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Abstract—The explosion in the availability of GPS-enabled
devices has resulted in an abundance of trajectory data. In
reality, however, majority of these trajectories are collected at
a low sampling rate and only provide partial observations on
their actually traversed routes. Consequently, they are mired with
uncertainty. In this paper, we develop a technique called InferTra
to infer uncertain trajectories from network-constrained partial
observations. Rather than predicting the most likely route, the
inferred uncertain trajectory takes the form of an edge-weighted
graph and summarizes all probable routes in a holistic manner.
For trajectory inference, InferTra employs Gibbs sampling by
learning a Network Mobility Model (NMM) from a database of
historical trajectories. Extensive experiments on real trajectory
databases show that the graph-based approach of InferTra is
up to 50% more accurate, 20 times faster, and immensely more
versatile than state-of-the-art techniques.

I. INTRODUCTION

The last decade has witnessed an unprecedented growth in
the availability of location-tracking technologies, which can be
deployed at large scales to collect trajectory data. However,
these trajectories are often recorded at a low sampling rate
wherein the time interval between two consecutive recorded
locations is large. As a result, these trajectories only provide
partial observations of the actual traversed route and the
intermediate portions remain hidden.

Trajectories can be tracked most accurately through gps-
enabled devices such as cell-phones or in-car navigations
systems. However, a recent work has shown that to reduce
power consumption, majority of the taxis in big cities have a
sampling interval exceeding two minutes [1]. The high power
consumption of GPS also limits its usage on cell phones over
large continuous durations. In the absence of GPS, location
of a cell-phone can also be tracked through call detail records
(CDR) [2], which stores the sequence of base-stations through
which a call or data-usage session is routed. However, the
problem of low sampling remains since CDRs are generated
only when either a call or a data session is in progress.

High power consumption of GPS is not the sole reason
behind low sampling rates. Most social networks today provide
“check-in” services to announce and share location of a user
(e.g., Facebook). Trajectories can be generated from these
check-ins by ordering them temporally [3]. Similar trajectories
also arise from geo-tagged photos in photo-sharing sites (e.g.,

Fig. 1. Demonstrates the possible acyclic trajectories arising out of the partial
observation a→ g.

Flickr), credit card transactions and snapshots of vehicles
captured through surveillance cameras. Due to the inherent
properties of the underlying applications, all of these trajecto-
ries are generated at low sampling frequencies.

To understand the uncertainty surrounding low sampling
rates, consider the example shown in Fig. 1. Hereon, we use
the term observations to indicate a low sampled trajectory, and
the term trajectory is used to denote the complete sequence
of nodes that is actually traversed. The first directed graph
shown in Fig. 1 depicts a road network where each node
represents a region and an edge corresponds to the road
segment connecting two regions. Now, consider the partial
observation a→ g. As it can be seen, there is no direct edge
from a to g. Assuming that trajectories are acyclic, the relevant
subgraph in Fig. 1 shows the region within which the mobility
is constrained and any of the three paths connecting a and g
is a possible trajectory that was actually traversed.

Managing the uncertainty highlighted in Fig. 1 is criti-
cal towards designing accurate higher-order systems that are
driven by trajectory data. For example, trajectories from geo-
tagged photos can be inferred for trip-mining [4] and used for
recommending tourist itineraries. Beyond inferring the most
likely trajectory, it is also essential to infer regions which have
a high likelihood of being traversed. For example, investigative
agencies are often interested in retrospective analysis of move-
ments of suspected criminals based on their spatio-temporal
footprints generated from CDR data, credit card transactions,
surveillance camera snapshots, etc. [5]. Consider a bomb blast
that occurred at 9 PM. Investigative agencies are interested in
identifying suspected terrorists that were present in the vicinity
of the blast site around 9 PM with a high likelihood. For
suspects who are mobile, this query cannot be answered using
existing mechanisms. Note that the most likely region may not
necessarily be part of the most likely trajectory. In essence,
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Fig. 2. Pipeline of the InferTra algorithm.

we want to capture the entire uncertainty surrounding partial
observations, which would allow us to answer the following
interesting questions.
• Which is the most likely trajectory?
• What are the top-k most likely road segments?
• What are the top-k most likely locations at time t?

In this paper, we design a technique called InferTra (IN-
FERring TRAjectories) to answer all of the above ques-
tions in a principled manner. Fig. 2 outlines the pipeline
of InferTra. Against the backdrop of a road network and a
database of historical trajectories, InferTra learns a Network
Mobility Model (NMM), which is then used to predict an
“uncertain” trajectory. In contrast to existing techniques [6],
an uncertain trajectory is an edge-weighted graph. An edge
weight denotes the probability of the corresponding road
segment being traversed. Overall, the graph summarizes the
uncertainty around each possible trajectory arising from the
partial observations. Using a graph to model the uncertainties
is a significant deviation from the current state of the art [6].
While one could operate in the world of maximum likelihoods
and predict the most likely trajectory, as the uncertainty grows,
the information content in maximum likelihood estimations
deteriorates. InferTra recognizes this issue and focuses on a
more holistic analysis of the uncertainty that imparts both
higher accuracy in predictions and the ability to answer a
wider range of queries. To summarize, the paper makes the
following contributions:
• We develop an algorithm called InferTra that infers an
“uncertain” trajectory from a set of partial observations. Our
graph-based approach provides a more holistic representation
of uncertainty and thus enabling us to answer deeper questions
than state-of-the-art techniques.
• To accomplish inference, we compute a generative model,
called Network Mobility Model (NMM), by learning the mo-
bility patterns in a road network from a database of historical
trajectories. NMM not only captures the spatial patterns, but
it is also the first technique to leverage the temporal signals.
• Empirical evaluations establish the graph-based approach in
InferTra as immensely more versatile in answering a wider
range of queries. In addition, InferTra is up to 50% more
accurate and 20 times faster than HRIS [6].

II. RELATED WORK

HRIS [6] is the first and the only work to infer network-
constrained trajectories from partial observations. In this sec-
tion, we outline how InferTra is different.
• 1. Inference Goals: Given a set of input observations,

HRIS predicts the most likely trajectory. Thus, it operates
in the maximum likelihood world, where the likelihood of
a trajectory is modeled using a “popularity” score. While
the most likely trajectory is a good predictor under low
uncertainties, as the uncertainty grows, the information content
in the prediction deteriorates. For example, in the uncertain
trajectory in Fig. 2, none of the possible trajectories have a
high likelihood; rather, they are distributed across the entire
relevant subgraph. It is therefore critical to understand how the
possibilities that are not captured in the most likely trajectory
are spread across the road network. InferTra recognizes this
issue. Accordingly, the goal is to infer a single uncertain
trajectory that summarizes all of the possibilities in a coherent
manner. The uncertain trajectory not only allows us to identify
the most likely trajectory, but also facilitates answering deeper
questions such as the most likely location at time t, which
may not necessarily be part of the most likely trajectory,
and identification of all regions with a likelihood above a
user-provided threshold. Due to this versatility of uncertain
trajectories, a decent body of work already exists on querying
uncertain trajectories [7], [8], which is complementary to our
problem. Instead of inferring the uncertain trajectory, they
assume a database of uncertain trajectories on which further
processing is performed.
• 2. Capturing Historical Patterns: HRIS proposes two

techniques to connect a pair of consecutive observations. In
the first technique, historical trajectories are used to extract a
sub-network of the road network within which the mobility
is assumed to be bounded. Next, to connect the partial obser-
vations, the shortest paths in the sub-network are computed.
In the second technique, starting from the first observation,
greedy choices are made to iteratively hop to a neighboring
node and reach the destination observation. In InferTra, no
assumptions, such as preference toward shortest paths, are
made based on the network properties. Rather, spatio-temporal
patterns displayed by the historical trajectories are learned
and utilized in prediction. If indeed shortest paths are favored
in certain regions, then this property is automatically learned
from the historical trajectories itself.
• 3. Temporal Signals: InferTra not only learns the spa-

tial signals embedded in the historical trajectories, but also
unearths the temporal signals, which are not utilized in HRIS.

More recently, a technique [1] was designed to study the
trajectory inference problem in a setting where trajectories are
not constrained by a network. Due to the focus on network-
free trajectories, [1] is not applicable to our problem.

III. PROBLEM FORMULATION

First, we define the concepts central to our paper.
Definition 1: ROAD NETWORK. A road network is a di-

rected graph G(V,E). V is the set of nodes representing



Fig. 3. A hypothetical inference scenario.

intersections and terminal points, and E is the set of edges
e = (vi, vj), connecting vi, vj ∈ V , depicting road segments.
The position of a node is characterized by its latitude and
longitude.

We use the notation e.p1 and e.p2 to denote edge e’s two
endpoints, where e is directed from p1 to p2 where p1, p2 ∈
V . Generally, a trajectory T = {s1, · · · , sn} is a temporally
ordered sequence of spatio-temporal points. A spatio-temporal
point s = (v, t) is a tuple containing a spatial location v and
a timestamp t encoding the time of the day at which v is
traversed. We use the notation T.si to denote the ith spatio-
temporal point in T , and s.v and s.t to denote the location
and timestamp in s respectively. Indeed, T.si.t < T.si+1.t. In
this work, we only consider network-constrained trajectories.

Definition 2: NETWORK-CONSTRAINED TRAJECTORY. T
is constrained in a road network G(V,E), if ∀T.si, T.si.v ∈
V , and ∀T.si, T.si+1, (T.si.v, T.si+1.v) ∈ E.

In simple words, a network-constrained trajectory is a
connected path in the road network. We assume that each edge
(or road segment) in a trajectory takes it progressively closer to
its destination, and thus a trajectory is acyclic. As illustrated in
Fig. 1, a set of partial observations, is a sequence of network
regions where a trajectory T , which is unknown, has been
spotted.

Definition 3: PARTIAL OBSERVATIONS. A partial observa-
tion O = {s1, · · · , sn}, is a temporally ordered sequence of
spatio-temporal points where ∀O.si, O.si.v ∈ V .

Given a set of partial observations O, our goal is to infer
an uncertain trajectory that captures all possible trajectories
arising from O, quantify the uncertainty associated with each
possible trajectory, and capture how this uncertainty is dis-
tributed across the road network.

Definition 4: UNCERTAIN TRAJECTORY INFERENCE.
Given a road network G(V,E), a database of historical
trajectories H, and a set of partial observations O, construct
an edge-weighted graph U(V ′, E′) ⊆ G(V,E), such that
E′ = {p(e|O) > 0 | e ∈ E}, where p(e|O) denotes the
probability of e being traversed given O. V ′ is defined
analogously from the endpoints of edges in E′.

We assume that the historical trajectories are clean and
entirely observed.

To summarize our formulation, U contains all edges that
have a non-zero traversal likelihood, and consequently, en-
capsulates all possible trajectories. The edge weights capture
how the uncertainty is distributed across the road network.
Mathematically, U is modeled as a multivariate distribution
of its constituent edges, i.e., p(U |O) = p(e1, · · · , em|O),
where {e1, · · · , em} ∈ U . The edge weights are therefore

the marginal distributions, which we need to learn from the
observations in conjunction with the evidence provided by the
historical data. More precisely, for any given edge e ∈ U ,

P (e|O) =
∑
∀T∈T

P (T |O) (1)

where T is set of all trajectories (or paths) connecting the
sequence of observed nodes in O and also containing, edge e.
So, if we can compute p(T |O) for all trajectories in U , then
we can identify all edges e with p(e|O) > 0, and therefore,
compute the uncertain trajectory corresponding to O.

IV. CHALLENGES

Let O = {s1, s2, s3} be the observation set and T =
{e1, · · · , en} be one path connecting all nodes in O. In its
simplest form, p(T |O) can be estimated directly from the
historical trajectories. More specifically,

p(T |O) =

∥∥∥{T ⊆ T ′|T ′ ∈ H}
∥∥∥∥∥∥{O ⊆ T ′|T ′ ∈ H}
∥∥∥ (2)

The formulation in Eq. 2 works perfectly when the historical
database is infinitely large, which, however, is not a realistic
assumption. Consider the scenario in Fig. 3 to understand the
limitations of Eq. 2 better. For O = {s1, s2, s3}, no trajectory
exists that covers all three regions, and thus, Eq. 2 cannot be
employed for inference. However, it is easy to see that there are
local signals embedded in the historical trajectories that can
be consolidated to infer a possible route. More specifically,
by stitching together overlapping sub-trajectories from T1, T2,
and T3 the likelihood of a path connecting s1, s2 and s3 can be
computed. Constructing such arbitrary trajectories from known
ones is in fact how a human would draw inference when asked
to connect a set of observations that have not been traveled
in a single journey. Consider a car that has just crossed s2 in
Fig. 3 and still needs to find its way to s3. To select the next
edge, the driver of the car would ask the following question:
Given my recent past, and based on historical evidence, which
road should I take next to maximize my chances of reaching
s3? Thus, the fact that the car started from s1 and there is no
path in H connecting s1 to s3 has no impact on the decision
choice between s2 and s3. What matters are the recent past
and the current target node to reach, which is s3.

This natural human tendency of taking locally optimal
decisions to construct the globally optimal route can be
mathematically expressed as the following. Let trajectory T
be the sequence of edges {e1, · · · , en} traveled till now. Then,

p(en|e1, · · · , en−1, O) =

p(en|en−m, · · · , en−1, si)

≈

∥∥∥{(en−m, · · · , en) ⊆ T |T ∈ H, si ∈ T}
∥∥∥∥∥∥{(en−m, · · · , en−1) ⊆ T |T ∈ H, si ∈ T}
∥∥∥ (3)

where m quantifies “recency” and si ∈ O is an observed
node, such that it is not present in T , but all its preced-
ing observed nodes, have already been traversed by T , i.e.,



∀j, sj ∈ O, 1 ≤ j < i; sj ∈ T . Thus, Eq. 3 is simply the
proportion of historical trajectories that share the same recent
history as of en and have traveled through si. Now, notice that
Eq. 3 allows us to compute the conditional distribution in an n-
dimensional space if the m-dimensional joint distributions of
the numerator and the denominator in Eq. 3 are known. Since
m � n, estimating these m-dimensional joint distributions
directly from a finite H is likely to be more accurate.

To formalize this intuition, let us define the notion of a
density ∆, which is the ratio of representative samples to
the volume of the space. If the density is above a certain
threshold θ, then we can assume that the joint distribution
sampled directly from the representative samples is accurate.
Thus, the density for an n-dimensional joint distribution of
a trajectory T computed directly from H is ∆n = ‖H‖

2n . The
volume is 2n since there are n random variables and each
variable can take two values: traversed or not traversed. So,
to satisfy a given threshold θ, the number of representative
samples needs to grow exponentially with the dimension of
the space. Since m � n, satisfying this accuracy criteria is
significantly easier in an m-dimensional space.

The above analysis suggests that, while we may not have the
information to compute joint distribution p(T |O) directly, the
historical database may be enough to compute conditionals
p(e|T,O). Thus, well defined statistical techniques, such as
Gibbs Sampling [9], can be used to approximate the joint
distribution by sampling from the conditionals.

V. GIBBS SAMPLING FOR TRAJECTORY INFERENCE

Gibbs sampling (GS) is a generalized probabilistic inference
algorithm that is used to generate a sequence of samples from
a joint distribution of two or more random variables. The first
requirement for GS is some observable data. Let us denote
this observed data as Y . Next, GS requires a vector of random
variables that are unknown to start with. Let us denote this n-
dimensional vector as φ = (φ1, · · · , φn). The goal of GS is
to learn φ to model the observable data. Towards that goal,
GS follows the following iterative procedure.

1) Initialize each φi ∈ φ to some arbitrary value.
2) for τ = 1, · · · , T
3) for i = 1, · · · , n
4) Sample φτ+1

i ≈ p(φi|φτ+1
1 , · · · , φτ+1

i−1 , φ
τ
i+1, · · · , φτn, Y )

5) Iterate over i and τ

In this process, the nested iteration assigns a value to each
random variable by conditioning it on the current values
of the remaining random variables and the observation set.
The full execution of this inner loop computes a point in
the n-dimensional space of the joint distribution p(φ). The
outer loop repeats this same process T times to sample from
the n-dimensional space repeatedly till the joint distribution
converges. It has been shown [9] that the joint distribution
(φτ1 , · · · , φτn) converges geometrically to p(φ1, · · · , φn|Y ) as
T →∞, and therein lies the power of GS.

A. Trajectory inference through Gibbs sampling

In our problem, Y corresponds to the observations O, and,
φ corresponds to the uncertain trajectory U . The edges in U
correspond to the random variables. For a given O, the random
variables can be identified by taking the union of edges in all
paths that connect the nodes in O. Now, to employ GS in our
problem, we first need to initialize the random variables. This
can be achieved by setting each edge in U as either traversed or
non-traversed. The conditionals can be computed as outlined
in Eq. 3. However, one key difference from normal GS is that
a trajectory is an ordered sequence of random variables. More
precisely, the ordering at which each edge is set to be traversed
is important and this ordering is used by the recency factor
in Eq. 3. Thus, we need to maintain an additional variable
to track the timestamp. Timestamp is set to 0 at the start of
each iteration of the outer loop over τ . For each edge set as
traversed in the inner loop, timestamp is incremented by 1.

The above steps complete the adaptation of GS for the
trajectory inference problem. However, the following two
aspects of the algorithm affect its scalability.
• Identifying random variables: The process to identify

the random variables (or edges) by computing all paths con-
necting the observations is expensive.
• Computing conditionals: Computing the conditionals is

expensive since we need to scan the entire historical database
each time Eq. 3 is computed. Furthermore, this operation
happens repeatedly till convergence of the GS.

The proposed algorithm, InferTra, removes the scalability
bottlenecks while maintaining high accuracy.

VI. INFERTRA

InferTra operates in two phases: an offline learning phase
to build a Network Mobility Model (NMM), and an online
inferencing algorithm using the NMM.

A. Learning a Network Mobility Model

NMM is a generative model for trajectories and its task is to
connect a set of observations (or nodes) without compromising
on the mobility patterns of the historical trajectories. The set of
all possible paths between a source node and a destination in a
road network can be huge. In reality, however, vehicles show
affinity towards a limited set of roads that form majority of
the trajectories. These spatial and temporal patterns provide a
rich characterization of trajectory movements, which InferTra
learns through the NMM using a higher-order Markov Model.

The NMM is learned from two sources of input data: a road
network G(V,E), and a database of historical trajectories H.
In a Markov process, elements of the system make transitions
from one state to another based on the preceding history. The
length of the history, which dictates the state transitions, is
known as the “order” of the model. For example, in the most
commonly used 1st-order Markov process, the state transition
of an element is influenced only by its current state. In the
NMM, the state space is defined by nodes V of G, and
transitions take place only through edges. The transition prob-
abilities are learned from the database of historical trajectories.



The NMM’s goal is to better understand the likelihood of a
road segment being traversed based on the recent history of
a vehicle and the time of the day. These segment traversal
likelihoods are modeled as state transitions. Towards that end,
we define the concept of an m-history sequence of a node
v ∈ V , where m is the order of the Markovian process in the
NMM and corresponds to the “recency” factor in Eq. 3.

Definition 5: The m-history sequence of a node v is a path
H = {v1, · · · , vp} through p connected nodes of G such that
p ≤ m and vp = v.

Example 1: For the road network in Fig. 1, node ‘c’ has
three 2-history sequences: b→ c, d→ c, and c.

Definition 6: SPATIO-TEMPORAL CONTAINMENT. H is
said to be contained in trajectory T at time t, if ∀i, 1 ≤
i ≤ |H|, H.vi = T.si+a.v, where ∃a, 0 ≤ a ≤ (|T | − |H|).
Additionally, |t − T.s(|H|+a).t| ≤ δ. This relationship is
denoted using H ∈t T .

More simply, H ∈t T if H is a sub-sequence of T and the
final destination in H is reached within δ time units from t.
Incorporating the time of the day in the model allows us to
capture the inherent periodicities in mobility patterns. δ is a
user provided parameter. We discuss the semantics of δ and
how to select it below. Prior to that, we introduce the concept
of affinity toward an edge e based on an m-history sequence
H of e.p1 .

Definition 7: EDGE AFFINITY. The affinity α(e,H, t) of an
edge e at time t with respect to an m-history H of e.p1 is the
probability of e being traversed by a trajectory T , given that
H ∈t T . Formally,

α(e,H, t) = max{P (H ∪ {e.p2} ∈t T |H ∈t T ), ε}

= max

{
|{H ∪ {e.p2} ∈t T | T ∈ H}|

|{∀e′ ∈ E, e′.p1 = e.p1, H ∪ {e′} ∈ T | T ∈ H}|
, ε

}
where ε ≈ 0.

In essence, α(e,H, t) quantifies the transition probability
from e.p1 to e.p2 based on the m-history H and timestamp t.
The NMM is constructed by following this procedure. More
specifically, a time window of δ is slid across all edges, and
the corresponding affinities are computed. The distribution
of affinities across timestamps is then stored at each edge.
Generally, a window size in the range of δ = [30, 45] minutes
produces consistent results.

Example 2: Fig. 4 demonstrates the NMM for the shown
historical trajectories constrained within the network in Fig. 1.
We assume m = 1 and all segments are traversed at the same
timestamp for simplicity, . We thus ignore the temporal aspect.

While the time of the day certainly influences the mobility
pattern, storing the entire affinity distribution for each edge and
m-history pair incurs a large storage cost. For instance, sliding
a time window of 30 minutes would produce 24 ∗ 60− 30 =
1410 affinity values for each pair. For a vast majority of the
segments, the affinities remain constant with time, and storing
the entire distribution promotes redundancy. To remove this
redundancy, we partition these distributions into the optimum
number of bins using the Freedman-Diaconis rule [10]. The

Fig. 4. The NMM for the shown trajectories constrained within the road
network in Fig. 1.

Freedman-Diaconis rule states that the width w of each bin in
the distribution α(e, t) should be:

w = 2
IQR(α(e,H, t))

n
1
3

(4)

where n is the number of time windows, and IQR(α(e,H, t))
denotes the interquartile range of the affinity distribution at
e for m-history H . The interquartile range is a measure of
the statistical dispersion of a distribution and is equal to
the difference between the third and the first quartile, i.e.,
the 75th and 25th percentile of α(e,H, t). Generally, the
Freedman-Diaconis rule is based on minimizing the sum of
the squared errors between the bin height and the underlying
actual distribution. Based on this rule, the number of bins at
each edge is automatically learned and set to n

w .
Selecting m: While a longer history takes a global view,

it creates an explosion in storage cost. We optimize m by
analyzing the storage vs. accuracy trade off in training data.

B. Inferencing from the NMM

The NMM models the likelihood of a segment being tra-
versed based on its m-history and the current time of a day. By
performing semi-supervised random walks with restarts on the
NMM, we compute the conditional of an edge being traversed
without performing any trajectory scans. Using the principle
of GS, by repeatedly sampling from these conditionals, we
compute the conditional joint distribution p(U |O).

1) Semi-supervised Random Walk with Restarts: Random
walk with Restarts (RWR) simulate the trajectory of a random
walker who starts from a source node and iteratively jumps
from one node to a neighbor. The probability of jumping to
a neighbor is proportional to the weight of the corresponding
edge. At the same time, with a restart probability r, the walker
jumps back to the source node. Upon returning to the source
node, a new walk is initiated.

Trajectory Generation: We generate trajectories from the
NMM through semi-supervised RWR. Each generated trajec-
tory represents a sample from the joint distribution space
of p(U |O). By repeatedly generating these trajectories, the
uncertain trajectory U is inferred.

Given a set of observations, each pair of consecutive ob-
servations, si and si+1, is picked and a RWR is initiated
from si.v (Alg. 1). As in a normal RWR, for each jump,
the new destination is selected based on the affinities of all
outgoing edges from si.v. However, to model the mobility
pattern in a trajectory, we only consider edges that do not



Algorithm 1 SampleTrajectory(s1, s2)
1: curr ← s1.v
2: t← s1.t
3: r ← restart probability selected based on Eq. 6
4: S ← ∅
5: while curr 6= s2.v do
6: p← sample uniformly from [0, 1]
7: if p ≤ r then
8: curr ← s1.v
9: S ← ∅

10: else
11: Ē ← {e.p1 = curr, e ∈ E does not create a cycle in current walk}
12: H ← extract m-history of curr from S
13: e← select edge from Ē proportional to α(e,H,t)∑

∀e′∈Ē α(e′,H,t)
14: t← t+ speed(e, t) ∗ length(e)
15: curr ← e.p2

16: if curr = s2.v and p ≤ τ then
17: curr ← s1.v
18: S ← ∅
19: else
20: S ← S ∪ {e}
21: return S

create a cycle (line 11 in Alg. 1). This follows from the
underlying assumption that each transition in a trajectory takes
us closer to the destination. To avoid cycles, we maintain a
set S that stores each visited edge while performing the walk.
Now, given a current node v and its m-history at time t, the
chances of selecting an outgoing edge e is proportional to
its affinity (line 13 in Alg. 1). Mathematically, the transition
probability through an edge e is expressed as:

p(e) =

{
(1− r) α(e,H,t)∑

∀e′∈Ē α(e′,H,t) if e ∈ Ē
0 otherwise

(5)

Ē = {e.p1 = v, e.p2 6∈ {e′.p1 ∪ e′.p2|∀e′ ∈ S} | e ∈ E} is
the set of outgoing edges that do not induce a cycle. v is the
current node, and t is the current time (line 14 in Alg. 1).

Capturing destination bias: An edge transition to e in the
random walk does not compute e’s conditional probability. As
formulated in Eq. 3, the conditional probability is equivalent to
computing the transition probability on the subset of historical
trajectories that pass through the destination s2. Computing
Eq. 3 from H requires us to perform trajectory scans, which,
as we have shown in Sec. V-A is extremely expensive. Thus,
to approximate Eq. 3 in a scalable manner, we enforce the
destination bias on RWR itself using the restart probability r.
In Eq. 5, only (1 − r) of the probability mass is distributed
among edge transitions. Like in a normal RWR, there is a
chance of jumping back to the source node with probability
r. If a restart occurs, semantically, the walk is considered to
have ventured towards a wrong direction and thus discarded by
reinitializing S to an empty set (line 9 in Alg. 1). A new walk
is then initiated with the goal of reaching destination si+1.v,
and finally, only those walks that successfully reach si+1.v
are recorded. Consequently, the destinations bias is strictly
enforced on all edge transitions.

In a traditional RWR, the restart probability is static since
the goal is to compute network proximity to the source node.
In our problem, the goal is to reach the destination node
si+1.v within the expected duration Xt = si+1.t − si.t.
Otherwise, it is likely that the walker is in the wrong path.

Therefore, sufficient time must be allowed to the walker
to successfully reach the target. However, if the walker is
unsuccessful in reaching the destination within Xt, then the
chances of restarting the walk should be explored. To model
these requirements, we define the restart probability r as the
following.

r = 1− 1

e
max{0,t−Xt}

Xt

(6)

where t is the time spent on the “current” walk (line 14 of
Alg. 1). Thus, till the time spent on a walk is less than the
expected time Xt, the restart probability is 0. As t exceeds
Xt, the restart probability begins to increase exponentially.

To summarize, we generate trajectories by repeatedly sam-
pling from the conditionals expressed through edge transition
probabilities and the destination bias. Each generated trajec-
tory is a point in the joint distribution space of p(U |O). Thus,
U is defined over all edges that are sampled at least once. As
outlined in Eq. 1,

edgeWeight(e) =
‖{T ∈ T|e ∈ T‖

‖T‖
(7)

where T is the trajectories generated through RWR. RWR
terminates once the joint distribution of U converges

Example 3: Fig. 5 shows a probable result with respect
to the road network in Fig. 1 and its corresponding NMM in
Fig. 4, under observations {a → g}. From 8 different walks,
4 are successful in reaching destination g. For simplicity we
ignore the temporal aspect and assume that the estimated time
of all successful paths match the observed time. In other words,
τ ≈ 0. From these successful walks, the uncertain trajectory
is constructed. Note that although 80% of the vehicles go to e
from c in the NMM, due to the destination bias enforced by g,
the c→ g edge has a probability of 50% of being traversed.

C. Properties of Uncertain Trajectories

We next highlight the properties of an uncertain trajectory
U(V ′, E′).

Node Visit Likelihood: The probability of visiting a node
v ∈ V ′ is the sum of the incoming edge-weights Ein =
{e.p2 = v|e ∈ E′}.

nodeWeight(v) =
∑
∀e∈Ein

edgeWeight(e) (8)

The sum of incoming edge weights in a node v is equal to
the sum of its outgoing edge weights.

Trajectory Likelihood: Let P be the set of paths from the
source to the destination of U . The probability of a trajectory
T ∈ P is expressed as the following.

p(T ) =

|T |∏
i=2

p(vi ∈ T |vi−1 ∈ T ) (9)

where,

p(vi ∈ T |vi−1 ∈ T ) =
edgeWeight((vi−1, vi))∑

∀e∈E′,e.p1=vi−1
edgeWeight(e)



Fig. 5. The uncertain trajectory constructed from the NMM in Fig. 4 on the
observations {a→ g}.

Taking products of the individual node likelihoods that
constitute a trajectory T ∈ P is not enough since they are
not independent. Rather, it is the probability of reaching node
vi given that vi−1 has already been reached. The maximum
likelihood trajectory is, T ∗ = arg max∀T∈P p(T ).

D. Discussion

This section answers two important questions. Why RWR on
the NMM is equivalent to Gibbs sampling? And Why InferTra
is more efficient than the straight-forward implementation of
Gibbs sampling outlined in Sec. V?

The first step in GS is to identify the vector of random
variables and initialize them. The random variables can be
initialized to arbitrary values since it is independent from the
final convergence to the joint distribution. In InferTra, the first
edge transition is conditioned only on the observed data, which
translates to initializing all edges as “not-traversed”.

After initialization, GS moves into the iterative phase.
When compared to the outline in Sec. V, in RWR, each
new walk corresponds to the outer loop over τ , and the edge
transitions correspond to the inner loop. Let us first focus on
the inner loop, which samples each edge conditioned on the
observations and the current values of remaining edges. In GS
the inner loop is iterated over all edges. In RWR, the sampling
stops as soon as the walk reaches the destination. This early
termination, however, does not cause any loss of information,
as stated in Theorem 1.

Theorem 1: Let i = m, when the random walker reaches
the destination. For all subsequent iterations of i

p(ei|eτ+1
1 , · · · , eτ+1

i−1 , e
τ
i+1, · · · , eτn, O) = 0 (10)

PROOF: Recall, that all trajectories are cycle-free. Thus, for
all subsequent iterations or i, the probability of transitioning
to any other edge and returning to the destination is 0. �

The second key difference from GS is that each new
iteration over τ does not forget the values of the random
variables assigned in the previous iteration. More specifically,
the conditional at i = 1 at any iteration of τ is expressed as
following:

eτ+1
1 ≈ p(e1|eτ2 , · · · , eτn, O) (11)

In a new RWR walk, the previous walk is completely forgotten
and the first transition to edge e1 is conditioned only on
the observations. This deviation, however, does not cause any
information loss as stated in the following theorem.

Theorem 2:

p(ei|eτ+1
1 , · · · , eτ+1

i−1 , e
τ
i+1, · · · , eτn, O) =

p(ei|eτ+1
1 , · · · , eτ+1

i−1 , O) (12)

PROOF: From Eq. 3, we know that the conditional depends
only on the past m traversed edges and the observation set.
Now, as discussed in Sec. V-A, since trajectory is a sequence of
random variables, for each edge that is marked as traversed, a
current timestamp value is also assigned to it. Furthermore, the
timestamp is reset to 0 at the start of each iteration of the outer
loop. Let us denote the set of traversed edges at the current
iteration of τ as E. It is easy to see that E ⊆ {e1, · · · , ei−1},
where i is the latest edge being sampled in the inner loop.
Thus, edges sampled in previous iterations of τ have no impact
in the current iteration, which is how the RWR operates. �

Above analysis establishes how RWR on NMM conforms to
GS framework. Now, we focus on the efficiency of InferTra.
The naive pipeline of Sec. V-A suffers from two scalability
issues. First issue is of identifying the random variables,
which finds all paths connecting each pair of consecutive
observed nodes. RWR completely skips this step. Since in
the initialization step, we initialize all edges as not traversed,
we do not need to identify these edges explicitly. We identify
these edges on-the-fly during the random walk.

The second aspect affecting scalability of GS is computing
the conditionals. This step is expensive since computing the
conditionals requires scanning the entire trajectory database.
InferTra tackles this problem by completely negating the need
to perform database scans in the online phase. The NMM
pre-computes the m-history for each transition in its offline
learning. To condition the transition probabilities with the
destination bias as required by Eq. 3, RWR only records those
walks that successfully reach the destination. Furthermore,
using Theorem 1, the number of conditionals computed is
restricted to only those that have non-zero likelihoods.

VII. EXPERIMENTS

In this section, we show that:
• Inference: InferTra is more accurate and scalable than

the state-of-the-art trajectory inferencing technique.
• Versatility: InferTra supports a wider range of queries.

A. Datasets

GPS traces: We use gps-traces of cabs in the city of
Beijing [11], [12]. Each cab is tracked for a week-long
duration. Prediction on this dataset is particularly difficult,
since cabs do not have any common or frequent routes that are
typically observed in trajectories of buses or personal vehicles.

Road network: The road network of Beijing is extracted
from OpenStreetMap [13]. The Beijing road network contains
623,975 nodes and 672,284 edges.

Network-constrained trajectories: The trajectories are
map-matched [14], [15], [16] to the Beijing network gener-
ating 136, 759 network-constrained trajectories.



Fig. 6. Precision, Recall and F-score values for HRIS/SP and InferTra against
the two shown ground truth trajectories.

B. Experimental Setup

Our algorithms are implemented in Java JDK 1.6.0 and
evaluated on a PC with 12GB memory and Intel i5 2.60GHz
quad core processor running Ubuntu 13.04. We benchmark
InferTra against HRIS [6], the shortest path (SP), and the
shortest time path (STP) in the road network. To compute
STP, we use average traversal times in the historical data as
edge weights.

Parameters: HRIS contains 8 different parameters, which
are set as suggested by the authors in [6]. InferTra has only
two parameters: the sliding time window size δ, and the model
order. δ is set to 30. The order of the Markov model for NMM
is learned from the training dataset and is set to 3. The learning
procedure is discussed in Sec. VII-D. The default sampling
interval (SI) is assumed to be 15 minutes per sampled point.

Benchmarking Setup To evaluate prediction accuracies,
we perform 10-fold cross validation. The training dataset
is used to learn the NMM and inference is performed on
the test set. To model a desired sampling rate, nodes from
trajectories in the test set are deleted accordingly. Next, a
prediction Up = (Vp, Ep) is generated on the under-sampled
trajectory and compared with the original ground truth tra-
jectory T = (V,E). For InferTra, Up is an edge-weighted
graph, whereas for HRIS/SP/STP, Up is a path in the road
network. The accuracy of the prediction is quantified using F-
score. F-score can be visualized as a weighted average of the
precision and recall, where the best performance corresponds
to a value of 1, and the worst corresponds to 0. For HRIS (or
SP/STP), computing precision and recall is straightforward. In
an uncertain trajectory however, a constituent edge exists with
a probability. Thus, the formulations of precision and recall
are modified to handle both certain and uncertain trajectories.
Let Ec = E ∩ Ep be the set of common edges in T and Up.
Now,

recall =

∑
∀e∈Ec edgeWeight(e)

|E|
(13)

precision =

∑
∀e∈Ec edgeWeight(e)∑
∀e∈Ep edgeWeight(e)

(14)

Eqs. 13 and 14 degenerate to their standard formulations
for certain trajectories. For uncertain trajectories, rather than
operating in a binary world, their likelihoods are considered.

Example 4: Fig. 6 demonstrates the F-score computations.
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(b) Computing Conditionals

Fig. 7. Growth rate of running time with sampling interval (SI) while (a)
Identifying random variables, (b) Computing conditionals.

C. Performance of naive Gibbs sampling

Before benchmarking the performance of InferTra, we re-
visit the performance issues of GS highlighted in Sec. V-A.
• Identifying random variables: Fig. 7(a) shows the

growth rate of time taken to identify the random variables
with SI. To keep the path identification practical, we restrict
ourselves to only those paths that are at most 2.5 times the
length of the shortest path. Even then, at SI = 15, it takes
8183 seconds to identify all paths.
• Computing conditionals: Computing the conditionals

presents an even larger scalability challenge. At m = 3,
computing Eq. 3 takes 1.2 seconds on average. Consequently,
even at an SI of 5, it is practically infeasible to achieve
convergence. Assuming it takes at least 10000 iterations of
τ given the high dimension of the space, we compute the
average number of random variables, d, at SI= 5, 10, 15, and
compute the projected convergence time using the formula
1.2 ∗ 10000 ∗ d. Figure 7(b) demonstrates this projected time.
Clearly, 1000 hours even at SI= 5 is prohibitively large.

D. Performance of InferTra

Among the various queries outlined in Sec. I, we first
benchmark the performance on trajectory inference.

1) What is the actual trajectory?: First, we study the impact
of sampling interval (SI) on trajectory inference. The first
plot in Fig. 8(a) demonstrates the results as the SI is varied
from 5 minutes per point to 25 minutes. As expected, the
F-score decreases with increase in the SI. Across all SIs,
InferTra outperforms HRIS. STP does not display a good
performance since drivers do not have a global knowledge of
the shortest routes. Furthermore, a separate work has shown
that people prefer more pleasant routes than the quickest [17].
In addition to the uncertain trajectory predicted by InferTra,
we also evaluate its maximum likelihood trajectory (MLT)
computed as outlined in Sec. VI-C. The accuracy of the MLT is
comparable to the uncertain trajectory till an SI of 10. Beyond
10, there is a sharp deterioration and it resembles the accuracy
of HRIS. This result highlights why it is important to go
beyond maximum likelihood estimations and capture the entire
uncertainty surrounding partial observations. Our more holistic
approach to inference not only ensures a higher accuracy, but
also enables slower deterioration rate with SI. Consequently,
even at an SI of 25 minutes, InferTra achieves an F-score of
0.51, which is 50% higher than the F-score of 0.32 by HRIS.

Next, we benchmark the inferencing time of InferTra. Plot
two in Fig. 8(a) demonstrates the results. At a higher SI,
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Fig. 8. Growth rate of accuracy and inferencing time with (a) sampling interval (SI) and (b-c) training dataset size. (d) Growth rate of accuracy with number
of bins in the affinity vector, and order of the Markov model. Growth rate of (e) inferencing time, and (f) storage with the order of the Markov model. (g)
Spatial and (h) temporal distances between actual times and actual locations, respectively, against sampling interval. Node probability against distance in (i)
space and (j) time from the nearest observation.

there is more uncertainty between two intermediate points, and
consequently, a higher inference time is required. While SP
is marginally faster than InferTra, InferTra is up to 20 times
faster than HRIS. This amazing speed-up is achieved since
InferTra is only reliant on local state transitions. In contrast,
HRIS performs a search across the entire dataset to identify
trajectories that overlap with the given observations. Based
on the results, a relevant subgraph is extracted on which the
inference is made. Due to the online searching of the trajectory
database, a high inferencing time is incurred in HRIS.

Continuing on the topic of inference time, we next study
how it varies with the training dataset size. As shown in
Fig. 8(b), InferTra has the attractive property of a decreas-
ing inference time with increase in training data. As more
training data is available, the conditional probabilities get
more accurate and consequently, converges quicker to the joint
distribution. On the other hand, the inferencing time of HRIS
grows with the training data size since the online search on
the trajectory database imparts a larger cost. In addition to
the inferencing time, we also study the impact of training
data on the accuracy. As expected, the performances of both
techniques improve with additional training data.

InferTra not only learns spatial signals, but is also sensitive
to any temporal periodicity in the mobility patterns. We thus
analyze if identifying such temporal periodicities improves the
inference performance. Towards that goal, instead of automati-
cally learning the optimal number of bins in the affinity vector
at each edge, we manually set the number of bins across all
edges. Lower the number of bins, the more is the reliance
on using only the spatial signals. In the extreme case where
only 1 bin is used, no temporal information is incorporated in
the NMM. Fig. 8(d) demonstrates the results. With increase
in the number of bins, there is up to 10% increase in the F-

score. Across all SIs, the improvement saturates at 8 bins. This
result clearly highlights the importance of capturing temporal
patterns in addition to the spatial signals. Prior to InferTra, this
dimension of the inference problem has not been explored.

Do vehicles take locally optimal decisions in route selec-
tions? The order of the Markov model in the NMM controls
how well this preference is learned. We next study this issue.
First, we evaluate the inference accuracy as a longer history is
retained to determine the transition probabilities in the NMM.
As it can be seen in Fig. 8(d), the F-Score saturates at an
order of 3 across all SIs. This result, combined with the weak
performance of STP, show that vehicles typically make locally
optimum decisions and thus, looking too far back in the history
is not useful. A trend similar to the accuracy is also visible
in the inferencing time analysis in Fig. 8(e). At an order of
1, where only the current state is examined probabilities, the
mobility patterns are not captured as accurately. Due to the
resultant ambiguity, the convergence to the joint distribution is
slower. Although, a higher Markov order incurs more storage
cost, as shown in Fig. 8(f), the growth rate is linear. This result
is expected given the fact that the average outgoing degree in
the Beijing road network is close to 1. Overall, to summarize
the attractive features of InferTra:

• By not relying on shortest paths, which is at the core of
HRIS, InferTra is up to 50% more accurate and 20 times
faster.

• Both the efficiency and the accuracy of InferTra improve
with increase in the size of training data.

• InferTra is the first technique to capture the temporal
signals embedded in historical trajectories.

• InferTra has only 2 parameters, of which only 1 has any
noticeable impact on the performance.



2) Where should I search at time t?: Given a set of
observations, what was the most likely location of a vehicle at
time t? Or, if a vehicle was at node n, when did the vehicle
reach n? Such queries routinely find applications in retrospec-
tive analysis of crime investigations, and existing techniques
cannot answer them adequately. We analyze performance of
InferTra in these scenarios. Recall, Alg. 1 also estimates the
time at any node n in the uncertain trajectory (line 14).

First, we study the accuracy of the predicted location at an
input time t. To setup the experiment, the input time t is set
to the timestamp of a randomly picked node that is part of the
ground truth trajectory, but not included in the observation set.
We quantify the prediction accuracy, by computing the spatial
distance between the actual and the predicted locations at time
t. In InferTra, there can be multiple routes to the destination
and therefore, a distribution of nodes is produced as possible
locations at time t. We compute the overall spatial distance
sd, by taking their weighted sum. More formally,

sd =
∑
∀dn∈SD

p(dn)× dn (15)

where SD is the set of distances from the actual location
corresponding to each predicted node n at time t, and p(dn)
is the associated probability.

In its original form, HRIS cannot answer this query. First,
HRIS cannot predict time. In addition, to predict location at an
input time, one needs to analyze node-level likelihoods instead
of whole trajectory likelihoods. Nonetheless, for benchmarking
purposes, we extract an answer from HRIS based on the
assumption that the most likely node at time t is part of
the most likely trajectory. We estimate the time at each node
based on the average speeds in its constituent edges. Fig. 8(g)
shows the results as the SI is varied. While InferTra estimates
the location within a radius of 1 KM even at an SI of 25
minutes, the error range in HRIS is as high as 3.5 KM. This
result stems from the fact that the most likely node may not
necessarily be part of the most likely trajectory. While an
uncertain trajectory captures both node and trajectory level
likelihoods, HRIS relies on a close correspondence between
the most likely trajectory and most likely node. Consequently,
the error range is higher.

Fig. 8(h) performs the dual of the previous study. Instead
of predicting the location at a given time, we predict the time
at a given node n from the ground truth. If the input node n
is not part of the uncertain trajectory or the HRIS-inferred
trajectory, we output the time at the node that is spatially
closest to n. Similar to the previous query, HRIS is not built
for answering this query. This inability to make node-level
predictions coupled with the tight integration of both spatial
and temporal patterns in the inference procedure of InferTra,
result in a significant performance disparity. As visible in
Fig. 8(h), InferTra is 2 times more accurate than HRIS.

Finally, we look at InferTra’s performance in predicting
node likelihoods based on its distance from the closest obser-
vation. To assess the performance, we randomly pick nodes
from ground truth trajectories and compute its visit likelihood

in the InferTra prediction. Generally, closer a node is to an
observation, higher is its probability; as the distance from
the observation grows, the more difficult the prediction task
becomes. Figs. 8(i) and 8(j) demonstrate the results against
spatial and temporal distances respectively. The trends are
similar and in line with the general intuition. It is interesting
to note that the SI is an important factor. To give an example,
when the destination is 10 minutes away, the number of
possible routes between the source and the destination is
much larger. Consequently a higher number of candidate nodes
are present that are 1 KM away. On the other hand, if the
destination is only 2 minutes away, only a few routes exist
that can connect the source to destination within the observed
time. As a result, the candidate space is smaller, and hence,
less is the uncertainty.

VIII. CONCLUSION

In this paper, we studied the problem of trajectory infer-
ence from partial observations. We developed a technique
called InferTra that summarizes all of the possibilities through
an “uncertain” trajectory. By taking the shape of an edge-
weighted graph, an uncertain trajectory captures a richer rep-
resentation of the uncertainty surrounding partial observations
than maximum likelihood estimations. InferTra is built on the
foundation of Gibbs sampling and is powered by a Network
Mobility Model (NMM), which not only utilizes the spatial
patterns embedded in historical data, but also unearths how
these patterns vary with time. Extensive experiments on real
network-constrained trajectories showed InferTra to be up to
50% more accurate and 20 times faster than the state-of-the-
art inferencing technique. In addition, an uncertain trajectory
can handle a wider range of important queries.
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