Split time of four algorithms in our framework. The similarity
matrix computation and SymNMF iteration dominate the cost.

influence graph, which is much smaller than the size of the
original graph. Most citation graphs from a single paper are
no larger than the magnitude of 10,000 nodes, while the entire
data set has millions of papers.

Within our framework, the SimRank algorithm requires the
longest computation time. To explain this, we have looked
at the split time at three key steps, as shown in Figure
10. The eigenvalue decomposition (Figure 10(c), only topk
eigenvectors are computed) are quite fast due to the sparsity
of the influence graph matrix (Table II). On similarity matrix
computation (Figure 10(b)), SimRank is slow because in
worst case it needs to compute an all-to-all similarity matrix
(O(n2d2)), though we have optimized it to only compute
within a 4-hop range. In contrast, CommonNeighbor is much
faster on similarity computation, through the multi-threaded
routine on sparse matrix multiplication. Finally, SymNMF
(Figure 10(d)) is the most costly step. In each iteration, there
are a few sparse matrix-matrix multiplication computations.

Compared with the time complexity, the space requirement
of our framework is less stringent. The similarity matrix
computation and iterative SymNMF each needs to store a
dense matrix at most, giving a space complexity ofO(n2)
with small constant. The eigenvalue decomposition by dsyevx
routine in LAPACK only needsO(n) space with a relatively
large constant. Recall thatn is the number of nodes in the
maximal influence graph and can be hundreds of times smaller
than the original input graph.

D. Summary and Discussions

First, our experiment results demonstrate that the summa-
rization methods specifying the number of clusters provide
compact influence graph summarizations. In contrast, typical
graph compression and summarization methods such as MDL

and Modularity can lead to huge visual clutters that make
it hard for user to interpret. Within thek-cluster methods,
applying bidirectional CommonNeighbor algorithm in our
framework is shown to be the best in maximizing the IGS
objective, constantly superior than traditional graph partition
and clustering algorithms, such as Ratio Association, Normal-
ized Cut and Metis. In a few cases, plugging SimRank into
our framework can achieve comparable performance. In fact,
SimRank has very close tie to our method. CommonNeighbor
considers the similarity of two nodes in one hop beyond, while
SimRank computes their similarity in an infinite hop (pruned
to four hops in this work). Our results show that, though
close to, SimRank is not better than CommonNeighbor in
maximizing the IGS objective, but also it suffers from a higher
computational complexity ofO(n2d2).

Second, we note that the parameterk andl in the summa-
rization can be critical for both the objective and user perfor-
mance. Ask becomes large, for example from (k = 20, l = 40)
to (k = 40, l = 40) in the cases of Table II, the IGS objective
increases 56% in average while the visual complexity doubles.
We recommend to setk ≤ 20 on this trade-off, because at a
size larger than 20, the node-link graph visualization may not
be a good choice for many graph visual analysis tasks [16]. On
the choice ofl, we find that the optimization of IGS objective
is not significant afterl ≥ 2k, thereforel = 2k can be an
appropriate setting.

Last, we target on the academic data sets in this work.
It seems straightforward to apply our framework also to
social influence graphs on Twitter and Facebook. However,
we caution that the basic retweeting influence graph can be
summarized clearly by MDL or structural equivalence [17]
based node grouping, because such graphs are all standard
trees with large structural redundancy.

VII. R ELATED WORK

First, graph summarization, constructing a smaller ab-
straction to represent the large graph has been a traditional
research topic, e.g. using graph clustering algorithms. These
algorithms usually optimize certain association or cut measure
during the k-way graph partition. Several measures have been
proposed, e.g. ratio association, ratio cut [18] and normalized
cut [9]. The similar problem is also studied in the context of
community detection by interdisciplinary researchers [19], in
which modularity is one of the most popular quality function
to access a community [20]. However, most of the clustering
and community detection methods on graph target at maxi-
mizing intra-cluster connections while minimizing inter-cluster
connections. This is fairly different from the IGS problem
studied here. On the other hand, there are also plenty of
works in compressing large graphs for efficient storage and
representation. In [12], MDL-based compression was proposed
to present the graph with an aggregated structure and an error
correction list. It is proved to be the best summary from
the information-theoretic objective. While MDL approach can
successfully compress web graphs, on influence graphs which
are much sparser (the citation graphs have an average degreeof
less than 3), it performs similarly to a structural equivalence
based grouping [17], leaving huge visual clutters unsettled.
Another algorithm, SNAP [21], considers the node attributeon
graph, but again is not tailored for the influence graph scenario.

Second, visualization, over the past few decades, the
methodology to draw node-link graphs has reached its ma-
turity. On graphs with less than a few hundred nodes, the
planar graph drawing approach [22] and the force-directed
algorithm [23] can produce visually pleasant graph layouts
in real time, mainly by minimizing edge crossings. On large
graphs with a thousand or more nodes, the force-based al-
gorithms can be extended by multilevel coarsening and fast
force approximation [24] and still generate a layout in reason-
able time (e.g. less than a minute for million-node graphs).
However, on real-world large graphs with small-world nature,
including the influence graph discussed here, the resulting
graph layout still has numerous edge crossings. This leads to
overwhelming visual clutters detrimental to visual data mining
tasks. Meanwhile, Shahaf et al. [25][26][27] studied the similar
problem of summarizing large amount of information into user-
friendly visual maps. They developed intriguing methods to
detect hidden linkage and document clusters from the keyword
frequency statistics. On a quite different focus, our method is
built on the graph with explicit linkage data while the textual
content of each node can be absent or incomplete.

Third, considerable work has been conducted for studying
the effects ofsocial influence. For example, Bakshy et al. [28]
conducted randomized controlled trials to identify the effect of
social influence on consumer responses to advertising. Bond
et al. [29] used a randomized controlled trial to verify the
social influence on political voting behavior. Tang et al. [30]
presented a Topical Affinity Propagation (TAP) approach to
quantify the topic-level social influence in large networks.
Kempe et al. [1] proposed to use a submodular function to
formalize the influence maximization problem and develop a
greedy algorithm to solve the problem with provable approxi-
mation guarantee. Most of these works focus on the existence
of social influence or the nature of the information diffusion
process and do not consider the summarization problem.
Recently, Mehmood et al. proposed CSI [31], a model that
generalizes the classical Independent Cascade model to the
community level, built from the cascade-based community
detection method [32]. CSI can produce similar visual forms
to our result. However, the CSI model is computed from
the probabilistic social influence graph and the information
propagation log more engaged to the social influence scenario.
In comparison, our method is more focused on the visual
summarization of large influence graphs in the objective of
maximizing flows. We do not leverage the information propa-
gation model and the associated log data in such scenarios.

VIII. C ONCLUSIONS

In this paper, we propose the influence graph summa-
rization problem, study its linkage to the existing clustering
methods, and present a unified framework to solve it. The
framework achieves all the three design objectives, including
(1) flow rate maximization that highlights the evolution of
influence; (2) a localized visualization from the source node;
and (3) easy to incorporate rich information on graph such as
node attribute and time. The framework is comprehensive and
flexible. We provide both the SymNMF based solution and
implementation details. Through comprehensive evaluations
with real-world academic citation graphs, we demonstrate
that our framework constantly outperforms classical methods,

such as graph clustering and compression algorithms, in both
quantitative performance and qualitative visual effects.

REFERENCES

[1] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” inKDD, 2003, pp. 137–146.

[2] C. Ding, X. He, and H. D. Simon, “On the equivalence of nonnegative
matrix factorization and spectral clustering,” inSDM, 2005.

[3] H. Zha, X. He, C. Ding, H. Simon, and M. Gu, “Spectral relaxation for
k-means clustering,” inNIPS, 2001, pp. 1057–1064.

[4] C. Boutsidis and E. Gallopoulos, “SVD based initialization: A head
start for nonnegative matrix factorization,”Pattern Recognition, 2007.

[5] J. B. Kruskal, “On the shortest spanning subtree of a graph and the trav-
eling salesman problem,”Proceedings of the American Mathematical
Society, vol. 7, no. 1, pp. 48–50.

[6] “Parallelcolt,” https://github.com/Danimoth/Parallel-Colt.

[7] “Intel math kernel library,” http://software.intel.com/en-us/intel-mkl/.

[8] G. Jeh and J. Widom, “Simrank: A measure of structural-context
similarity,” in KDD, 2002, pp. 538–543.

[9] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp.
888–905, 1997.

[10] M. E. J. Newman, “Fast algorithm for detecting community structure
in networks,”Physical Review E, vol. 69, no. 6, p. 066133, 2004.

[11] G. Karypis, V. Kumar, and V. Kumar, “Multilevel k-way partitioning
scheme for irregular graphs,”Journal of Parallel and Distributed
Computing, vol. 48, pp. 96–129, 1998.

[12] S. Navlakha, R. Rastogi, and N. Shrivastava, “Graph summarization
with bounded error,” inSIGMOD. ACM, 2008, pp. 419–432.

[13] D. Kuang, H. Park, and C. Ding, “Symmetric nonnegative matrix
factorization for graph clustering,” inSDM, 2012, pp. 106–117.

[14] “Metis - serial graph partitioning and fill-reducing matrix ordering,”
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview/.

[15] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer:
extraction and mining of academic social networks,” inKDD, 2008,
pp. 990–998.

[16] M. Ghoniem, J.-D. Fekete, and P. Castagliola, “A comparison of the
readability of graphs using node-link and matrix-based representations,”
in InfoVis, 2004, pp. 17–24.

[17] F. Lorrain and H. C. White, “Structural equivalence of individuals in
social networks,”The Journal of Mathematical Sociology, vol. 1, no. 1,
pp. 49–80, 1971.

[18] P. K. Chan, M. D. F. Schlag, and J. Y. Zien, “Spectral k-way ratio-cut
partitioning and clustering,”IEEE Trans. on CAD of Integrated Circuits
and Systems, vol. 13, no. 9, pp. 1088–1096, 1994.

[19] S. Fortunato, “Community detection in graphs,”Physics Reports, vol.
486, no. 3-5, pp. 75–174, 2010.

[20] M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,”Physical Review E, vol. 69, p. 026113, 2004.

[21] Y. Tian, R. A. Hankins, and J. M. Patel, “Efficient aggregation for graph
summarization.” inSIGMOD, 2008, pp. 567–580.

[22] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis,Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall PTR, 1998.

[23] T. Kamada and S. Kawai, “An algorithm for drawing general undirected
graphs,”Information Processing Letters, vol. 31, no. 1, pp. 7–15, 1989.

[24] Y. Hu, “Efficient and high quality force-directed graphdrawing,”
Mathematica Journal, vol. 10, no. 1, pp. 37–71, 2005.

[25] D. Shahaf, J. Yang, C. Suen, J. Jacobs, H. Wang, and J. Leskovec,
“Information cartography: creating zoomable, large-scale maps of in-
formation,” in KDD, 2013, pp. 1097–1105.

[26] D. Shahaf, C. Guestrin, and E. Horvitz, “Trains of thought: Generating
information maps,” inWWW, 2012, pp. 899–908.

[27] D. Shahaf and C. Guestrin, “Connecting the dots betweennews articles,”
in KDD, 2010, pp. 623–632.

[28] E. Bakshy, D. Eckles, R. Yan, and I. Rosenn, “Social influence in social
advertising: evidence from field experiments,” inEC, 2012, pp. 146–
161.

[29] R. M. Bond, C. J. Fariss, J. J. Jones, A. D. I. Kramer, C. Marlow, J. E.
Settle, and J. H. Fowler, “A 61-million-person experiment in social
influence and political mobilization,”Nature, vol. 489, pp. 295–298,
2012.

[30] J. Tang, J. Sun, C. Wang, and Z. Yang, “Social influence analysis in
large-scale networks,” inKDD, 2009, pp. 807–816.

[31] Y. Mehmood, N. Barbieri, F. Bonchi, and A. Ukkonen, “Csi:
Community-level social influence analysis,” inECML/PKDD, 2013, pp.
48–63.

[32] N. Barbieri, F. Bonchi, and G. Manco, “Cascade-based community
detection,” inWSDM, 2013, pp. 33–42.

	I Introduction
	II Problem Definition
	III Framework
	III-A End-to-End Pipeline
	III-B Node Summarization
	III-C Generalizations

	IV Equivalence Analysis
	IV-A Approximation of IGS problem
	IV-B Kernel K-Mean Clustering
	IV-C Equivalence

	V Implementation Details
	VI Evaluation
	VI-A Flow Rate Maximization
	VI-B Visualization
	VI-C Scalability
	VI-D Summary and Discussions

	VII Related Work
	VIII Conclusions
	References

