
RS-Forest: A Rapid Density Estimator for Streaming Anomaly
Detection

Ke Wu*, Kun Zhang*, Wei Fan†, Andrea Edwards*, and Philip S. Yu‡

Ke Wu: kwu@xula.edu; Kun Zhang: kzhang@xula.edu; Wei Fan: david.fanwei@huawei.com; Andrea Edwards:
aedwards@xula.edu; Philip S. Yu: psyu@cs.uic.edu
*Department of Computer Science, Xavier University of Louisiana

†Huawei Noah Ark’s Lab

‡Department of Computer Science, University of Illinois at Chicago

Abstract

Anomaly detection in streaming data is of high interest in numerous application domains. In this

paper, we propose a novel one-class semi-supervised algorithm to detect anomalies in streaming

data. Underlying the algorithm is a fast and accurate density estimator implemented by multiple

fully randomized space trees (RS-Trees), named RS-Forest. The piecewise constant density

estimate of each RS-tree is defined on the tree node into which an instance falls. Each incoming

instance in a data stream is scored by the density estimates averaged over all trees in the forest.

Two strategies, statistical attribute range estimation of high probability guarantee and dual node

profiles for rapid model update, are seamlessly integrated into RS-Forest to systematically address

the ever-evolving nature of data streams. We derive the theoretical upper bound for the proposed

algorithm and analyze its asymptotic properties via bias-variance decomposition. Empirical

comparisons to the state-of-the-art methods on multiple benchmark datasets demonstrate that the

proposed method features high detection rate, fast response, and insensitivity to most of the

parameter settings. Algorithm implementations and datasets are available upon request.

I. Introduction

Anomalies or outliers are rare events or items that are inconsistent with or deviate from

those that are normal or expected. These abnormal items, if not identified promptly, could

lead to devastating consequences in many practical applications including military

surveillance, network security management, industrial system monitoring and control, etc.

With the advances in hardware technologies, recent years have seen a dramatic increase in

our ability to collect data continuously in those application domains. Most of the gathered

data are no longer finite and stationary. Instead, they are unbounded sequences of large-

volume, high-speed real-time data, referred to as data streams.

To date, anomaly detection has been the subject of numerous researches in the data mining

community [1]. However, the inherent characteristics of data streams pose unparalleled

challenges to a majority of the existing anomaly detectors. First, data are streaming in at

© 2014 IEEE

NIH Public Access
Author Manuscript
Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

Published in final edited form as:
Proc IEEE Int Conf Data Min. 2014 ; 2014: 600–609. doi:10.1109/ICDM.2014.45.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

unprecedented speed and hence must be processed in a timely manner. This requires that the

rate of updating a detection model should be higher than the data rate, and the obtained

detector must be able to adapt to the high speed nature of streaming information. Second,

conventional anomaly detection algorithms need data to be resident in memory for model

construction. This array of methods will be nullified by the voluminous unbounded data due

to memory exhaustion. Third, in streaming data, normal and abnormal events keep evolving

with the drifting concepts. Such incessant changes often outdate the detection models

learned from old data. Therefore, the detector needs to quickly adjust to the evolution of

normal behavior over time. Lastly, in practice, anomaly instances are rare or even not

available in streaming data. Anomaly detection systems should be able to detect suspicious

behaviors even if they were trained only on the normal events.

In response to these challenges, we propose a novel one-class semi-supervised algorithm for

detecting anomalies in streaming data. Underlying this method is a fast and accurate density

estimator driven by multiple RS-Trees, named RS-Forest. In RS-Forest, each tree can be

randomly built in advance without data. Specifically, before the tree construction, a

statistical mechanism is first employed to estimate the potential evolution of feature ranges

throughout the to-be-mined data stream. Any value in the estimated range of a randomly

picked attribute can be used to split the tree. The trees constructed in this way can not only

accommodate the ever-evolving nature of streaming data, but also maximize the diversity of

the resulting ensemble, leading to more accurate density estimation.

When applied to data streams, RS-forest operates in a fashion of single window. This

window keeps the newly arrived instances waiting for detection. There are two major

processes in streaming RS-forest. One is prediction or scoring, and the other is model

update. Streaming RS-Forest deems that anomalies occur in sparse or low density regions,

and anomalous instances are indicated by low density values. The anomaly score in

streaming RS-forest is defined through the piecewise local density of the tree node into

which an instance falls. Each incoming instance is then ranked by the average score gathered

over all trees in the forest. Whenever the window is full, a model update will be triggered.

To speed up model updates, RS-forest employs a dual node profile technique. This

technique leverages the fixed tree structure so that capturing the node size profiles from

newly arrived instances and making predictions for the same instances can be synchronized.

The captured node size profiles are then used to score the next round of data arriving in the

window. These two processes continue as long as data is streaming in. Compared to existing

benchmark methods, streaming RS-forest features high anomaly detection rate, less runtime

and rigorous theoretical foundation, as demonstrated in the rest of the paper.

The main contributions of this work are summarized as follows:

• We define and introduce a fast and accurate density estimation algorithm, RS-

Forest;

• We extend the proposed algorithm to tackle the anomaly detection problem in the

scenario of streaming data;

Wu et al. Page 2

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

• Theoretical analysis provides the performance upper bound of the proposed

algorithm and establishes its asymptotic properties via Bias-Variance

decomposition;

• Empirical studies on multiple benchmark datasets demonstrate that the proposed

technique outperforms the competing methods on most of the datasets in terms of

AUC score and runtime.

II. Method

This section provides the road map of the proposed algorithm. We first define a density

estimator using multiple random space trees. Then we present the implementation details

and algorithmic flow to extend it for anomaly detection in streaming data. Table I

summarizes the major notations used in the paper.

A. Basic definitions

Definition 2.1—A Random-Space Tree (RS-Tree) is a full binary tree, which is

constructed by randomly selecting an attribute and a cut point on the chosen attribute.

An RS-Tree of depth H(H ≥ 0) has a total of 2H+1 − 1 nodes, where leaf nodes are at the

same depth H. The RS-tree stems from random decision trees [2] and the tree structure can

be built without data. When constructing an RS-Tree, the algorithm recursively selects an

attribute from the feature set and then picks a random dividing point of the chosen attribute

to split the tree until the predefined tree depth H is reached. Figure 1b demonstrates an RS-

Tree on a two-dimensional data (Figure 1a). It is worth noting that an RS-Tree considered in

this work operates only in the continuous feature space.

Definition 2.2—A node profile in an RS-Tree is defined as the number of instances falling

into the region that a node represents given a sample of data.

Then, we assume that an RS-Tree can perform density estimation over a sample of N

instances from some unknown distribution. The estimation criterion is defined below.

Definition 2.3—[3] The piecewise constant density estimate based on an RS-Tree T is

defined as

(1)

where ℓ(x, T) is the termination node, | · | is the node size or node profile, and (·) is the

volume of the hyper-rectangle that a node represents. In an RS-tree, a termination node is

the node used for density estimation. It can be a leaf node, or the first node that satisfies (i.e.,

≤) the node size limit.

Furthermore, motivated by the triumph of ensembles on some fundamental tasks such as

classification and regression, we propose to perform more accurate density estimation using

multiple RS-trees, termed RS-Forest.

Wu et al. Page 3

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Definition 2.4—The density estimate based on an RS-Forest F is defined as

(2)

where f̂(x; Tt) denotes the density estimated by the t-th tree and M denotes the number of

trees.

To illustrate the effectiveness of RS-Forest on density estimation, we apply it to a highly

skewed distribution in one dimension. This distribution is defined as

(3)

Figure 2 shows the estimated density functions by an RS-Forest with different number of

trees on a sample of size 100,000. It is evident that, as more RS-Trees are involved, the

densities estimated by RS-Forest more resemble the true density with a smoother fitting.

Moreover, we compare RS-Forest with Kernel Density Estimation (KDE) on estimation

accuracy and training and testing time. As illustrated in Figures 2 and 3, RS-Forest can

perform a faster and more accurate estimation compared to classical KDE 1 implemented by

a tree-based speedup.

B. RS-Trees

Tree node initialization—An RS-Tree with depth H consists of 2H+1 − 1 nodes. In the

implementation, each node contains the following elements: (1) variables ml and mr, which

are used to alternately record the node profile in the prediction model or the node profile

captured from the streaming data in the window; (2) three node pointers, each of which

points to the left child, right child and parent of the current node, respectively; (3) a variable

v that stores the log-scaled ratio of the current-node volume to the volume of the entire

feature space.

Attribute range estimation—Determining the correct range of each attribute is a crucial

step to build the structure of an RS-Tree. A tight range, such as the one directly borrowed

from the sample data, can not cater for the potential changes throughout the streaming data.

A wide range, on the other hand, could bring in undesired noise and futile space partitions.

In this regard, we employ a statistical strategy to estimate a proper range for each attribute.

More specifically, using Chen et al.’s algorithm [4] and a sample data, we first compute the

90% highest posterior density (HPD) confidence interval [LMi, UMi] for the mean of

attribute i. Then we enlarge this confidence interval roughly by the rule of three sigma 2,

that is, we set the lower bound as LBi = LMi − 3σ and the upper bound as UBi = UMi + 3σ,

1KDE was performed using scikit-learn package (Http://scikit-learn.org/stable/). It is a tree-based implementation to speedup runtime.
Training was conducted on the same sample data shown in Figure 2 and testing was done over 500 unseen points. The bandwidth was
set to be 0.06, which was determined by a 20-fold cross validation.
2http://en.wikipedia.org/wiki/68-95-99.7_rule

Wu et al. Page 4

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Http://scikit-learn.org/stable/
http://en.wikipedia.org/wiki/68-95-99.7_rule

where σ is the standard deviation of attribute i. We analyze the reliability of the range

estimation in Section III-A. The lower and upper bound values (i.e., LBs and UBs) generated

in this way are used as inputs of Algorithm 1 to create the structure of a single RS-Tree.

Hereafter, without specification, the range or length of an attribute is referred to the

estimated range or length here.

Node volume calculation—Computing a node volume is essential for density estimation

by an RS-Tree. Once an RS-Tree is built, the volume of each node is fixed. As shown in

Figure 1a, a space Ω can be partitioned by an RS-Tree. Each node represents a hyper-

rectangle formed by 2d inequalities eTx < c, where e is a unit vector with only one element

being 1 and others being 0, x ∈ ℝd and c ∈ ℝ. To compute a node volume, we first

introduce two lemmas.

Algorithm 1

BuildRS-TreeStructure(LBs, UBs, e, H)

Input: LBs (UBs): list of lower (upper) bound values of attributes, e: current tree depth, and H: tree depth limit.

Output: a tree

1: if e ≥ H then

2: return leaf(ml ← 0, mr ← 0) ;

3: else

4: initialize a non-leaf node root;

5: randomly select an attribute q ∈ Q;

6: randomly select a number r between 0 and 1;

7: cut-point p = LBs(q) + r · (UBs(q) − LBs(q));

8: t ← UBs(q); UBs(q) ← p;

9: left ← BuildTreeStructure (LBs, UBs, e + 1, H);

10: left.v ← r; left.parent ← root;

11: UBs(q) ← t ; LBs(q) ← p;

12: right ← BuildTreeStructure(LBs, UBs, e + 1, H);

13: right.v ← 1 − r; right.parent ← root;

14: return root(leftChild ← left, rightChild ← right, splitAtt ← q, cutPoint ← p, ml ← 0, mr ← 0) ;

15: end if

Lemma 2.1: Let be the length of attribute j that forms the hyper-rectangle represented by

node i, then we have , where lj denotes the length of attribute j, is

the selected random number at the k-th split of attribute j along the path from the root to

node i, denotes the total number of splits performed on attribute j along the path from root

to node i, and .

Proof: Given an interval [a, b], a random number c in the interval can be generated by a+s·

(b−a), where s is a random number in [0, 1]. The length of the interval [a, c] is s · l and the

length of the interval [c, b] is s′ · l, where l = b − a and s′ = 1 − s. s′ is also a random number

Wu et al. Page 5

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

in [0, 1]. For convenience sake, we use to denote the length of attribute j after performing

k splits on this attribute. At the first split of attribute j, the length of the interval to partition

is the original one. Thus, we have . Assume that s1 ∈ [0, 1] is the random number

picked at the parent node. When the current node is the left child, ; Otherwise,

. At the second split of the same attribute, the length of the splitting interval is .

Hence we have . Similarly, for the left child, and

for the right child, where s2 ∈ [0, 1] is the randomly selected value at the parent node. Based

on inductive reasoning, we have .

Lemma 2.2—Let Vi be the volume of the hyper-rectangular region represented by node i,

then we have , where is the random number selected at an internal

node along the path from root to node i, and .

The proof is omitted due to page constraints. The above lemma suggests that the volume of

node i can be computed via the randomly selected numbers at the internal nodes along the

path from the root to node i. Therefore, to compute a node volume, we just need to record

those selected random numbers as we build an RS-Tree. See Algorithm 2 for the

implementation details.

Algorithm 2

ComputeNodeVolRatio(T)

1: initialize a queue node_queue;

2: nodeQueue.Enqueue(T);

3: while ! nodeQueue.empty() do

4: curNode ← nodeQueue.Dequeue();

5: parentNode ← curNode.parent;

6: if parentNode is NULL then

7: curNode.v ← 0;

8: else

9: curNode.v ← parentNode.v+ log(curNode.v);

10: end if

11: if curNode is an inner node then

12: nodeQueue.Enqueue(curNode.leftChild);

13: nodeQueue.Enqueue(curNode.rightChild);

14: end if

15: end while

C. Streaming RS-Forest

The proposed method employs the density estimated by an RS-Forest to score an incoming

instance and is coupled with a periodic fast model update for drifting concepts. In the

Wu et al. Page 6

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

implementation, the algorithm segments the streaming data into windows. Each window can

be of equal or varying size depending on application requirements. The algorithm always

operates in one window, called the latest window. At the initial stage of the anomaly

detection process, the system builds tree (model) structures while recording the node profiles

from the sample normal data. Then the system scores the incoming instances in the latest

window as well as synchronously records the node profiles captured from those instances.

As soon as the window is full, a model update is triggered and a fast model update is

achieved by a technique using dual node profiles. Once the model update finishes, the old

node profile is erased and the latest window is emptied for the newly arrived data. This

process continues as long as data are streaming in.

Anomaly score—We score an incoming instance, x, based on the density estimated by

RS-Forest. The lower the density value of an instance, the higher the degree to which that

instance is considered as an anomaly. Combining Definitions 2.3 and 2.4, we define the

anomaly score of x as follows:

(4)

Using Lemma 2.2, we can rewrite Eq. 4 as below:

(5)

where Score(x, Tt) = exp(log(|ℓ(x, Tt)|)−ℓ(x, Tt).v −log N) and . In practice, we

only need to use to rank anomalies as M and V are constants. Values are log-

scaled to avoid underflow in computation.

Model Implementation—Algorithm 3 presents the implementation details of a streaming

RS-Forest. Line 1 initializes an RS-Forest. In the initialization (Algorithm 4),

obtainRange(X) is used to obtain the estimated range for each attribution qi via a sample X.

Refer to section II-B for details. X could be a sample of normal instances or the first ψ

normal instances of the stream. The algorithm initializes the node profiles while building the

structure of each RS-Tree. Line 2 in Algorithm 3 uses X to update the node profile ml of

each tree in the forest. In the streaming RS-Forest model, the procedures of prediction (or

scoring) and model update occur alternately. In the entire execution process, the structure of

each tree remains unchanged and the node profiles obtained from the scored data will be

used for the model update in the next round. Therefore, there are some common operations

shared by these two procedures. In this regard, we employ a dual node profile technique to

save the same operations that have been done in the prediction phrase and will then be

performed in the model update stage. Specifically, two node profiles, i.e., ml and mr, are

alternately used to store the node profile for the current model (to score incoming data) and

the node profile captured from the incoming data in the latest window (to update the model

Wu et al. Page 7

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

in the next round). After ψ data points are processed, the role of ml and mr changes and such

a change is signaled by a variable LR.

As shown above, model update is one of the key procedures in a streaming RS-Forest. Its

implementation is summarized in Algorithm 5. In general, there are two major functional

blocks. One is for the anomalous instances (lines 3–9) and the other is for the normal

instances (lines 10–19). In the former case of a anomalous instance, we update each RS-tree

by reducing all node profiles along the path from the termination node to the root by one. In

the latter case of a normal instance, if the termination node is not a leaf and the node size

limit is not met, we update each RS-tree by increasing all node profiles along the path from

the termination node to a leaf (or the first node satisfying the node size limit) by one. Here

NextChild(child, x) denotes the next child node that x falls into. It is worth noting that, once

each instance is scored, streaming RS-Forest will receive the true label of the instance,

which is the key defining characteristic of online learning 3.

Time and Space Complexities—As shown in algorithm 3, there are three primary

operations in the main loop. They are the prediction or scoring (line 9), model update (line

15) and node profile reset (line 18). In prediction using the current model, each instance

traverses from the root to the termination node in each tree. When updating the model, we

take two different procedures with respect to each anomalous or normal instance. Because

anomalous instances are rare, the time spent on the scoring and model update should be

equal to or less than MH for each instance. Thus, the worse running time is O(nMH) for n

streaming data points. Resetting node profile is performed within at most M · 2(H+1)

whenever the model update is triggered. Its worse running time is .

Considering that M, H and ψ are fixed during the running time, we can regard the worse

time complexity of streaming RS-Forest as O(n).

In terms of space complexity, the forest itself occupies O(M2H). The data buffer B in the

latest window takes at most O(ψM). Since both ψ and M are small constants, the space

occupation can be ignored. Therefore, the space complexity is O(2H). In the execution, H is

fixed, so memory usage of RS-Forest is constant for streaming data.

Algorithm 3

StreamingRS-Forest(X, M, H, ψ, ζ)

Input: M: number of RS-trees, H: tree depth limit, ψ: window size, and ζ: node size limit.

Output: s: anomaly score for each incoming instance x

1: F = BuildForest(X, M, H);

2: update node profile ml of each RS-Tree in F using X ;

3: B ← [];

4: LR ← False;

5: while data stream continues do

3http://en.wikipedia.org/wiki/Online_algorithm

Wu et al. Page 8

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://en.wikipedia.org/wiki/Online_algorithm

6: Receive a new data point x : b.X = x, b.nodeList = [];

7: s ← 0;

8: for each tree T in F do ▷ prediction phrase

9: s ← s + Score(x, T);

10: b.nodeList.Enqueue(ℓ (x, T));

11: end for

12: B.Enqueue(b) ;

13: Report the anomaly score s of data point x;

14: if |B| == ψ then ▷ model update phrase

15: UpdateModel(F, B, LR, ζ);

16: LR ← !LR;

17: B.clear();

18: LR ? node.ml ← 0 : node.mr ← 0 for non-zero nodes of each tree T in F ;

19: end if

20: end while

Algorithm 4

BuildForest(X, M, H)

1: (LBs, UBs)= obtainRange(X);

2: Initialize: F = [];

3: for t = 1 to M do

4: T = BuildTreeStructure(LBs, UBs, 0, H);

5: ComputeNodeVol(T);

6: F = F ∪ T ;

7: end for

8: return F ;

III. Analysis

A. Reliability of Range Estimation

The range of each attribute is one of the key inputs to construct an RS-tree structure. Refer

to II-B for details. An RS-tree, built in the d dimensional space bounded by the attribute

ranges, needs to accommodate the potential feature drifts throughout the to-be-learned data

stream. Therefore, we introduce the following theorem for the reliability analysis of the

employed range estimation strategy.

Theorem 3.1—[5] When the distribution is unknown

(6)

Wu et al. Page 9

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

where Z is a random variable, L and U are constants, L < μ < U, (μ − L)(U − μ) > σ2, μ is

the mean and σ2 is the variance.

Algorithm 5

UpdateModel(F, B, LR, ζ)

Input: F : RS-Forest, B : buffer for each instance, LR: indicator for which profile will be updated, and ζ: node size limit.

Output: None

1: split B into lists N and A based on label info.; ▷ N(A) contains info. of normal (anomalous) instances in the latest
window.

2: for i = 1 to M do

3: for each x, nodeList in A do

4: ancestor = nodeList[i];

5: while (ancestor not exists) do

6: LR ? ancestor.ml - - : ancestor.mr - -;

7: ancestor ← ancestor.parent;

8: end while

9: end for

10: for each x, nodeList in N do

11: LR ? n = nodeList[i].ml : n = nodeList[i].mr;

12: if n > ζ && nodeList[i] not leaf then

13: child = NextChild(child, x);

14: while child not NULL do

15: LR ? child.ml++ : child.mr++;

16: child = NextChild (child, x);

17: end while

18: end if

19: end for

20: end for

The above theorem provides a probability guarantee for the range, which satisfies (μ − L)(U

− μ) > σ2, around the mean of a variable. Here the variable can follow any distribution. In

our algorithm, we define a range of attribute i to be (LMi − 3σ, UMi + 3σ). For a normal

distribution, 90% HPD confidence interval of the mean is approximately (μ − 1.645σ, μ +

1.645σ). In our case, L = μ − 4.645σ and U = μ + 4.645σ. Based on the three-sigma rule, p(μ

−4.645σ < Z < μ + 4.645σ) ≈ 1. According to Equation 6, we have p(μ − 4.645σ < Z < μ +

4.645s) ≥ 0.954. As a result, we can empirically use the introduced method to estimate the

range of an attribute as it offers a high probability guarantee.

B. Upper Bound of Density Estimation

To measure the performance of RS-Forest as a density estimator, we use Mean Squared

Error (MSE) to quantify the deviation between the estimation f̂(x) and the true probability

density f(x).

Wu et al. Page 10

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Theorem 3.2—Let f̂(x; F) = f̂(x; T) be the density estimated by RS-Forest F, then we

have

(7)

Proof

(8)

Using the inequality (W)2 ≥ , we obtain

(9)

Plugging Eq. 9 into Eq. 8 and rearranging the terms in Eq. 8, we can derive Eq. 7.

Theorem 3.2 provides a performance upper bound of using an RS-Forest to estimate the

density. It reveals that the MSE of the density estimated by RS-Forest is not greater than the

average MSEs of density estimated by all member RS-Trees.

C. Asymptotic Analysis of Density Estimation

To get further insights of the density estimated by an RS-Forest, we also conduct the

asymptotic analysis using MSE as defined below:

(10)

This function can be decomposed into two terms, i.e., the squared bias and the variance of

the estimator. Thus, we rewrite Equation 10 as:

(11)

Before formally analyzing these two terms, we first introduce two lemmas. The following

lemma approximates the probability of an instance falling into a node based on the node

volume and the length of each attribute that forms the hyper-rectangle represented by a

node.

Lemma 3.1—

(12)

Wu et al. Page 11

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

where denotes a node itself as well as the region it represents, δj is the length of attribute j

that forms the region represented by node , and a is the midpoint of the region defined by

node .

Proof: After applying the second-order Taylor approximation of f(x) around a for , we

have

(13)

where J(a) is the gradient of f and H(a) is the Hessian matrix, both of which are evaluated at

x = a = (a1, a2, …, ad). Hence,

(14)

By Plugging Eq. 13 into Eq. 14 and then applying U-substitution technique, we can derive

Equation 12 since the integral of an odd function over any symmetric space is zero.

The lemma below relates the expectation of density estimated by RS-Forest, f̂(x; F), to the

true density.

Lemma 3.2

(15)

The proof is omitted due to page constraints. Based on these two lemmas, we can derive the

following theorem regarding the bias of RS-Forest as a density estimator.

Theorem 3.3—

(16)

where ai is the midpoint of the region defined by node ℓ(x, Ti), δij is the length of attribute j

that forms the region represented by node ℓ(x, Ti), and

.

Proof: Applying Lemma 3.2, we have

Wu et al. Page 12

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

(17)

According to Lemma 3.1, the above equation can be rewritten as

(18)

Also, ai is the midpoint of the region defined by node ℓ(x, Ti).

(19)

After some algebra, we can immediately derive Equation 16 from the above inequality.

This theorem indicates that the number of RS-trees and the length of each attribute that

forms the region represented by a termination node ℓ(x, Ti) are key factors in determining

bias.

The bias of an RS-Forest can be reduced by more RS-Trees. To further explore the role of

the attribute length, we introduce the next lemma.

Lemma 3.3—Let be the length of attribute j that forms the region represented by node i

in an RS-Tree, we have , where is a random variable

following a uniform distribution.

The proof will be given in the longer version of the paper. Since the random variable

follows the uniform distribution, we have . For simplicity of derivation, we

conjecture that , for a large according to the law of large numbers. Since the

splitting attribute at a node is randomly chosen, the probability of selecting an attribute is

approximately the same for a large depth limit H. As a result, we have given

a large H.

Next, we use the approximated result to derive an asymptotic property from Theorem 3.3.

Since , we have . Note that lj and

d are constants, and δij is different from which denotes a more general node. Therefore,

for a large H and a constant M, we have Bias2 ≈ O(4−H/d). This shows that when H

increases, the squared bias decreases.

Wu et al. Page 13

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

In the following, we introduce the theorem regarding the variance of RS-Forest as a density

estimator.

Theorem 3.4

(20)

Proof: Using Cauchy’s inequality, we can conclude that

(21)

To simplify the notation, let vi = |ℓ(x, Ti)|. vi follows a Binomial distribution. Hence Var[vi]

= Np(vi)(1 − p(vi)).

According to Definition 2.3, we have

(22)

Plugging Eq. 22 into Eq. 21 we have

This theorem shows that the variance of RS-Forest depends on three factors, i.e., the number

of RS-trees, the data sample size, and the sum of , which is the squared

reciprocal of the termination node’s volume. When the number of RS-trees and / or the size

of data sample increase, the variance decreases. Moreover, intuitively, when H increases, the

value of (ℓ(x, Ti)) becomes small and thus the variance increases.

IV. Experiments

Using standard evaluation metrics, we empirically compare streaming RS-forest with four

baseline methods on thirteen synthetic and real-world benchmark datasets. For simplicity’s

sake, streaming RS-forest is abbreviated as RS-forest in this section.

Wu et al. Page 14

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

A. Datasets

Table II summarizes the characteristics of six synthetic and seven real-world datasets used in

our experiments. The procedures of each dataset preparation are presented below.

Synthetic Data—Mulcross [6] features a multi-variate normal distribution with two dense

anomaly clusters hard to detect. We used the same parameter settings as [7] to generate this

set. Synthetic Stream The concept in this data stream is defined as

, where x = (x1, x2, …, xd) and p(xi) ~ (μi, δi). Similar to

[8], we created three datasets, i.e., Syn feature, Syn cond and Syn dual. Each of them

respectively simulates a different type of concept drift, that is, feature change p(x),

conditional change p(y|x) and dual change p(x, y). HyperP1 and HyperP2 were generated

from a multi-class synthetic data stream4, which contains gradually drifting concepts. In

HyperP1, class 3 is treated as the anomalous class. While for HyperP2, instances from class

4 are considered as anomalies.

Real-world Data—We adopted Smtp, Http and Smtp http from KDDCUP 99 [9]. We

created Smtp http by combining Smtp with Http so that there would be a sudden concept

drift when the communication protocol changes from Smtp to Http. We obtained

Covertype, Shuttle and Adult from UCI [10]. All three sets are commonly employed to

evaluate data stream algorithms. In particular, to produce a data stream with sufficient

concept drifts, we created 14 data chunks from Adult according to the unique values of the

occupation attribute before merging them into a single data stream. By doing so, the created

stream can represent multiple distinct concepts. The NOAA Weather dataset spans 51 years

[11]. To denote scarce anomalies, we under-sampled the instances in no rain class from 31%

to 4.83%.

B. Experimental Setup

We compared the performance of RS-Forest with several baseline methods, namely HSTa

[9], LOADED [12], Hoeffding Trees (HT) [13], and online coordinate boosting with HT

(BoostHT) [14]. HSTa5 is a recently proposed one-class anomaly detector for evolving data

streams. For HSTa, we tried different model parameters(i.e., window size =[64, 128, 250,

512], ensemble size = [25, 30], and tree depth = 15) and reported its best result for each

dataset. LOADED [12] is a link-based unsupervised anomaly detector aiming to handle

mixed attributes. The original anomaly score of LOADED is defined for handling both

categorical and continuous attributes. For fair comparison purposes, we dropped their score

mechanism for categorical attributes (i.e., condition check C1) and updated the correlation

matrix using only normal instances. As recommended by [12], we set the parameter τ to be

1.96. HT and BoostHT are two state-of-the-art classification algorithms for data streams. In

the experiments, we used their Java implementations from MOA6. HT is executed with the

default parameters and the smoothing parameter of BoostHT is set as 0.5. We implemented

RS-Forest in C++. Without specification, the default parameters of RS-Forest are set as

4http://www.cse.fau.edu/~xqzhu/stream.html
5https://sites.google.com/site/analyticsofthings/recent-work-fast-anomaly-detection-for-streaming-data
6http://moa.cms.waikato.ac.nz

Wu et al. Page 15

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.cse.fau.edu/~xqzhu/stream.html
https://sites.google.com/site/analyticsofthings/recent-work-fast-anomaly-detection-for-streaming-data
http://moa.cms.waikato.ac.nz

follows. Window size=512, ensemble size = 30, and tree depth = 15. We used AUC, the area

under an ROC curve, to evaluate the performances of all algorithms. 30 independent runs

were conducted by each method on a dataset before the average result was reported. We

performed all the experiments on a 2.6 GHz Intel Core i7 MacBook Pro with 8GB main

memory.

C. Experimental Results

Comparative Results—Table III presents the average AUCs of all compared algorithms

on each benchmark dataset. It is evident that RS-Forest statistically significantly

outperforms other methods on most of the datasets. Based on the paired t-test with a 95%

confidence interval, the pairwise win-loss-tie statistics between RS-Forest and HSTa,

LOADED, HT, BoostHT are 10-0-3, 10-3-0, 13-0-0, 11-1-1, respectively. We attribute this

to our better strategies of detecting anomalies in the context of streaming data. HSTa is no

doubt a competitive baseline, hitting the second place in terms of the averaged AUC over all

data. BoostHT works well on most of the real-world data. But its AUC scores on some

synthetic sets including Syn_cond and Syn_dual are even worse than those of HT. This

performance degradation may indicate that over-fitting could easily happen to BoostHT

when the conditional class distribution changes. Being the single-model algorithms,

LOADED and HT are at the bottom with respect to the AUC ranking. Different from

BoostHT, LOADED performs surprisingly well only on some synthetic sets generated from

Gaussian distribution, such as Syn_feature, Syn_cond and Syn_dual. This could be due to

the strict model assumption that underlies LOADED.

Moreover, as shown in Figure 4, we further examine the dynamic performances of the three

ensembles with the progression of a data stream. Without much variation, the over-time

AUC curves of RS-Forest consistently lead the corresponding curves of HSTa and BoostHT

on Mulcross and HyperP1 datasets as each stream proceeds. Performance fluctuation does

happen on Covertype. In particular, as the anomalous instances occur in the middle stage of

the Cover-type progression (highlighted by the dashed lines), the curves of RS-Forest and

HSTa tend to go down while the curve of BoostHT moves up abruptly. HSTa obviously

demonstrates a larger downwards trend than RS-Forest. A close look via the snapshots in

Figure 5 suggests that intensively occurring anomalies, though rarely happen in reality,

could deteriorate the performance of HSTa. RS-Forest can better adapt to this situation and

its overall curve still dominates the curves of the other two.

Runtime Comparison—Figure 6 summarizes the average time of 30 independent runs

for each method on all datasets. LOADED and HT cost moderate time since they are single-

model learners. The BoostHT ensemble consumes the most amount of time as its member

tree (HT) always relies on computing Hoeffding bound to determine the best attribute to

split the tree. HSTa performs faster than BoostHT but its average time consumption is still

approximately five times that of RS-Forest. RS-Forest uses a data structure similar to HSTa.

However, unlike HSTa, RS-Forest further reduces the model update time by leveraging the

common operations shared by the prediction and model update processes. Therefore, the

runtime of RS-Forest is the least among all the studied methods, even the ones of single

model.

Wu et al. Page 16

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Sensitivity Study—To run RS-Forest, one needs to specify several parameters. They are

the node size limit, the window size and the number of trees. Taking the Covertype dataset

as an example, we further explore the effects of different parameter settings on the

performance of RS-Forest. As shown in Figure 7, the effects of other parameters on RS-

Forest’s performance diminish as more RS-Trees are introduced into the forest, which well

corroborates with the theoretical analysis presented in section III-C. When the number of

RS-Trees increases, both bias and variance of RS-Forest can be reduced, leading to a more

accurate density estimation. Moreover, we studied the relationship between different

window sizes and varying node size limits. We can see that the node size limit won’t

influence the performance of RS-Forest much once the window size is fixed. Also, we

notice that, due to the underlying concept drift, a large window size does not always result in

a performance gain. When the window size is larger than 512, the performance of RS-Forest

even declines. This suggests that choosing an appropriate window size would be crucial in

the context of drifting concepts. We recommend 512 as the default value according to our

observations also on other datasets.

V. Related Work

In the past few decades, many algorithms have been proposed for anomaly or outliner

detection. Typical examples include model-based methods [15][16][7], clustering-based

methods [17], distance-based methods [18] and density-based methods [19]. However, most

of the techniques, designed for static finite stored data, require the entire data to reside in the

memory and exhibit a high computational cost. Therefore, they are not readily to be applied

to the ever-evolving streaming data, which features large volume, high velocity and drifting

concepts.

Recently, much effort [20][21][22] has been devoted to improving the detection efficacy of

the distance-based methods in the context of the sliding window model for data streams.

These studies primarily deal with continuous queries, which are queries evaluated

continuously as data instances arrive incessantly. In this work, we focus on handling one-

time queries evaluated over a point-in-time. Refer to [23] regarding the query model in data

streams. Another related work is LOADED proposed by Ghoting et al. [12]. It is a one-pass

unsupervised anomaly detector that aims to handle the streaming data with mixed attributes.

A unified link-based approach is employed to capture the dependencies between the

continuous and categorical attributes.

Compared to the aforementioned unsupervised methods, fewer supervised or semi-

supervised data stream algorithms have been proposed for anomaly detection. Seminal data

stream classifiers, such as Hoeffding Trees (HT)[13] and online coordinate boosting with

Hoeffding Trees (BoostHT) [14], can be adapted to this purpose. Nevertheless, such

algorithms require both normal and anomalous instances for training, and in practice,

anomalous data are typically rare or even not available.

Tan et al.’s work [9] is most closely related to ours. They developed an ensemble of

streaming Half-Space-Trees (HSTa) to detect anomalies in data streams. Each HS-Tree is

created by bisecting a randomly picked continuous attribute from an estimated feature space

Wu et al. Page 17

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

using a heuristic technique. An anomaly score defined on a mass statistic is then aggregated

over all trees to rank newly arrived instances. Unlike HSTa, our algorithm uses multiple

fully randomized space trees to tackle the streaming detection problem from the density

estimation aspect, which has a solid theoretical foundation as shown in this work. Moreover,

our algorithm is more efficient as it leverages the common operations shared by the

prediction and model update processes.

In addition, the proposed RS-Forest density estimator is somewhat analogous to other two

methods, density estimation trees (DET) [3] and forest density estimation [24]. However,

DET performs the optimal tree construction based on a pre-defined target function and forest

density estimation is an undirected graph model forest using data splitting. Therefore their

tree construction relies on training data and thus has a high computational cost. Unlike these

two methods, RS-Forest constructs trees without data and hence is efficient and suitable for

streaming data mining.

VI. Conclusion

In this paper, we have introduced a novel anomaly detection algorithm for streaming data. A

fast and accurate density estimator, RS-Forest, has been proposed and then seamlessly

extended to the data stream scenario. The proposed algorithm meets the key expectations set

by ever-evolving data streams on anomaly detectors: (1) it is a one-pass algorithm, and has

constant space complexity and linear time complexity; (2) it works well with drifting

concepts, as a highly diverse ensemble operating in the statistically estimated feature space

with high probability guarantee; (3) it has a super-fast response time due to the employed

dual node profile technique; and (4) it only needs normal instances for training, and

performs anomaly detection and model update in a timely and coherent manner.

Furthermore, we conduct rigorous analysis, laying the solid theoretical foundation for the

proposed algorithm. Experimental evaluations on multiple benchmark datasets demonstrated

that, compared to the existing state-of-the-art methods, streaming RS-Forest can achieve

higher AUC score, less runtime and is robust to different parameters. As part of future work,

we are looking to (1) further explore the efficacy of RS-Forest as a non-parametric density

estimator, (2) adapt streaming RS-Forest to the mixed feature space with missing values, and

(3) reduce its space occupation while maintaining high detection rate.

Acknowledgments

This work is supported by a US Dept. of Army grant (W911NF-12-1-0066), an NIH grant (NIMHD RCMI
2G12MD007595) and a seed grant from the Louisiana Cancer Research Consortium (LCRC).

References

1. Chandola V, Banerjee A, Kumar V. Anomaly detection: A survey. ACM Comput Surv. 2009; 41(3):
15:1–15:58.

2. Zhang K, Fan W. Forecasting skewed biased stochastic ozone days: Analyses, solutions and beyond.
Knowl Inf Syst. 2008; 14(3):299–326.

3. Ram, P.; Gray, AG. Density estimation trees. Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining; 2011. p. 627-635.

Wu et al. Page 18

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

4. Chen, M-H.; Shao, Q-M.; Ibrahim, JG. Monte Carlo Methods in Bayesian Computation. New York:
Springer; 2000.

5. Steliga K, Szynal D. On markov-type inequalities. International Journal of Pure and Applied
Mathematics. 2010; 58(2):137–152.

6. Rocke DM, Woodruff DL. Identification of outliers in multivariate data. Journal of the American
Statistical Association. 1996; 91:1047–1061.

7. Liu, FT.; Ting, KM.; Zhou, Z-H. Isolation forest. Proc. of the 8th IEEE International Conference on
Data Mining; IEEE Computer Society; 2008. p. 413-422.

8. Wu, K.; Edwards, A.; Fan, W.; Gao, J.; Zhang, K. Classifying imbalanced data streams via dynamic
feature group weighting with importance sampling. SIAM International Conference on Data
Mining; 2014. p. 722-730.

9. Tan, SC.; Ting, KM.; Liu, TF. Fast anomaly detection for streaming data. Proceedings of the 22nd
International Joint Conference on Artificial Intelligence; 2011. p. 1511-1516.

10. Bache, K.; Lichman, M. UCI machine learning repository. 2013.

11. Ditzler G, Polikar R. Incremental learning of concept drift from streaming imbalanced data. IEEE
Trans Knowl Data Eng. 2013; 25(10):2283–2301.

12. Ghoting, A.; Otey, ME.; Parthasarathy, S. LOADED: link-based outlier and anomaly detection in
evolving data sets. Proc. of the 4th IEEE International Conference on Data Mining; 2004. p.
387-390.

13. Domingos, P.; Hulten, G. Mining high-speed data streams. KDD ’00; 2000. p. 71-80.

14. Bifet, A.; Holmes, G.; Pfahringer, B.; Kirkby, R.; Gavaldà, R. New ensemble methods for evolving
data streams. Proc. of the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining; 2009. p. 139-148.

15. Rousseeuw PJ, Driessen KV. A fast algorithm for the minimum covariance determinant estimator.
Technometrics. 1999; 41(3):212–223.

16. Abe, N.; Zadrozny, B.; Langford, J. Outlier detection by active learning. Proc. of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining; 2006. p. 504-509.

17. Sequeira, K.; Zaki, M. ADMIT: anomaly-based data mining for intrusions. Proc. of the 8th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining; ACM; 2002. p.
386-395.

18. Knorr, EM.; Ng, RT. Algorithms for mining distance-based outliers in large datasets. Proc. of the
24rd International Conference on Very Large Data Bases; 1998. p. 392-403.

19. Breunig MM, Kriegel HP, Ng RT, Sander J. LOF: Identifying density-based local outliers.
SIGMOD Rec. 2000; 29(2):93–104.

20. Angiulli, F.; Fassetti, F. Detecting distance-based outliers in streams of data. CIKM ’07; 2007. p.
811-820.

21. Yang, D.; Rundensteiner, EA.; Ward, MO. Neighbor-based pattern detection for windows over
streaming data. EDBT ’09; 2009. p. 529-540.

22. Kontaki, M.; Gounaris, A.; Papadopoulos, AN.; Tsichlas, K.; Manolopoulos, Y. Continuous
monitoring of distance-based outliers over data streams. ICDE ’11; 2011. p. 135-146.

23. Babcock, B.; Babu, S.; Datar, M.; Motwani, R.; Widom, J. Models and issues in data stream
systems. PODS ’02; 2002. p. 1-16.

24. Liu H, Xu M, Gu H, Gupta A, Lafferty JD, Wasserman LA. Forest density estimation. Journal of
Machine Learning Research. 2011; 12:907–951.

Wu et al. Page 19

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Fig. 1.
(a) An example of two-dimensional data with random space partitions. (b) The RS-Tree

corresponding to those partitions.

Wu et al. Page 20

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Fig. 2.
Density estimation: RS-Forest

Wu et al. Page 21

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Fig. 3.
Density Estimation: KDE vs. RS-Forest

Wu et al. Page 22

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Fig. 4.
Dynamic performance comparison with the progression of a data stream.

Wu et al. Page 23

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Fig. 5.
Illustration of anomaly distribution in consecutive data segments over Covertype dataset.

Label 0: normal instances. Label 1: anomaly instances.

Wu et al. Page 24

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Fig. 6.
Runtime comparison on all benchmark datasets.

Wu et al. Page 25

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Fig. 7.
Effects of varying depth limit and node size limit

Wu et al. Page 26

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Fig. 8.
Effects of varying window size

Wu et al. Page 27

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Wu et al. Page 28

TABLE I

Major notations

Notation Description

 = Rd Feature space with d dimensions

x ∈ An instance in feature space

f(x) True density function

f̂(x; T) Density estimated by an RS-Tree T

f̂(x; F) Density estimated by an RS-Forest F

ℓ(x, T) An RS-tree’s termination node into which x falls

| · | Node size or node profile

 (·) Volume of the region that a node represents

M Number of the RS-trees in an RS-Forest

N Number of instances, which is used to estimate density

H Tree depth limit

lj Estimated length of attribute j

Volume of the estimated feature space

Length of attribute j that forms the region represented by node i

δij Length of attribute j that forms the region represented by a termination node ℓ(x; Ti)

Volume of the region represented by node i

The number of splits performed on attribute j along the path from the root to node i

The selected random number at the k-th split of attribute j along the path from root to node i

The random number selected at an internal node along the path from root to node i

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Wu et al. Page 29

TABLE II

Benchmark datasets

data sets #inst. #feat. Anomaly

Mulcross 262,144 4 2 dense clusters(10%)

Syn_feature 51,000 10 class <0 (1.0%)

Syn_cond 51,000 10 class <0 (1.0%)

Syn_dual 51,000 10 class <0 (1.0%)

HyperP1 100,000 10 class C3 (10.81%)

HyperP2 100,000 10 class C4 (17.71%)

Http 567,497 3 attack (0.4%)

Smtp 95,156 3 attack (0.03%)

Smtp_http 662,653 3 attack (0.35%)

Covertype 286,048 10 outlier (0.9%)

Shuttle 49,097 9 classes 2,3,5–7 (7%)

Adult 35,760 6 class >50k(3.21%)

Weather 13,094 8 class no_rain(4.83%)

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Wu et al. Page 30

T
A

B
L

E
 II

I

Pe
rf

or
m

an
ce

 c
om

pa
ri

so
n

of
 d

if
fe

re
nt

 m
et

ho
ds

 o
n

al
l b

en
ch

m
ar

k
da

ta
se

ts
. A

U
C

 s
co

re
 is

 m
ea

su
re

d.
 T

he
 la

st
 r

ow
 r

ep
or

ts
 th

e
av

er
ag

e
A

U
C

 o
ve

r
al

l d
at

as
et

s

fo
r

ea
ch

 m
et

ho
d.

da
ta

 s
et

s
R

S-
F

or
es

t
H

ST
a

L
O

A
D

E
D

H
T

B
oo

st
H

T

M
ul

cr
os

s
1.

00
0

0.
99

8
●

0.
99

9
●

0.
90

2
●

1.
00

0

Sy
n_

fe
at

ur
e

0.
89

7
0.

88
5

●
0.

91
2

○
0.

51
5

●
0.

53
6

●

Sy
n_

co
nd

0.
89

9
0.

88
6

●
0.

91
4

○
0.

58
9

●
0.

53
5

●

Sy
n_

du
al

0.
89

3
0.

88
8

●
0.

91
7

○
0.

63
9

●
0.

53
3

●

H
yp

er
P1

0.
61

8
0.

61
0

●
0.

59
7

●
0.

51
9

●
0.

52
3

●

H
yp

er
P2

0.
76

0
0.

75
2

0.
62

2
●

0.
62

9
●

0.
77

2
○

H
ttp

0.
99

9
0.

99
6

●
0.

50
0

●
0.

90
9

●
0.

99
7

●

Sm
tp

0.
88

0
0.

87
5

0.
50

0
●

0.
69

6
●

0.
83

3
●

Sm
tp

_h
ttp

0.
99

8
0.

99
6

●
0.

50
0

●
0.

58
9

●
0.

99
4

●

C
ov

er
ty

pe
0.

99
5

0.
99

3
●

0.
50

0
●

0.
65

5
●

0.
99

2
●

Sh
ut

tle
0.

99
8

0.
99

9
0.

50
1

●
0.

77
0

●
0.

98
7

●

A
du

lt
0.

64
5

0.
63

9
●

0.
50

0
●

0.
57

3
●

0.
59

7
●

W
ea

th
er

0.
59

3
0.

58
2

●
0.

50
0

●
0.

48
9

●
0.

51
2

●

A
ve

ra
ge

0.
86

0
0.

85
4

0.
65

1
0.

65
2

0.
75

5

●
/○

in
di

ca
te

s
th

at
 R

S-
Fo

re
st

 p
er

fo
rm

s
si

gn
if

ic
an

tly
 b

et
te

r/
w

or
se

 th
an

 th
e

co
rr

es
po

nd
in

g
m

et
ho

d
re

ga
rd

in
g

a
pa

ir
ed

 t-
te

st
 w

ith
 a

 9
5%

 c
on

fi
de

nc
e

in
te

rv
al

.

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 11.

