
“© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.”

Heterogeneous Metric Learning with Content-based
Regularization for Software Artifact Retrieval

Liang Wu∗‡, Liang Du†, Bo Liu‡, Guandong Xu§, Yong Ge¶, Yanjie Fu∥, Jianhui Li∗, Yuanchun Zhou∗ and Hui Xiong∥
∗Computer Network Information Center, Chinese Academy of Sciences, Beijing, China. Email: {wuliang, zyc, lijh}@cnic.cn
†State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences. Email: duliang@ios.ac.cn

‡NEC Laboratories China. Email: liubo@research.nec.com.cn
§Advanced Analytics Institute, University of Technology Sydney, Australia. Email: guandong.xu@uts.edu.au

¶University of North Carolina at Charlotte, USA. Email: yong.ge@uncc.edu
∥Rutgers University, USA. Email: {hxiong, yanjie.fu}@rutgers.edu

Abstract—The problem of software artifact retrieval has the
goal to effectively locate software artifacts, such as a piece of
source code, in a large code repository. This problem has been
traditionally addressed through the textual query. In other words,
information retrieval techniques will be exploited based on the
textual similarity between queries and textual representation of
software artifacts, which is generated by collecting words from
comments, identifiers, and descriptions of programs. However, in
addition to these semantic information, there are rich information
embedded in source codes themselves. These source codes, if
analyzed properly, can be a rich source for enhancing the efforts
of software artifact retrieval. To this end, in this paper, we develop
a feature extraction method on source codes. Specifically, this
method can capture both the inherent information in the source
codes and the semantic information hidden in the comments,
descriptions, and identifiers of the source codes. Moreover, we
design a heterogeneous metric learning approach, which allows
to integrate code features and text features into the same latent
semantic space. This, in turn, can help to measure the artifact
similarity by exploiting the joint power of both code and text
features. Finally, extensive experiments on real-world data show
that the proposed method can help to improve the performances
of software artifact retrieval with a significant margin.

I. INTRODUCTION

Software artifact retrieval, which is also frequently men-
tioned as software traceability, is of considerable usefulness
for developers, since traceability provides insights into sys-
tem development and evolution assisting in locating software
features, analyzing requirements, managing and reusing legacy
systems and etc. It gives essential support in understanding the
relationships within and across software requirements, design
and implementation [31]. It is a fundamental task throughout
the software development life-cycle, and is especially impor-
tant for large-scale and complex software systems.

The task has been viewed as a special case of information
retrieval in the area of software engineering. The documents to
be retrieved are code programs, and queries are often formu-
lated by developers or automatically taken from requirements
and bug reports, e.g., titles of bug reports are used to localize
bugs in code programs.

In order to retrieve code artifacts, traditional methods try
to generate a textual representation for source code by picking
up words from programs and then compare them with queries,

i.e., transforming the problem to a text retrieval task. Existing
methods only leverage textual similarity between queries and
the extracted textual content of code, because the similarity
between code and text cannot be computed directly.

Along this stream of research, vector space model and
stochastic language model are first adopted [1], [5]. The query
and codes are both represented as bag-of-words feature vectors.
Subsequently, several other information retrieval models, as
well as their variants and ensembles, are also experimented to
improve the accuracy of the software artifact retrieval task[7],
[19], [4]. These text-based methods are reasonable for the task,
since some words may be used in programs by developers.
The problem is that these methods have not fully exploited
the semantics and operational information embedded in the
program. Although the code is composed of text, simply
breaking them into a bag of words loses important information
and descriptive features. The adoption of proper semantic
representation to measure the similarity between code itself
and query motivates the work conducted in this paper.

To this end, in this paper we first extract the relationships
between functions and classes, including reference, imple-
mentation, inheritance, as features because they indicate the
associations between different entities. In addition, as most
source code implements a certain target by assembling several
functional code fragments, the code patterns which frequently
appear in programs bear more semantic than the rest. We
attempt to discover and exploit them to serve as the additional
features of the corresponding source code. More specifically,
we first extract code relationship features of code programs,
and then organize the code as a tree structure, in which each
node depicts the adjacent program statements separated by the
block delimiters. The tree nodes are then combined iteratively
in an agglomerative manner, and frequent code patterns are
extracted as code features. Thus the extracted code features
contain both the textual content of the code and also preserve
the functional information by clustering the logically related
statements together. The details are presented in Section II-C.

Although homogeneous distance metric learning [28], [29]
has been proposed to learn a good metric to compare two
objects and has played a significant role in statistical classi-
fication and information retrieval, it requires the objects to
share identical features and are comparable. The extracted

code features and text features in our task, however, are
heterogeneous, so they cannot be compared directly. Thus
we propose a novel heterogeneous distance metric learning
method to discover the shared semantic representation of text
and code features. The proposed approach in our work en-
ables the distance calculation between instances from different
feature spaces. More specifically, two transformation matrices
are produced to map the code-feature representation of code
and the text-feature representation of queries into a shared
semantic space, where codes and queries own a homogeneous
low-rank representation. Then queries and programs can be
compared directly. Similar ideas have been proposed to solve
the problem of cross modal multimedia retrieval, such as
using text as queries to retrieve music and using text to
retrieve pictures [21], [26], [3], [9]. Researchers proposed
to build distance metric between different media and help
to get better results. However, since the code features may
contain words that overlap with the words in queries, in our
task the heterogeneous features are partially comparable. The
overlapped words, which may be useful for retrieving software
artifacts, will be lost, if we simply use the multimedia retrieval
techniques. Thus, we further propose a data matrix to preserve
the content-based similarity between text features and code
features, which is further adopted to regularize the objective
function by constraining the parallel features to be similar in
the new space. The content-based regularization exploits the
similarity between text and code, and is useful for improving
other methods from the domain of heterogeneous multimedia
information retrieval according to the experimental results.

By integrating the heterogeneous distance metric learning
approach and the content-based regularization into a unified
framework, we propose a model named Heterogeneous Met-
ric Learning with Content-based Regularization (HMLCR) to
build a distance metric between the feature spaces of code
and text. Extensive experiments are conducted to verify the
effectiveness of the proposed method. The experiments are
based on real-world data sets, which are obtained from two
open-source applications with distinct functions and different
programming languages.

The main contributions of the paper lie in four aspects:

1) Two kinds of code features, namely code relation-
ship features and frequent code snippet features are
proposed to better represent programs, which contain
the operational and functional information of codes
and help to overcome the bottlenecks of traditional
methods in the area of software engineering.

2) A novel heterogeneous distance metric learning mod-
el is proposed to allow similarity computation be-
tween codes and text. The similarity is then used to
enhance the retrieval results.

3) We evaluate our method using real world open source
software data. The experimental results demonstrate
that the proposed model can improve the prediction
accuracy significantly and outperform several base-
lines.

4) We demonstrate a case study using HMLCR to re-
trieve corresponding word features for code features,
which are used to further explain the changes brought
by incorporating the proposed model.

The remaining of the paper is organized as follows. The

problem definition of software traceability and the proposed
approach are presented in Section II. Experiments are con-
ducted in Section III, where the experimental results and a
case study are provided. Then we discuss close related topics
in Section IV and Section V concludes the work and provides
possible future directions.

II. PROPOSED APPROACH

As the code contains useful clues for linking text, code and
between them, our target is to directly compute the similarity
between code and queries, and further use the similarity to
enhance the retrieval results. To allow computation in different
feature spaces for code and text, two transformation matrices
are constructed to map the text queries and the code files
into a same semantic space. Thus, in this section, we first
introduce the definition of the problem and then describe
the framework we proposed. Two kinds of code features are
discussed subsequently. Finally, the HMLCR model and its
optimization are presented.

A. Problem Definition

The task has been viewed as a general information re-
trieval task, where the queries are written in natural lan-
guages, and the code has two parts, containing both source
code and textual information consisting of comments, iden-
tifier names and etc. Here we denote the code as D =
{(xc

1, x
d
1, l1), · · · , (xc

m, xd
m, lm)}, which contains m code pro-

grams, each consisting of the source code xc and textual
information xd. Every code has a label li, which represents
the specific function of the code. Labels are generated either
manually or according to certain disciplines of a specific
domain. For most projects, every code file has a unique
identifier. But in some real applications, the label is used to
denote the function of a code file. Thus different programs
may share an identical label. The query set is denoted as
Q = {(xd

1, l1), · · · , (xd
n, ln)}, where each query contains a

short paragraph describing itself and a label which is taken
from the same vocabulary as the labels of code. The source of
queries includes bug reports, specifications and requirements,
which normally contain references to code files that a query
describes. The reference is used to produce labels of queries.

Definition 1: (Software Artifact Retrieval) Given a pro-
gram data set D = {(xc

1, x
d
1, l1), · · · , (xc

m, xd
m, lm)} and an

unlabeled query, the basic objective of the software artifact
retrieval task is to retrieve relevant code files in the unlabeled
data set T = {(xc

1, x
d
1), · · · , (xc

n, x
d
n)}.

Traditional methods focus on computing the similarity
between queries and the textual representation xd of code files.
The contribution of our work is to incorporate the similarity
between queries and xc. In order to enable the similarity
computation, we extract code features from xc, and build
heterogeneous distance metrics between code features and
word features.

B. Overview

Figure 1 presents the framework of our proposed approach.
The word features are first extracted from textual content of
codes. Since words cannot fully reveal functional informa-
tion of program codes, we further propose code features to

�������

��������	
��	��������

����	
���
��

����	
���
��

����	
���
��

�������

�������

�������

����	
���
��

����	
���
��

����	
���
��

�����

�
��	���� �������	�����	���
����������

���� 	���
���������� �����	���
����������

����	
���
��

����	
���
��

����	
���
��

�����

�����

����	
���
��

����	
���
��

����	
���
��

�����

�����

�����
��������	��������

�

�

�	
�����

(a) Training of the proposed method. Two transformation matrices are gener-
ated.

�������

�������

�������

����	
���
��

����	
���
��

����	
���
��

����	
���
��

����	
���
��

����	
���
��

�������

����	
���
��

����	
���
��

����	
���
��

���������	

����������

�������

�������

�������

�����

�����

�
���

�
���

�
���

����������

�����

�����
���	�����

�����
���	���	�

���������	

����������

�
���

�
���

�
���

(b) Testing of the proposed method. Text-code similarity is calculated based on
the two transformation matrices and text-text similarity is calculated directly.

Fig. 1. The framework of our proposed approach.

overcome the bottleneck. The code features are obtained by
extracting the code relationships and iteratively combining the
adjacent program expressions based on their structure. Since
code and word features are heterogeneous, in the training pro-
cess, as depicted in Figure 1(a), two transformation matrices U
and V are built by the HMLCR model. The two transformation
matrices can be viewed as the heterogeneous distance metric
between the text features and the code features, and are used
to enable the direct comparison of similarity between hetero-
geneous feature spaces. Although it is hard to characterize the
intrinsic structure of the homogeneous and heterogenous data
in the new space, fortunately, various contextual information
is available in real applications of software artifact retrieval,
which can be leveraged to assist the learning process. Here, we
put forward four constraints on the generation of the distance
metrics: 1)pull loss is used to force the textual representation
and code representation of programs with the same label to be
near in the new space. 2)graph regularization is employed
to gather both homogeneous and heterogeneous entities with a
same label together in the new space. 3)As some code features
contain words, and these features should be similar to the
word features which also contain the words in the new space.
Thus, the content based regularization aims to reserve this
similarity by constraining similar features to be related in the
new space after the projection. 4)A scale regularization item
is adopted to avoid over-fitting. The HMLCR model focuses
more on the relationships between textual representation and
code representation of programs, as in real world applications,
they are born together and thus the links are sufficient for
training; while the query-code relationship is not taken into
consideration, since the links between queries and code are
much harder to collect and far less than enough.

As depicted in Figure 1(b), the final similarity between
a query and a code file is two-fold: text-text similarity can
be directly computed between the textual representation of
code programs and queries, as they are homogeneous; text-
code similarity is acquired by transforming the queries and
code into a common feature space and representing them by
hidden topics. The linear ensemble of them is taken as the
final similarity.

C. Feature Extraction for Code Programs.

Most existing work on source code retrieval focuses on
extracting the words in programs, that is, collecting words
to build documents from comments, identifier types, function
names and etc., which ignores the structures of the programs.
This line of methods may encounter difficulties when the
textual content is not sufficient. For example, As the queries
and the code are often written by different organizations, a
variety of vocabularies may be employed to characterize a
similar or even same entity/behavior. This results in a gap
between the queries and the code descriptions.

We observe that, though different words are used to de-
scribe a same thing, the specific lines of programs, which
implement the corresponding behavior or entity, almost keep
still from time to time. Based on the observation, a natural
intuition is that the specific lines of code may be extracted
and leveraged to bridge the gap between different queries and
programs during retrieval.

The code features are extracted as the bridges. They
are used to gain more information by linking them to the
frequently co-occurred words. Since the content of code is also
useful for representing programs, we also adopt the content of
code features during optimization.

1) Code Relationship Feature Extraction: The first kind
of code features are the code relationship features. Between
different code files, some linking information is explicitly
announced. The related information between different code
files indicate the associations between different entities, and
thus are useful for inferring the semantic of code files. So we
extract the relationships between functions and classes, includ-
ing reference, implementation, inheritance, as code relationship
features.

2) Code Snippet Feature Extraction: A key issue of extract-
ing frequent code patterns is how to split a whole program file
into pieces. As most source code can be logically formalized
like a tree structure, i.e., the whole program is the root node
and its sub modules are first layer children. We collect these
nodes to build the candidate set of our code features. Each node
represents the expressions which are separated and combined

by the block delimiters, since expressions of source code
are often separated to different domains based on the ending
characters, like the curly brackets “{” and “}” in C and Java.
The adjacent code expressions are then merged together as a
tree node and then added to the code tree. They are further
merged into their higher level parents. Therefore, we extract
the nodes hierarchically, from leaf nodes to the root node.

Algorithm 1 displays the algorithm of the extraction and
vectorization of code snippet features. The generated tree
nodes of programs are sequentially checked by the algorithm.
The mapping between code and features are saved to produce
the data matrix, and the candidate set C reserves all code
nodes. We name the extracted code nodes as code snippets.
Here, a code snippet consists of at least one expression of
source code. As stated earlier, we first merge the program state-
ments between the delimiters as the lowest level snippets; and
we then merge the snippets together according to the positions
of the delimiters, as the snippets are normally organized and
nested to perform more complex behaviors. These snippets are
then combined in a agglomerative manner according to the
hierarchical organization of the program, thus a set of code
snippet features is generated. It should be noted that, as we

Algorithm 1 Construction of Code Snippet Feature Candidate
Set
Input: The dataset of code programs: C.
Output: The candidate set of code features: F ; The map

between program files and code features: M .
1: for each program c in C do
2: Extract All Nodes N from c
3: for each node n in N do
4: if n /∈ F then
5: Add n to F
6: end if
7: Add the Program Feature Map to M
8: end for
9: end for

10: return F and M

call the set of code snippets as code feature candidates, not
all code snippets are finally used afterwards. A lower and a
higher bound of number of occurrences are set to filter out
those rare and common snippets. The rare snippets, which
seldom appear in programs, make the relationship between
features and codes sparser; the code feature candidates which
appear too frequently in the dataset are less informative for
the retrieval task. In this paper, we set the bounds empirically.

Our basic intuition to extract code snippets is they can
be used to accurately represent a behavior or an entity, and
are useful to bridge the different text and enrich the sparse
textual information, since code is function-dependent, i.e., code
snippets with same functions should share a same structure. In
order to avoid taking in too much noise, a set of preprocessing
operations, like transforming the identifer names to identifer
types, are performed on the programs before features being
extracted. A similar line of methods that are also designed
for this goal of removing the useless expressions has been
proposed and studied well in the area of software engineering,
which is formally named as program slicing method [33].

After extracting code features, including code relationships

TABLE I. NOTATIONS AND CORRESPONDING DESCRIPTIONS

m number of training code files and queries
dx dimensionality of textual feature space
dy dimensionality of code feature space
λ1···3 regularization parameters
X dx ×m matrix of words extracted from code
Y dy ×m matrix of code features
U dx × k transformation matrix text features
V dy × k transformation matrix code features
R dx × dy matrix of similarity between features

and code snippets, our objective is to infer its semantic by
mining the relationships between code and text, thus to allow
direct comparison between code and text.

3) Content Information Extraction: As discussed in Section
II-B, the content of code features is useful for the distance
metric learning. Thus, we propose to use a data matrix R
to save this content-based similarity between heterogeneous
features. As introduced in Table I, R is a dx × dy matrix, in
which each entry ri,j represents the similarity between text
feature i and code snippet j.

For simplicity, the similarity is defined to be 1 if the text
feature i and the code feature j contain a same word. A
problem is that, in code snippet features, as the high level tree
nodes contain many low level nodes, they may be similar to
too many text features erroneously. In order to avoid this, the
words are encoded in the first layer and no longer available
when they are wrapped more than once. That is, in a code
feature, the word is only available in its lowest code snippet.
When the code snippet is iteratively combined in the higher
code snippet, the word is wrapped in its lowest feature and
will not be included as code content more than one time.

D. Heterogeneous Metric Learning with Content-based Regu-
larization

Distance metric learning [27] has attracted much attention
in the last decade. The objective of distance metric learning
is to learn a linear transformation matrix to map the data into
a new space. Then the distance between objects in the new
space is defined by the distance metric. The learning process
forces the new space to preserve the similarity and dissimilarity
between any two objects in the training data. Distance metric
learning proves to be useful in many machine learning tasks,
as it helps to capture the optimal distance between two objects.

In the area of cross modal multimedia retrieval, researchers
proposed heterogeneous distance metric learning methods to
compare different media [22], [21], [26], [15], [13], [25],
[3], [9]. Unlike the homogeneous distance metric learning,
heterogeneous distance metric learning aims to learn multiple
transformation matrices. Each matrix is used to transform the
corresponding kind of media to the semantic space.

In Section II-C, we have described the features extracted
from code. In order to calculate the similarity between code
programs and textual descriptions, we regard code semantic
representation as a new media and propose the HMLCR model,
to learn two transformation matrices U and V for text and code
via optimization.

After that, each textual representation and code feature
representation are projected to a new space with dimensionality
of k. k can be viewed as the number of latent topics. For
simplicity, k is set empirically in this work and is normally
smaller than dx and dy. Then based on the new space, the
heterogeneous similarity can be measured. Later in this section,
the details of HMLCR are introduced.

We first describe our loss function ϵpull that helps to build
up the connections between code and text feature spaces.
Then we introduce a joint graph regularization item g which
constrains the new space to reserve the links between the
textual and code feature-based representation of programs.
Then we show how to leverage the content information of code
features to regularize the training objective. The optimization
objective and the optimization method are presented in the end.
Some of the notations are summarized in Table I.

1) Loss Function: In order to reserve the relationships
between code feature representation and textual representation,
we propose to use a loss function to build the new space.
As depicted in Equation 1, the item ϵpull(U, V) penalizes
the large distance between code and its corresponding textual
representation, i.e., pulling them together.

ϵpull(U, V) =
1

2
||XTU − Y TV ||2F (1)

2) Joint Graph Regularization: The similarity between
code feature and code feature based representation, the simi-
larity between textual and textual representation are also useful
for heterogeneous metric learning. Thus, in order to force the
low dimensional representations to reserve the relationships,
we introduce a joint graph regularization term

g(U, V) =
1

2
tr(OL̄TOT) (2)

where O is a c × (m +m) data matrix which represents the
coordinates of the original data in the new semantic space:

O =
(
UTX,V TY

)
(3)

and L is the normalized graph Laplacian of W , which is
produced as follows:

L̄ = I −D− 1
2WD− 1

2 (4)

in which W = wij(m+m)×(m+m) means the relationship be-
tween the i-th object and j-th object. The symmetric similarity
of labels is encoded into the matrix as follows:

wij =

{
1, li = lj ∧ i ̸= j;
0, otherwise

(5)

Here, I is an identity matrix and D is a diagonal matrix with
each entry dii equals the sum of the corresponding row of W ,
namely

∑m+m
j wij .

As denoted in Equation 6, the matrix L̄ can be decomposed
into four parts:

L̄ =

(
L̄xxL̄xy

L̄yxL̄yy

)
. (6)

thus Equation 2 can be rewritten as:

g(U, V) =
1

2
tr(OL̄OT)

=
1

2
tr(UTXL̄xxXTU) +

1

2
tr(UTXL̄xyY TV)

+
1

2
tr(V TY L̄yxXTU) +

1

2
tr(V TY L̄yyY TV)

where tr(UTXL̄xxXTU) is the trace of the matrix
UTXL̄xxXTU . g(U, V) formulates pairwise similarity be-
tween the code feature representation and the textual represen-
tation of programs using graph. It improves the smoothness of
the mappings by penalizing the functions that change abruptly
on the joint data graph [23].

3) Content-based Regularization: As mentioned in Section
II-C, R is the content-based similarity between code features
and text features. To force the transformation matrices U and
V to reserve it, we incorporate another term to regularize the
objective as follows,

c(U, V) =
1

2
||UV T −R||2F (7)

where UV T
dx×dy denotes the associations between features in

the new space, so c(U, V) aims to penalize the large distance
between code features and text features which share the same
words.

4) Optimization Objective: Finally, we introduce a regular-
ization term r(U, V) to control the scale of the transformation
matrices U and V . In this paper, we define the regularization
function as follows:

r(U, V) =
1

2
||U ||2F +

1

2
||V ||2F (8)

Thus, the optimization objective is the combination of the
aforementioned items:

argmin
U,V

λ1ϵpull + λ2g + λ3c+ r (9)

where λ1, λ2 and λ3 control the impact of each constraint.

5) Optimization: We will introduce how to minimize the
optimization problem in Equation 9. The optimization is an
unconstrained optimization problem with two matrices U and
V , which is not jointly convex to them. Since we cannot get
the closed-form solutions, we turn to solve the problem by
fixing one matrix and optimize the other iteratively. Therefore,
gradient descent is adopted to approach the optimal results. By
taking the derivatives over the objective function, we have the
gradient of U as:

∂Loss

∂U
= λ1X(XTU − Y TV)

+ λ2(XL̄xXTU +XL̄xyY TV

+ λ3(UV T −R)V + U

and the gradient of V as:

∂Loss

∂V
= λ1Y (Y TV −XTU)

+ λ2(Y L̄yxXTU + Y L̄yY TV)

+ λ3(UV T −R)TU + V

The optimization process can be found in Algorithm 2. Note
that the matrices U and V are initialized (line 1) based on the
Cross-modal Factor Analysis algorithm[15].

Algorithm 2 Iterative Optimization for HMLCR
Input: The data matrices: X , Y ; The similarity matrices:

W , R; The parameters, λ1...3; The learning rate η; The
maximal number of iterations MaxIter.

Output: The transformation matrices U and V .
1: Generate U and V
2: for i = 1 to MaxIter do
3: U ← U+η ∂Loss

∂U

4: V ← V +η ∂Loss
∂V

5: if convergence then
6: break
7: end if
8: end for
9: return U and V

III. EXPERIMENT

In this section, we will first introduce the experimental
settings as well as the dataset. Then we will describe the
evaluation metrics we adopted. Next, we discuss some major
results of the experiments. Finally, some case studies are
presented and discussed.

A. Dataset

The model has been incorporated and test in a commercial
software to index programs by textual descriptions, but the
result cannot be disclosed due to intelligence property issues.
So we obtain datasets from two real world open source
software, the platform of Eclipse1 and Filezilla2 and thus make
the experimental results reproducible.

Eclipse is a popular open-source IDE for many program-
ming languages written mainly in Java. The project contains
approximately 7,000 classes with about 89,000 methods in
about 2.4 million lines of code (MLOC).

Filezilla is an open-source FTP client for Windows, Mac
OS X and GNU/Linux. The project is written in C and is much
smaller than Eclipse, with about 8,012 methods in 410 KLOC.

In order to test our model, we extract titles of bug reports
of Eclipse and change logs of Filezilla as queries to retrieve
code. The approach of using bug reports and change logs is
frequently adopted in the area of software engineering, which
is based on change reenactment [32]. For example, Eclipse
bug 51383, as depicted in Figure 2, reports an error on Double
Click function of user interfaces. The title “Double-click-drag
to select multiple words doesn’t work” is collected as a query
and the corresponding code files can be found in the fix patch.
We crawled over 1700 bug reports for Eclipse and over 1320
change logs for Filezilla, which own a clear connection to
code programs. They are further used for evaluation in our
experiments.

1http://www.eclipse.org
2https://filezilla-project.org
3https://bugs.eclipse.org/bugs/show bug.cgi?id=5138

Fig. 2. An example of the online bug report.

B. Evaluation Metrics

In order to measure the accuracy of the proposed approach,
we use three methods to evaluate the retrieval results. The
first one is Precision at n(P@n). Here, the position of the true
positives is not taken into consideration, as another measure
will be adopted to model the usefulness of the returned
results in terms of ranking orders. The calculation of P@n
is illustrated in Equation 10.

P@n =
|{relevant code files} ∩ {retrieved code files}|

n
(10)

As in the area of software engineering, traceability module
is often designed for professional users who are more patient to
click the lower ranked results. Therefore, it is more important
to retrieve all the code files given a query, So Recall at n (R@n)
is adopted to be the second evaluation metric. Similar with the
P@n, the positions of results are not taken to penalize the low
ranked right answers. The details of the metric is illustrated in
Equation 11;

R@n =
|{relevant code files} ∩ {retrieved code files}|

|{relevant code files}|
(11)

Another measure method we employ is the normalized Dis-
counted Cumulative Gain(nDCG)[18]. This measure is useful
for computing the quality of ranking results as it considers both
the returned contents and the order of the results. To evaluate
the quality of a ranking list, we rank the retrieved code files
for each of the queries based on their computed similarity.

C. Settings

In order to investigate the effectiveness of the proposed
approach, we implemented several methods from the domain
of software engineering and multimedia information retrieval
as our baselines.

• COS: The cosine similarity based method [1], [19]
which calculates the cosine similarity between the
textual representation of code and queries.

• LM: This method adopts language modeling to calcu-
late the similarity between the textual representation
of code and queries [1], [5].

• LSI: The latent semantic indexing method that first
compresses the textual representation of code and
queries and then calculate their similarity [7], [25].

• CFA: Cross-modal Factor Analysis model, which is
first proposed in [15] and is designed to discover the
associations between the feature space of different me-
dia. We adopt this method to calculate the correlations
between word features and code features. This method
ranks the code files based on two parts, the text-text
similarity and the text-code similarity.

• CFA+CR: In this method, we adopt the content-based
constraint to regularize the training process of CFA.
Thus, we test the impact of the content based regular-
ization on the retrieval results.

• HMLCR: The proposed Heterogeneous Metric Learn-
ing with Content based Regularization. This method
ranks the code files based on two parts, the text-text
similarity and the text-code similarity.

The first three baselines, COS, LM and LSI, are taken
from the area of software engineering, which treat code files
as natural languages and extract words from code to form a
textual representation. The other baselines are more similar
with the methods in cross media information retrieval, which
model the code as heterogeneous media and try to bridge the
gaps between different feature spaces.

All these methods can be improved by exploiting
application-specific rules, manual labeling and interactive user
guidance. In this work, however, we focus on the automatic
part of the problem, that is, the similarity computation between
code and text. So the baselines we choose, COS, LM and LSI,
concentrate more on text comparisons. The rules, labeling and
user guidance are not used in our model, either. The proposed
method and the baselines can be improved when used in
real projects by leveraging these domain knowledge. So the
proposed method can be easily equipped to the online systems
by replacing the existing calculation modules.

In all experiments, five-fold cross validation is employed.
We split the queries into five folds randomly and in each round
we select one fold, the queries and the corresponding code
files, as the training data, and use the rest for testing. The
reported result is the average of all rounds.

D. Experimental Results

TABLE II. THE PRECISION @ TOP N RESULTS OF ECLIPSE

P@1 P@2 P@4 P@5
COS 0.016 0.0176 0.0182 0.0196
LM 0.0164 0.0082 0.0123 0.0098
LSI 0.0092 0.0138 0.0168 0.0159
CFA 0.0221 0.0246 0.0217 0.0226
CFA+CR 0.0246 0.0258 0.0242 0.0245
HMLCR 0.027 0.0307 0.026 0.026

In this section, we describe the retrieval performance of
the proposed model and baselines. Table II illustrates the
precision at top 1, 2, 4 and 5 for Eclipse dataset. The best
result is achieved by the proposed approach and the precision
at the first and the second position is obviously improved.

An interesting observation is that the CFA+CR method, which
incorporates Content-based Regularization (CR) into Cross-
modal Factor Analysis model, achieves the second best result.
The observation, on the one hand, proves the usefulness of
regarding code as multimedia and adopting heterogeneous
metric learning to model it; On the other hand, it demonstrates
the effectiveness of content-based regularization, as the method
significantly outperforms the original CFA method.

TABLE III. THE PRECISION @ TOP N RESULTS OF FILEZILLA

P@1 P@2 P@4 P@5
COS 0.0188 0.0154 0.0191 0.0192
LM 0.0094 0.0094 0.0113 0.0126
LSI 0.0153 0.0092 0.0105 0.0109
CFA 0.0751 0.0639 0.0436 0.044
CFA+CR 0.1116 0.1146 0.0809 0.0722
HMLCR 0.1491 0.1156 0.0794 0.0748

Similar findings are observed in Filezilla’s P@n results, as
depicted in Table III. A difference is that the result of CFA+CR
baseline draws nearer to that of HMLCR. In the setting of
P@4, it even outperforms the proposed approach. The result
reveals that the content based regularization has a larger impact
on the Filezilla dataset. The phenomena can be explained by
the difference of ways of obtaining queries. The queries of
Eclipse are extracted from bug reports, which may be filed by
ordinary users; while the queries of Filezilla are taken from
the change logs, which are issued officially. Thus, the words
used in change logs are more refined and accurate, and more
closely tending to overlap with the vocabulary of source code.

TABLE IV. THE RECALL @ TOP N RESULTS OF ECLIPSE

R@1 R@3 R@5 R@20
COS 0.0128 0.0348 0.0665 0.0851
LM 0.0164 0.0328 0.0383 0.1052
LSI 0.0092 0.0275 0.0367 0.0505
CFA 0.0168 0.0479 0.0719 0.1754
CFA+CR 0.0176 0.0487 0.0788 0.1778
HMLCR 0.0217 0.0594 0.085 0.1803

TABLE V. THE RECALL @ TOP N RESULTS OF FILEZILLA

R@1 R@3 R@5 R@20
COS 0.0069 0.0146 0.0184 0.0259
LM 0.0108 0.0139 0.0457 0.2015
LSI 0.0113 0.0175 0.0321 0.0796
CFA 0.0375 0.0776 0.1158 0.3017
CFA+CR 0.0526 0.1435 0.19 0.3926
HMLCR 0.0752 0.1369 0.1883 0.3935

The experimental results in terms of recall at top 1, 3,
5 and 20 of Eclipse and Filezilla datasets are displayed in
Table IV and V respectively. Similar findings can be observed
by checking the results. The recall of Filezilla experiment
is higher than that of Eclipse on average, since the Filezilla
project has much fewer code files and thus the search space is
far smaller.

The nDCG results of Eclipse and Filezilla project are
shown in Table VI and VII. As presented in the result-
s, the multimedia methods outperform the baselines from
software engineering domain on average, which shows that
the functional information of code is more descriptive than
the code content. The best result is achieved by considering

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.071

0.072

0.073

0.074

0.075

0.076

0.077

0.078

0.079

0.08

0.081

N
D

C
G

@
5

HMLCR
CFA+CR

(a) The experimental results based on Eclipse Dataset.

5 10 15 20 25 30 35 40 45
0.167

0.168

0.169

0.17

0.171

0.172

0.173

0.174

0.175

N
D

C
G

@
5

HMLCR
CFA+CR

(b) The experimental results based on Filezilla Dataset.

Fig. 3. The impact of content-based regularization on different methods.

both the functional and content information: by incorporating
the content-based regularization, considerable improvement is
encountered on our method and the CFA+CR.

TABLE VI. THE NDCG @ TOP N RESULTS OF ECLIPSE

nDCG@n n=2 n=4 n=10 n=20
COS 0.0256 0.0388 0.0506 0.0526
LM 0.0164 0.0299 0.0415 0.0515
LSI 0.0183 0.0287 0.0339 0.0339
CFA 0.0344 0.048 0.0734 0.0865
CFA+CR 0.0356 0.052 0.0751 0.0887
HMLCR 0.0442 0.0589 0.0804 0.0947

TABLE VII. THE NDCG @ TOP N RESULTS OF FILEZILLA

nDCG@n n=2 n=4 n=10 n=20
COS 0.0171 0.022 0.0242 0.0252
LM 0.0153 0.0207 0.0586 0.0765
LSI 0.0153 0.0226 0.0333 0.0403
CFA 0.0887 0.0935 0.1482 0.1665
CFA+CR 0.1491 0.1644 0.203 0.2347
HMLCR 0.1506 0.1598 0.2035 0.2351

In order to investigate the impact of the content-based reg-
ularization in detail, we present the performance of HMLCR
and the CFA+CR baseline with a varying λ3 in Figure 3. In
this experiment, Eclipse and Filezilla datasets are used and
nDCG is adopted as the evaluation metric, since it can better
reveal the quality of the ranking results.

Figure 3 presents the results of Eclipse and Filezilla dataset
respectively. For Eclipse dataset, as denoted in Figure 3(a) the
best performance is achieved when λ3 is around 0.15 to 0.30.
When the value of λ3 draws near to 0.0, the performance
decreases rapidly to that of the baselines without content-
based regularization. When the parameter becomes too large,
a reduction is found of the nDCG@5, as it may overwhelm
other useful information like the links between text and code
files.

Similar observations can be found in the experimental
results of Filezilla dataset, as illustrated in Figure 3(b). It
should be noted that the scale of λ3 of Filezilla is larger

than that of Eclipse. The source of queries of the Filezilla
experiment seems to be the causes. As mentioned earlier,
the code content regularization is more effective for Filezilla
dataset.

E. Case Study

To further explain the changes brought by the proposed
method, HMLCR, several automatically generated cases are
displayed in Table VIII. There lies a manually selected case
in each row of the table. In each case, a code feature, and the
corresponding textual features are given for comparison. The
textual features are the top scored words generated by CFA
and HMLCR.

There mainly exist two kinds of features, code relationship
features and code snippet features in this work. As frequent
code patterns are more difficult to understand, we select some
class name features from code relationships for simplicity.

The score of each word is computed based on the transfor-
mation matrices U and V . Since U describes the similarity
between words and topics, and V describes the similarity
between code features and topics, UV T can be viewed as the
similarity between textual and code features in the semantic
space.

R = UV T = {r1 · · · rdy} (12)

As denoted in Equation 12, the relatedness matrix Rdx×dy

consists of dy column vector. Each of the vector represents the
relatedness between the code feature and every word feature.
The relatedness is adopted as the score in our case study. The
top scored words extracted by transformation matrices of CFA
are also displayed here for comparison.

Though some bad cases are still existing in the results of
HMLCR, our results look better than the results of CFA obvi-
ously. For example, in the first case, “format” is more related to
the class “org.eclipse.swt.swt” than the word “abstract”, since
the class is a user interface component and SWT is short for
Standard Widget Toolkit. As shown in the table, our model
ranks it higher in the list than the baseline.

TABLE VIII. SOME SELECTED CASES OF CODE FEATURES AND THEIR CORRESPONDING TOP WORDS SCORED BY HMLCR AND CFA

Feature Method Top scored words

org.eclipse.swt.swt CFA abstract file parent exception representation
HMLCR parent exception format representation abstract

java.io.inputstream CFA cleanup file immediate class overwrite
HMLCR cleanup max class file firing

org.w3c.dom.css.cssvalue CFA problems abstract property handler sort
HMLCR problems handler property describe refresh

java.io.ioexception CFA file impact abstract describe warning
HMLCR exception impact reconcile acyclic abstract

In the second case, the proposed algorithm assigns the
word “max” a higher score than the baseline. The class
“java.io.inputstream” is the superclass of all classes in Java
representing an input stream of bytes, and the word “max” is
used to describe the limitation of data being transferred.

Also in the third case, “handler” is more related to the Cas-
cading Style Sheet class (“org.w3c.dom.css.cssvalue”). While
in this case and the first case, CFA both ranks the textual
feature “abstract” higher, it is not reasonable. Though the
word may frequently appear in codes, but it is obviously not
informative in our application,

Another interesting case is the last one. HMLCR puts a
word “exception” on the top of our word list. As the word is
very descriptive to the code feature “java.io.ioexception” and
they both share the textual content “exception”, the content
based regularization clearly contributes to the performance.

IV. RELATED WORK

To the best of our knowledge, there is no prior work that
leverages codes themselves to enhance the software artifact
retrieval task in the area of software engineering. The most
similar work may be the task of automatic software traceability.
Their methods focus on calculating the similarity between
textual queries and the text contents of code. Another source
of related work may come from cross-modal information
retrieval, i.e., using queries in one media format (e.g., images)
to retrieve objects in heterogeneous formats (e.g., video). In
this section, we introduce some of the representative work in
each domain.

Retrieving the code files by a query written in natural
languages is first introduced in the area of software engineering
and has been applied in a variety of tasks, such as development
[6] and maintenance [24] of software, localization of concepts
[12] and features [16], tracing requirements back to source
code [10] and identify the corresponding code of a bug[17],
[20]. Antoniol et al. [1] first proposed to adopt Information
Retrieval (IR) techniques to solve the problem. Naive Bayes
and TF-IDF [2] are used in their systems. More advanced
approaches like Latent Semantic Indexing [8] are incorporated
to increase the accuracy [19], [4]. The researchers focus more
on exploiting the domain specific rules to further improve
their systems [11], [14] and better visualize the results [4].
Some successful applications are summarized in [5]. These
methods are effective at solving the problem of source code
understanding, retracing of requirements and maintaining IT
systems. But besides the rule-based systems, of which the
methods can hardly be generalized to similar problems, most
existing work regards the code as general text. The functional

information of code structures are ignored. In this work, the
functional information is encoded in the code features.

Cross Modal information retrieval aims to build up a bridge
between heterogeneous media by linking their features, which
is very similar to the task of the proposed HMLCR model in
this work, linking the code features and text features in a shared
new space. In [22], they predefined a concept dictionary and
proposed a model to map the visual features to the concepts.
A similar work is proposed in [21], while in this work the
concepts are replaced with the automatically produced word
clusters. In [32], [13], they seek to find the relatedness between
the images and keywords. The aforementioned methods are
designed for linking text and images, and the clustering of
text and the clustering of image features are often separated:
the clusters (latent topics) are first discovered and then the
image features are mapped to the latent topics. Distance metric
learning has also been used to transfer object recognition mod-
els to new domains, linking between visual features [30]. A
more general research topic is to find a heterogeneous distance
metric between objects in different spaces [25]. In [26], the
joint graph regularization is incorporated. The heterogenous
features are completely different in their task, while in our task,
the code features and text features share useful information.
The existing work on multimedia retrieval is not proper to be
directly applied to the application, as the content information
may be ignored.

V. CONCLUSION AND FUTURE WORK

In this paper, based on the requirements of retrieval of
software artifacts, we put forward a novel approach to calculate
the similarity between code and text. We first formulated the
problem and then proposed a novel feature extraction method
for code programs. Two kinds of code features were proposed
to exploit the functional and operational information of source
codes, which are different from the textual features adopted by
traditional methods. To calculate the similarity between codes
and words, we introduced a novel heterogeneous distance
metric learning approach to map the heterogeneous media
into a unified space. Since the code features contain useful
textual content, content-based regularization was further pro-
posed to capture the content of source code. Content-based
regularization distinguishes our work from the existing cross
modal multimedia retrieval techniques. Data sets obtained from
two open source projects were used in our experiments. Based
on the real world data, such as bug reports, change logs
and corresponding programs, experimental results validate the
effectiveness of our proposed approach: the proposed code
features and heterogeneous distance metric learning algorithms
are helpful to improve the retrieval results, because both the

proposed model and multimedia information retrieval methods
outperform the traditional methods from the area of software
engineering, which focuses on the textual part of programs;
Content-based regularization proves to be useful, because it
makes the cross modal information retrieval method compat-
ible with our problem. A case study was also presented to
further explain how the proposed framework worked.

In this work, HMLCR is used to bridge between code and
text in the same project. But in real applications, identical
code features, such as frequently occurred code patterns and
class references, may exist in more than one projects. Thus,
we also explore the relationship between different projects
written in same language, and even projects written in different
programming languages by leveraging the same code features
and the co-occurrence of code and textual features. As a
fundamental part of software development life cycle, software
artifact retrieval is especially vital to large scale software
project. So we will extend our algorithm to larger and more
complex data sets in the future.

ACKNOWLEDGEMENT

We thank the support of the National Natural Science
Foundation of China 91224006, the Strategic Priority Research
Program of Chinese Academy of Sciences XDA06010202
and XDA05050601), “12th Five Year” Plan for Science &
Technology Support 2012BAK17B01 and 2013BAD15B02,
the joint project by the Foshan and the Chinese Academy
of Science under Grant No. 2012YS23, China National 973
program 2014CB340301. Yuanchun Zhou and Hui Xiong are
corresponding authors.

REFERENCES

[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Re-
covering traceability links between code and documentation. Software
Engineering, IEEE Transactions on, 28(10):970–983, 2002.

[2] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information retrieval,
volume 463. ACM press New York, 1999.

[3] K. Barnard, P. Duygulu, D. Forsyth, N. De Freitas, D. M. Blei, and
M. I. Jordan. Matching words and pictures. The Journal of Machine
Learning Research, 3:1107–1135, 2003.

[4] X. Chen. Extraction and visualization of traceability relationships
between documents and source code. In Proceedings of the IEEE/ACM
international conference on Automated software engineering, pages
505–510. ACM, 2010.

[5] J. Cleland-Huang, R. Settimi, E. Romanova, B. Berenbach, and S. Clark.
Best practices for automated traceability. Computer, 40(6):27–35, 2007.

[6] D. Cubranic and G. C. Murphy. Hipikat: Recommending pertinent
software development artifacts. In Proceedings. 25th International
Conference on Software Engineering, pages 408–418. IEEE, 2003.

[7] A. De Lucia, R. Oliveto, and G. Tortora. Adams re-trace: traceability
link recovery via latent semantic indexing. In Proceedings of Interna-
tional Conference on Software Engineering, pages 839–842, 2008.

[8] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and
R. A. Harshman. Indexing by latent semantic analysis. Journal of The
American Society for Information Science and Technology, 41(6):391–
407, 1990.

[9] J. Deng, L. Du, and Y.-D. Shen. Heterogeneous metric learning
for cross-modal multimedia retrieval. In Web Information Systems
Engineering–WISE 2013, pages 43–56. Springer Berlin Heidelberg.

[10] M. Eaddy, A. V. Aho, G. Antoniol, and Y.-G. Guéhéneuc. Cerberus:
Tracing requirements to source code using information retrieval, dynam-
ic analysis, and program analysis. In Program Comprehension, 2008.
ICPC 2008. The 16th IEEE International Conference on, pages 53–62.
IEEE, 2008.

[11] A. Egyed. A scenario-driven approach to trace dependency analysis.
Software Engineering, IEEE Transactions on, 29(2):116–132, 2003.

[12] G. Gay, S. Haiduc, A. Marcus, and T. Menzies. On the use of relevance
feedback in ir-based concept location. In IEEE International Conference
on Software Maintenance, pages 351–360. 2009.

[13] J. Jeon, V. Lavrenko, and R. Manmatha. Automatic image annotation
and retrieval using cross-media relevance models. In Proceedings of
the 26th annual international ACM SIGIR conference on Research and
development in informaion retrieval, pages 119–126. ACM, 2003.

[14] W. Jirapanthong and A. Zisman. Xtraque: traceability for product line
systems. Software & Systems Modeling, 8(1):117–144, 2009.

[15] D. Li, N. Dimitrova, M. Li, and I. K. Sethi. Multimedia content
processing through cross-modal association. In Proceedings of the ACM
international conference on Multimedia, pages 604–611, 2003.

[16] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich. Feature location
via information retrieval based filtering of a single scenario execution
trace. In Proceedings of the 22nd IEEE/ACM international conference
on Automated software engineering, pages 234–243. ACM, 2007.

[17] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn. Bug localization
using latent dirichlet allocation. Information and Software Technology,
52(9):972–990, 2010.

[18] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to infor-
mation retrieval, volume 1. Cambridge University Press, Cambridge,
2008.

[19] A. Marcus and J. I. Maletic. Recovering documentation-to-source-
code traceability links using latent semantic indexing. In Software
Engineering, 2003. Proceedings. 25th International Conference on,
pages 125–135. IEEE, 2003.

[20] B. D. Nichols. Augmented bug localization using past bug information.
In Proceedings of the 48th Annual Southeast Regional Conference,
page 61. ACM, 2010.

[21] N. Rasiwasia, J. Costa Pereira, E. Coviello, G. Doyle, G. R. Lanck-
riet, R. Levy, and N. Vasconcelos. A new approach to cross-modal
multimedia retrieval. In Proceedings of the international conference on
Multimedia, pages 251–260. ACM, 2010.

[22] N. Rasiwasia, P. J. Moreno, and N. Vasconcelos. Bridging the gap:
Query by semantic example. Multimedia, IEEE Transactions on,
9(5):923–938, 2007.

[23] A. J. Smola and R. Kondor. Kernels and regularization on graphs. In
Learning theory and kernel machines, pages 144–158. Springer Berlin
Heidelberg, 2003.

[24] N. Wilde, J. A. Gomez, T. Gust, and D. Strasburg. Locating user func-
tionality in old code. In Software Maintenance, 1992. Proceerdings.,
Conference on, pages 200–205. IEEE, 1992.

[25] W. Wu, J. Xu, and H. Li. Learning similarity function between objects
in heterogeneous spaces. Microsoft Research Technique Report, 2010.

[26] X. Zhai, Y. Peng, and J. Xiao. Heterogeneous metric learning with joint
graph regularization for cross-media retrieval. In Twenty-Seventh AAAI
Conference on Artificial Intelligence, 2013.

[27] E. P. Xing, M. I. Jordan, S. Russell, and A. Ng. Distance metric learning
with application to clustering with side-information. In Advances in
neural information processing systems, pages 505–512, 2002.

[28] Kilian Weinberger, John Blitzer and Lawrence Saul Distance Metric
Learning for Large Margin Nearest Neighbor Classification. In Ad-
vances in neural information processing systems, 2006.

[29] Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra and Inderjit
S. Dhillon. Information-theoretic metric learning. In International
Conference on Machine Learning, pages 209–216, 2007.

[30] Kate Saenko, Brian Kulis, Mario Fritz and Trevor Darrell. Adapting
Visual Category Models to New Domains. In European Conference on
Computer Vision, pages 213–226, 2010.

[31] J. D. Palmer. Traceability. In Software Requirements Engineering,
Second Edition, IEEE Computer Society Press, pages 412–422, 2000.

[32] C. Jensen and W. Scacchi. Experiences in discovering, modeling, and
reenacting open source software development processes. In Unifying
the Software Process Spectrum, pages 449–462, 2006.

[33] M. Weiser. Program slicing. In Proceedings of the 5th international
conference on Software engineering, pages 439–449. IEEE Press, 1981.

