
Graph Summarization with Quality Guarantees
Matteo Riondato

Stanford University
rionda@cs.stanford.edu

David Garcı́a-Soriano
Yahoo Labs, Barcelona, Spain

davidgs@yahoo-inc.com

Francesco Bonchi
Yahoo Labs, Barcelona, Spain

bonchi@yahoo-inc.com

Abstract—We study the problem of graph summarization.
Given a large graph we aim at producing a concise lossy
representation that can be stored in main memory and used to
approximately answer queries about the original graph much
faster than by using the exact representation. In this paper
we study a very natural type of summary: the original set
of vertices is partitioned into a small number of supernodes
connected by superedges to form a complete weighted graph.
The superedge weights are the edge densities between vertices in
the corresponding supernodes. The goal is to produce a summary
that minimizes the reconstruction error w.r.t. the original graph.
By exposing a connection between graph summarization and
geometric clustering problems (i.e., k-means and k-median),
we develop the first polynomial-time approximation algorithm to
compute the best possible summary of a given size.

I. INTRODUCTION

Data analysts in several application domains (e.g., social
networks, molecular biology, communication networks, and
many others) routinely face graphs with millions of vertices
and billions of edges. In principle, this abundance of data
should allow for a more accurate analysis of the phenomena
under study. However, as the graphs under analysis grow, min-
ing and visualizing them become computationally challenging
tasks. In fact, the running time of most graph algorithms
depends on the size of the input: executing them on huge
graphs might be impractical, especially when the input is too
large to fit in main memory.

Graph summarization speeds up the analysis by creating
a lossy concise representation of the graph that fits into
main memory. Answers to otherwise expensive queries can
then be computed using the summary without accessing the
exact representation on disk. Query answers computed on the
summary incur in a minimal loss of accuracy. Summaries
can also be used for privacy purposes [1], to create easily
interpretable visualizations of the graph [2], and to store a
compressed representation of the graph.

LeFevre and Terzi [1] propose an enriched “supergraph” as a
summary, associating an integer to each supernode and to each
superedge, representing the number of edges (in the original
graph) between vertices in the supernode and between the two
sets of vertices connected by the superedge, respectively. From
this lossy representation one can infer an expected adjacency
matrix, where the expectation is taken over the set of possible
worlds (i.e., graphs that are compatible with the summary).
Thus, from the summary one can derive an approximated
answer to a graph properties query as the expectation of the
answer over the set of possible worlds.

The GraSS algorithm presented in [1] follows a greedy heuris-
tic resembling an agglomerative hierarchical clustering using
Ward’s method [3] and as such can not give any guarantee on
the quality of the summary. In this paper instead, we propose
efficient algorithms to compute summaries of guaranteed
quality (a constant factor from the optimal). This theoretical
property is also verified empirically: our algorithms build more
representative summaries and are much more efficient and
scalable than GraSS in building those summaries.

II. PROBLEM DEFINITION

We consider an undirected graph G = (V,E) with |V | = n.
In the rest of the paper, the key concepts are defined from the
standpoint of the symmetric adjacency matrix AG of G. We
allow the edges to be weighted (so the adjacency matrix is not
necessarily binary) and we allow self-loops (so the diagonal
of the adjacency matrix is not necessarily all-zero).

Given a graph G = (V,E) and k ∈ N, a k-summary S of
G is a complete undirected weighted graph S = (V ′, V ′×V ′)
that is uniquely identified by a k-partition V ′ of V (i.e., V ′ =
{V1, . . . , Vk}, s.t. ∪i∈[1,k]Vi = V and ∀i, j ∈ [1, k], i 6= j, it
holds Vi ∩ Vj = ∅). The vertices of S are called supernodes.
There is a superedge eij for each unordered pair of supernodes
(Vi, Vj), including (Vi, Vi) (i.e., each supernode has a self-loop
eii). Each superedge eij is weighted by the density of edges
between Vi and Vj :

dG(i, j) = dG(Vi, Vj) = eG(Vi, Vj)/(|Vi||Vj |),
where for any two sets of vertices S, T ⊆ V , we denote

eG(S, T) =
∑

i∈S,j∈T

AG(i, j).

We define the density matrix of S as the k×k matrix AS with
entries AS(i, j) = dG(i, j), 1 ≤ i, j ≤ k. For each v ∈ V , we
also denote by s(v) the unique element of S (a supernode)
such that v ∈ s(v). The density matrix AS ∈ Rk×k can be
lifted1 to the matrix A↑S ∈ Rn×n defined by

A↑S(v, w) = AS(s(v), s(w)).

Given a k-partition P = {S1, . . . , Sk} of [n], we say that a
symmetric n× n matrix M with real entries is P-constant if
the Si × Sj submatrix of M is constant, 1 ≤ i, j ≤ k. More
formally, M is P-constant if for all pairs (i, j), 1 ≤ i, j ≤ k,
there is a constant cij = cji such that M(p, q) = cij for each

1Our lifted matrix is slightly different from the expected adjacency matrix
in [1], which can also be computed from our summary (see Sect. V). Our
algorithms also approximate the partition that minimizes the error from the
expected adjacency matrix (proof omitted for space reasons).

2 1

3

4 7 5

0

7/9

3/4

1/4

1/3

1/3

{3,4,5}

{6,7}

{1,2}

6

Fig. 1: A graph G (left) and one possible summary S (right).

1 2 3 4 5 6 7
1 0 0 1/3 1/3 1/3 1/4 1/4
2 0 0 1/3 1/3 1/3 1/4 1/4
3 1/3 1/3 7/9 7/9 7/9 1/3 1/3
4 1/3 1/3 7/9 7/9 7/9 1/3 1/3
5 1/3 1/3 7/9 7/9 7/9 1/3 1/3
6 1/4 1/4 1/3 1/3 1/3 3/4 3/4
7 1/4 1/4 1/3 1/3 1/3 3/4 3/4

TABLE I: The lifted matrix A↑S corresponding to the S in Figure 1.

pair (p, q) where p ∈ Si and q ∈ Sj . We also say that M is
k-constant, to highlight the size of the partition. It should be
clear from the definition that the lifted adjacency matrix of a
k-summary S of a graph G is PS-constant for the partition
PS of the nodes of G into the supernodes of S.

An input graph, a possible summary, and the corresponding
lifted matrix are exemplified in Figure 1 and Table I.

The number of possible summaries is huge (there is one
for each partition of V), so we need efficient algorithms to
find the summary that best resembles the graph. This goal is
formalized in Problem 1, which is the focus of this work.

Problem 1 (Graph Summarization): Given a graph G =
(V,E) with |V | = n, and k ∈ N, find the k-summary S∗,
such that A↑S∗ minimizes the error err(AG, A

↑
S∗) for some

error function err : Rn×n × Rn×n → [0,∞).

The function err expresses the dissimilarity between the
original adjacency matrix of G and the lifted matrix obtained
from the summary. Different definitions for err are possible
and different algorithms may be needed to find the optimal
summary S∗ according to different measures. In this paper
we focus on the `p-reconstruction error, in particular we focus
on `1 and `2-reconstruction errors (the algorithms in [1] try to
minimize the `1-reconstruction error).

Let p ∈ R, p ≥ 1. Given a graph G with adjacency matrix
AG and a summary S with lifted adjacency matrix A↑S , the `p-
reconstruction error of S is defined as the entry-wise p-norm
of the difference between AG and A↑S :

errp(AG, A
↑
S) = ‖AG−A↑S‖p =

(|V |∑
i=1

|V |∑
j=1

|AG(i, j)−A↑S(i, j)|
p
)1/p

If AG has entries in [0, 1] then errp(AG, A
↑
S) ∈ [0, n2/p].

The `p norms can be computed in time O(n2) if p = O(1).
If the original graph G = (V,E) is unweighted, it is possible to
compute the `p-reconstruction errors in time O(k2) from the k-
summary S = (V ′, V ′×V ′) itself. Indeed, given the partition
V ′ = {V1, . . . , Vk} of V , let αij = eG(Vi, Vj)/(|Vi||Vj |)

denote the superedge densities, for i, j ∈ [k]. A simple
calculation shows that, for p ≥ 1,

errp(A
↑
S , AG)

p =
∑

i,j∈[k]

|Vi||Vj |αij(1−αij)
(
(1−αij)

p−1+αp−1
ij

)
.

From this we also get that, for any summary S,

err2(A↑S , AG)2 = 2 · err1(A↑S , AG). (1)

Thus, a partition that minimizes the `2-reconstruction error
also minimizes the `1-reconstruction error. A similar statement
holds approximately (up to constant factors) for the `p and
`q-reconstruction errors where 1 ≤ p, q ≤ O(1), so for
unweighted graphs the exact choice of p is not crucial.

III. SUMMARIZATION WITH GUARANTEES

We now show a close connection between graph summa-
rization and well-studied geometric clustering problems (k-
median/means).
The best matrix for a given partition. Given p ≥ 1,
a graph G = (V,E) (w.l.o.g. V = [n]), and a partition
P = {S1, . . . , Sk} of [n], what P-constant matrix B∗,pP
minimizes

∥∥AG −B∗,pP
∥∥
p
? We now justify the use of the (P-

constant) lifted adjacency matrix in our analysis.
Clearly it suffices to consider each pair of supernodes

Si, Sj separately. For a fixed pair, let X be a random vari-
able representing the weight (in G) of a edge (x, y) drawn
uniformly at random from Si × Sj . We are looking for the
real number ap that minimizes E[|X − ap|p]; this is known
as the p-predictor of X . Therefore, B∗,pP (x, y) is equal to
the p-predictor of the uniform distribution over the multiset
M(x, y) = {AG(v, w) | v ∈ s(x), y ∈ s(y)}, where s(v)
denotes the unique set of P to which v belongs. It is well-
known that the 1-predictor of X is its median, and its 2-
predictor is its expectation. In other words,

B∗,1P (x, y) = median({AG(v, w) | (v, w) ∈ s(v)× s(w)}),

B∗,2P (x, y) =
∑

(v,w)∈s(v)×s(w)

AG(v, w)/(|s(x)||s(y)|).

Note that B∗,2P = A↑SP , the lifted adjacency matrix of the
summary SP corresponding to P , which in general is different
from B∗,1P . However, A↑SP has the advantage of being easier to
handle analytically, and also provides a good approximation to
B∗,1P , as shown in the following lemma, which is a corollary
of Lemma 2.

Lemma 1:∥∥∥AG −B∗,1P
∥∥∥

1
≤
∥∥∥AG −B∗,2P

∥∥∥
1
≤ 2 ·

∥∥∥AG −B∗,1P
∥∥∥

1∥∥∥AG −B∗,2P
∥∥∥

2
≤
∥∥∥AG −B∗,1P

∥∥∥
2
≤
√

2 ·
∥∥∥AG −B∗,2P

∥∥∥
2
.

Lemma 2: Let X be a random variable with median m and
expectation µ. Then

E[|X −m|] ≤ E[|X − µ|] ≤ 2 · E[|X −m|], (2)
E[|X − µ|2] ≤ E[|X −m|2] ≤ 2 · E[|X − µ|2] .

Proof: The first inequality of each line follows from the
fact that m is the 1-predictor and µ the 2-predictor.

Now we bound the deviation between mean and median.
Observe that

|µ−m| = |E[X]−m| = |E[X −m]|
≤ E[|X −m|] ≤ E[|X − µ|] ≤ σ,

where σ =
√

VarX is the standard deviation of X and the
last inequality is Cauchy-Schwarz.

This yields the other two inequalities:

E[|X − µ|] = E[|X −m+m− µ|]
≤ E[|X −m|] + |m− µ| ≤ 2 · E[|X −m|],

and, since E[|X − µ|2] = Var[X] = σ2,
E[|X −m|2] = Var[X] + (m− µ)2 ≤ 2 · E[|X − µ|]2.

Connection with `pp clustering. In the `pp clustering prob-
lem, we are given n points a1, . . . , an ∈ Rd and we need
to find k “centroids” c1, . . . , ck ∈ Rd so as to minimize∑

n

∥∥ai − cl(k)

∥∥p
p
, where l(i) is the centroid closest to ai in

the `p metric. When p = 2, this is the k-means problem with `2
(Euclidean) metric; when p = 1, this is the k-median problem
with `1 metric. We consider the continuous version in which
the centroids are allowed to be arbitrary points.

Any choice of centroids c1, . . . , ck gives rise to a partition
P of [n] that groups together points having the same closest
centroid (assuming a scheme to break ties). Conversely, for
any partition P = {S1, . . . , Sk} there is an optimal (i.e.,
minimizing `pp cost given P) choice c∗1, . . . , c

∗
k of centroids: c∗i

is the coordinate-wise mean of the vectors in Si when p = 2,
and their coordinate-wise median when p = 1.

We show the following connection between clustering and
summarization w.r.t. the `2 and `1-reconstruction error.

Theorem 1: Let S̄ be the k-summary induced by the parti-
tion of the rows of AG with the smallest continuous `22 cost,
and let S∗ be the optimal k-summary for G w.r.t. the `2-
reconstruction error. The `2-reconstruction error of S̄ is a
4-approximation to the best `2-reconstruction error:

err2(AG, A
↑
S̄) ≤ 4 · err2(AG, A

↑
S∗) .

Theorem 2: Let Ŝ be the k-summary induced by the parti-
tion of the rows of AG with the smallest continuous `1 cost,
and let S† be the optimal k-summary for G w.r.t. the `1-
reconstruction error. The `1-reconstruction error of S̄ is an
8-approximation to the best `1-reconstruction error:

err1(AG, A
↑
Ŝ

) ≤ 8 · err1(AG, A
↑
S†) .

Before we can prove these theorems we need some addi-
tional definitions and lemmas.

Smoothing projections and lifted matrices. Let P =
{S1, . . . , Sk} be a partition of [n] and let si be the n-
dimensional vector associated to Si such that the jth entry of
si is 1 if j ∈ Si, and 0 otherwise. Write vi = si/

√
|Si|. Since

‖vi‖ = 1 and Si ∩ Sj = ∅ for i 6= j, the vectors {vi}i∈[k]

are orthonormal. A sequence of vectors v1, . . . ,vk ∈ Rn is

partition-based if they arise in this way from a partition of [n].
We say that a linear operator P : Rn → Rn is smoothing if it
can be written as P =

∑k
i=1 viv

ᵀ
i for a partition-based set of

vectors v1, . . . ,vk. Since P 2 = P , P ᵀ = P and Pvi = vi, it
follows that P is the orthogonal projection onto the subspace
generated by v1, . . . ,vk. It is also easy to check that a n× n
matrix A is P-constant if and only if PAP = A.

Given a k-summary S of G, let PS = {S1, . . . , Sk} be the
partition of [n] corresponding to S. Consider the smoothing
projection P arising from PS as described above.

Lemma 3: A↑S = PAGP .
Proof: Let v1, . . . ,vk be the partition-based vectors aris-

ing from PS . Recall that the entry A↑SP (p, q) of the lifted
adjacency matrix A↑SP , where p ∈ Si and q ∈ Sj , equals the
density dG(Si, Sj) = sᵀiAGsj/(|Si||Sj |). Therefore

A↑S =
∑

i,j∈[k]

dG(Si, Sj)s
ᵀ
i sj =

∑
i,j∈[k]

sᵀiAGsj
|Si||Sj |

sᵀi sj

=
∑

i,j∈[k]

(vᵀ
i AGvj)v

ᵀ
i vj =

∑
i,j∈[k]

vᵀ
i (vᵀ

i AGvj)vj = PAGP .

To prove Thm. 1 and Thm. 2 we also make use of the
following technical lemmas.

Lemma 4: Let P : Rn → Rn be an orthogonal projection
and let ‖·‖ denote a matrix norm that is (1) invariant under
transposition and negation (‖X‖ = ‖−X‖ = ‖Xᵀ‖); and (2)
contractive under P (for any n×n matrix X , ‖XP‖ ≤ ‖X‖).
Then for any symmetric or skew-symmetric matrix A, it holds
that

‖A−AP‖
2

≤ ‖A− PAP‖ ≤ 2 ‖A−AP‖ .

Proof: Using that P 2 = P and the triangle inequality for
‖·‖, we compute

‖A−AP‖ = ‖A− PAP + PAP −AP‖
≤ ‖A− PAP‖+ ‖PAP −AP‖ = ‖A− PAP‖+ ‖(PAP −A)P‖
≤ ‖A− PAP‖+ ‖PAP −A‖ = 2 ‖A− PAP‖ .

Observe that if A is symmetric (Aᵀ = A), then (A−AP)ᵀ =
Aᵀ−P ᵀAᵀ = A−PA, whereas if A is skew-symmetric (Aᵀ =
−A), (A − AP)ᵀ = −(A − PA); either way, ‖A−AP‖ =
‖A− PA‖. Therefore

‖A− PAP‖ = ‖A−AP +AP − PAP‖
= ‖A−AP‖+ ‖(A− PA)P‖ ≤ ‖A−AP‖+ ‖A− PA‖
= ‖A−AP‖+ ‖A−AP‖ = 2 ‖A−AP‖ .

Lemma 5: The `p norms (p ≥ 1) satisfy the conditions of
Lemma 4 for any smoothing projection P .

Proof: Invariance under transposition and negation is
trivial, so we only need to check the second condition. To
see it, write X by columns: X = (x1 | · · · | xn). Then PX =
(Px1 | · · · | Pxn) and ‖XP‖pp = ‖PX‖pp =

∑
i ‖Pxi‖

p
p,

so it suffices to show that ‖Py‖p ≤ ‖y‖p for p = 1, 2 and
all y ∈ Rn. The reader can verify that this follows from the
power mean inequality:

(
|
∑m

i=1 yi|
m

)p
≤

∑m
i=1 |yi|p
m .

The following result is an easy consequence of the defini-
tions of smoothing projection and cost of a clustering.

Lemma 6: The `22 cost of the clustering associated with a
partition P of the rows of a matrix A ∈ Rn×n is ‖A−AP‖22,
where P is the smoothing projection arising from P .

We are now ready to prove Thm. 1 and 2, showing the
connection between summarization and geometric clustering.

Proof of Thm. 1: Let P denote a smoothing projection
arising from an arbitrary k-partition. Let PS̄ be the smoothing
projection induced by S̄ . By Lemma 6, ‖AG −AGPS̄‖2 ≤
‖AG −AGP‖2. Let PS∗ be the smoothing projection associ-
ated with the partition which minimizes the `2-reconstruction
error (i.e., the one induced by S∗). Using Lemmas 4 and 5,

err2(AG, A
↑
S̄) = ‖AG − PS̄AGPS̄‖2 ≤ 2 ‖AG −AGPS̄‖2
≤ 2 ‖AG −AGPS∗‖2 ≤ 4 ‖AG − PS∗AGPS∗‖2
= 4 · err2(AG, A

↑
S∗).

The proof for Thm. 2 follows the same steps but Lemma 1
must be taken into account, which results in an additional
factor 2 in the approximation guarantee.

IV. AN EFFICIENT ALGORITHM FOR SUMMARIZATION

Theorems 1 and 2) showed that building a graph summary
of guaranteed quality with regard to the `1 or `2-reconstruction
error can be approximately reduced to solving a clustering in-
stance. We now turn our attention to how to do this efficiently.

Both k-median and k-means are NP-hard, but admit
constant-factor approximation algorithms that run in time
polynomial in the number of points (n), clusters (k), and
the dimension of the space [4], [5]. In order to use these
algorithms for our purposes, we need to take care of the
following bottlenecks: costly pairwise distances computation,
high dimensionality, and high number of points. Exact com-
putation of all pairwise distances between the rows of the
adjacency matrix can be rather expensive: in the `2 norm,
computing all distances between n points in Rd is equivalent
to multiplying a matrix with its transpose.2 We can avoid this
by using approximate distances computed efficiently from a
sketch of the adjacency matrix, i.e., a matrix with the same
number of rows but a logarithmic number of columns [6]; this
also reduces the number of dimensions from n to O(log n). In
exchange for this speedup, the analysis needs to factor in the
additional error, and the fact that the approximate distances we
work with will not satisfy the triangle inequality, whereas the
clustering algorithms we use are designed for metric spaces.

The O(1)-approximation algorithm from [7] can be used
with the approximate distances computed from the sketch,
but it runs in time Õ(n2). To improve this we use a result
from [8] which adaptively selects O(k) of the rows of the
sketch so that the optimal k-median/means solution obtained
by clustering these rows gives a set of centers that can be
used to obtain a constant-factor approximation to the clustering
problem for all the rows. By running the algorithm from [7]

2If v1, . . . , vn ∈ Rd, then ‖vi − vj‖22 = ‖vi‖22 + ‖vj‖22 − 2〈vi, vj〉.
Since the quantities ‖vi‖22 can be easily precomputed, the problem reduces
to computing all inner products 〈vi, vj〉. These form the entries of AAᵀ,
where A is the n× d matrix with rows v1, . . . , vn.

on the resulting O(k)×O(log n) matrix, we obtain a constant
factor approximation in time Õ(m + nk), where m is the
number of edges (or half the number of non-zero entries in
AG, if G is weighted). We formalize this intuition next.

Theorem 3: Let p ∈ {1, 2}. Algorithm 1 computes an
O(1)-approximation to the best k-summary under the `p-
reconstruction error in time Õ(m + nk) with high constant
probability.

Proof sketch: Using techniques from [6] we can construct
an n × O(log n) linear sketch in time Õ(n), and apply it
to all rows of the adjacency matrix AG in time Õ(m + n),
obtaining an n × O(log n) sketched matrix S. Afterwards
we can approximately answer any query about the distance
between two rows of AG in time O(log n), and with high
probability all estimates are to within a constant factor of the
actual value. The p-th powers of the pairwise row distances
computed from S yield what is known as an O(1)-approximate
semimetric with distance ratio poly(n), which enables us to
use the metric k-median algorithms detailed below.

We use a result from [8] to select O(k) rows from S in
time Õ(nk). With high constant probability, the selected rows
can be used to obtain (in Õ(nk)) an O(1)-approximation to
the optimal clustering of all the rows of S. We can then use
the algorithm from [7] to obtain a O(1)-approximation to the
clustering of the O(k) rows of S. The optimal clustering of
the rows of S is also a O(1)-approximation to the optimal
clustering of the rows in the original adjacency matrix, so a
O(1)-approximation to the former is a O(1)-approximation
to the latter. Given this partition, we can then compute the
densities in time O(m+ k2) = O(m+ nk).

Algorithm 1: Graph summarization with `p-reconstr. error

Input : G = (V,E) with |V | = n, k ∈ N, p ∈ {1, 2}
Output: A O(1)-approximation to the best k-summary

for G under the `p-reconstruction error
// Create the n×O(logn) sketch matrix [6]
S ← createSketch(AG, O(log n), p)
// Select O(k) rows from the sketch [8]
R← reduceClustInstance(AG, S, k)
// Run the approximation algorithm [7] to obtain a partition.
P ← getApproxClustPartition(p, k,R, S)
// Compute the densities for the summary
D ← computeDensities(P, AG)
return (P, D)

V. QUERY ANSWERING

Following [1] we adopt an expected-value semantics for
approximate query answering: the answer to a query on the
summary is the expectation of the exact answer over all
graphs that may have resulted in that summary, considered all
equally likely under the principle of indifference. In particular,
LeFevre and Terzi [1] define an expected adjacency matrix Ā
which is slightly different from the lifted matrix A↑S we defined
in Sect. II but can be computed from it as follows3:

3Minor modifications are needed if self-loops are allowed.

• If two vertices i and j belong to different supernodes in
the summary, then Ā(i, j) = A↑S(i, j).

• If i and j belong to the same supernode S`, and i 6= j,
then Ā(i, j) = A↑S · |S`|/(|S`| − 1).

• If i = j, then Ā(i, j) = 0.

Under the expected-value semantics, computing the answers
to many important class of queries is straightforward. For
instance, the existence probability of an edge (u, v) (or is
expected weight, in case of weighted graphs) is Ā(u, v). The
weighted degree of v is

∑n
i=1 Ā(v, i). Similarly, the weighted

eigenvector centrality can be expressed as
∑n

i=1 Ā(v, i)/2|E|.
It is worth remarking that the average error of adjacency

queries is the `1-reconstruction error, while the average error
of degree queries is always bounded by the `1-reconstruction
error divided by n. Hence in these cases it is easy to prove
worst-case bounds on the average error incurred when com-
puting the answer from the summary.

We next show how to answer queries involving the number
of triangles.

Let ni be the number of vertices in the i-th supernode and
let πij be defined as follows for 1 ≤ i, j ≤ k: πij = dij if
i 6= j, and πij =

dijni

ni−1 if i = j.
The following result follows from linearity of expectation.
Lemma 7: The expected number of triangles is

E[4] =

k∑
i=1

((
ni

3

)
π3
ii +

k∑
j=i+1

(
π2
ij

((
ni

2

)
njπii +

(
nj

2

)
niπjj

)

+

k∑
w=j+1

ninjnwπijπjwπwj

))
. (3)

It can be computed in time O(k3).

The same approach can be used to develop formulas for the
expected distribution of subgraphs of any size. Care must be
taken to avoid counting the same occurrence of a subgraph
multiple times due to isomorphisms.

The triangle density of a graph is the ratio between the
number of triangles in the graph over the number of triplets
of vertices, independently of their connectivity. The results
above allow us also to compute the expected triangle density
from the summary.

Corollary 1: Let E[4] be the expected number of triangles
from (3). Then the expected triangle density is

6E[4]

n(n− 1)(n− 2)
. (4)

VI. EXPERIMENTAL EVALUATION

In this section we report the results of our experimental
evaluation which has the following goals: (1) to characterize
the structure of the summaries built by our algorithms; (2) to
evaluate the quality of the summaries in terms of the recon-
struction errors and the cut-norm error and of their usefulness
in answering queries; (3) to compare the performances of our
algorithms with those of GraSS from [1].

Datasets and implementations. We used real graphs from
the SNAP repository4. As the considered graphs are un-
weighted, the `1-reconstruction error is half the squared `2-
reconstruction error (see (1)), hence we only report the results
for the `2-error (divided by n for normalization).

We consider two variants of our method based on different
variants of the k-median clustering procedure: “S2A” is the
algorithm for the `2-reconstruction error using the constant-
factor approximation algorithm from [5], while “S2L” uses
the classic Lloyd’s iterative approach [9] with k-means++
initialization that guarantees an O(log k) approximation fac-
tor [10]. Our algorithms are implemented5 in C++11 and the
experiments are performed on a 4-core AMD Phenom II X4
955 with 16GB of RAM running GNU/Linux 3.12.9. Each
algorithm is run 5 times for each combination of parameters.
Summary characterization.We studied the structure of the
summaries created by our algorithms in terms of the dis-
tribution of the sizes of the supernodes, the distributions of
the internal and cross densities, the (reconstruction or cut-
norm) error of the generated summaries, and the running
time of our algorithms. As expected “S2A” is slower but
more accurate than S2L: due to space limitations we only
report results for S2L in Table II. We do not report the
minimum size since this was always 1 in all cases. This is
interesting: in order to minimize the `2-reconstruction error it
may actually be convenient to create a supernode containing
a single vertex. Nevertheless there are also large supernodes
containing hundreds or thousands of vertices, which helps
explain the relatively large standard deviation. As k grows, the
standard deviation shrinks faster than the average size (n/k),
suggesting that supernode sizes become more uniform.

The minimum internal density was 0 in all our tests, as a
consequence of aforementioned fact that there are supernodes
of size 1 and that the graphs had no self-loops. On the
other hand, there are supernodes whose corresponding induced
subgraphs are quite dense, almost cliques (a clique would cor-
respond to a value of 100 in the “max” column). The minimum
and maximum cross densities are not reported because they
were respectively 0 and 1 in all cases. While the latter fact is
expected from the presence of supernodes of size 1, the former
suggests that some supernodes are effectively independent
from each other, i.e., there are no edges connecting them.
Finally, as expected, `2-reconstruction error shrinks linearly
and running time grows linearly as k grows.
Query answering. In Table III we report (1) the absolute
error for adjacency queries, (2) the absolute degree error, and
(3) the relative triangle density error. Results for the very large
graphs are not available because computing the query error
would require running the query on the original graph, and
this takes an excessive amount of time (indeed, this is one
of the motivations for our work). In general, as expected, a
decrease in k corresponds to an often-substantial increase in
the query answer error. For adjacency queries, the average
error (which is exactly the `1-reconstruction error) is very

4http://snap.stanford.edu/data/
5The implementations and datasets are available at https://db.tt/7YXGDqbs .

Size
Internal

Density (×102)
Cross

Density (×102)
`2-rec.

err. (×102) Time (s)

Graph k stdev max avg stdev max avg stdev avg avg stdev

Facebook 1000 15.84 597 28.59 31.22 94.79 1.56 11.42 5.81 2.67 0.02
|V | = 4 039 1250 11.09 382 23.52 29.64 95.15 1.44 11.18 5.42 3.53 0.01
|E| = 88 234 1500 8.77 206 19.72 28.02 94.18 1.37 11.07 5.01 4.48 0.01

Enron 10000 42.10 4041 12.58 24.52 87.5 0.1 3.27 0.72 253.1 15.66
|V | = 36 692 12000 27.57 2635 11.16 23.24 88.88 0.08 2.86 0.63 305.38 20.67
|E| = 183 831 14000 23.98 2398 9.77 21.77 87.5 0.06 2.54 0.54 349.31 17.25

Stanford 2000 2481.49 113572 28.05 32.57 97.95 0.08 2.73 0.48 389.57 19.10
|V | = 281 903 6000 1007.47 83444 24.25 31.52 97.61 0.04 1.98 0.42 970.74 9.04
|E| = 1 992 636 10000 658.67 65659 21.32 30.63 97.61 0.03 1.70 0.38 1604.85 81.47

Amazon0601 2000 7479.31 351920 37.79 28.91 90.9 0.01 0.9 0.53 1921.29 76.42
|V | = 403 394 6000 3766.88 306673 36.97 29.69 90.9 0 0.76 0.52 3419.72 76.94
|E| = 2 443 408 8000 3053.54 278468 36.78 29.99 90.9 0 0.73 0.51 4215.82 33.32

TABLE II: Supernode size, internal and cross densities, normalized `2-reconstruction error, and runtime for summaries built with S2L.

Error in Query Answering

Adjacency (×102) Degree

Graph k avg stdev avg stdev
Triangle
Density

Facebook

500 0.42 4.57 7.14 10.43 -0.31
750 0.37 4.32 6.22 9.15 -0.28

1000 0.33 4.05 5.38 7.96 -0.24
1250 0.28 3.79 4.79 7.27 -0.19
1500 0.24 3.49 4.01 6.31 -0.15

Enron
4000 0.01 0.78 2.57 4.95 -0.32
6000 < 0.01 0.66 1.92 3.53 -0.20
8000 < 0.01 0.57 1.49 2.65 -0.13

TABLE III: Error in query answering for summaries built with S2L.
For adjacency and degree queries we report the absolute error, while
for triangle density we report the relative error.

small, almost 0, and indeed the error was 0 for many pairs
of vertices. We found though that the maximum error could
be large in some rare case. This has obviously an impact on the
standard deviation that is substantially larger than the average.
For degree queries, the average error is small, when compared
to the average degree 2|E|/|V | and to the ratio between the
`1-reconstruction error and n (which is an upper bound to the
average degree error). As for triangle density, the estimations
obtained from the summary are of good quality when the ratio
between the number of vertices in the graph and the number
of supernodes is not too large, but grows rapidly otherwise.
This is to be expected: the number of triangles is particularly
sensitive to loss of information due to summarization. Note
that we always underestimate the triangle density because real-
world networks have many more triangles than random graphs.
Comparison with GraSS. We compared the runtime and
the summary quality of S2A with those of the GraSS
k-GS-SamplePairs algorithm from [1] (which we refer to
as “GS”), which was originally presented as a method to build
summaries by heuristically minimizing the `1-reconstruction
error using the expected adjacency matrix, rather than the
lifted matrix from the summary. Given the close similarity
between the two, we adapted GS to use the lifted matrix and
extended it to minimize the `2-reconstruction error. In order to
keep the running time of GS within reasonable limits, we used
sampled-down versions of the graphs obtained with a “forest-
fire” sampling approach. In Table IV we report the results for
a sample of 500 vertices and 3969 edges of the ego-gplus
networks. Note that GS takes a parameter c to quantify the
number of sampled pair candidates for merging per step. We
used c ∈ {0.10, 0.5, 1.0}. We did not use higher values for c

k Alg. c (for GS) `2-reconstr. Err. Runtime (s)

10 GS

0.1 0.168 495.122
0.5 0.155 2669.961
1.0 0.153 5516.915

S2A 0.152 0.440

50 GS

0.1 0.146 495.518
0.5 0.136 2671.848
1.0 0.133 5527.319

S2A 0.131 0.695

100 GS

0.1 0.130 495.074
0.5 0.120 2669.013
1.0 0.116 5508.125

S2A 0.115 0.708

TABLE IV: Comparison between S2A and GS on a random sample
(n = 500) of ego-gplus (averages over five runs).

due to the excessive running time of GS for high values of
this parameter. S2A is several orders of magnitude faster than
GS (which runs in O(n4 · c)), and its error is always smaller.

VII. CONCLUSIONS AND ACKNOWLEDGMENTS

This work provides the first polynomial-time approximation
algorithm for the graph summarization problem defined in [1].
Our algorithm exploits a novel connection between graph
summarization and the k-median and k-means problems.

The work was done during an internship of Matteo Riondato
at Yahoo Labs Barcelona, while he was a Ph.D. student at
Brown University, supported in part by grant NSF BIGDATA
Award IIS 1247581.

REFERENCES

[1] K. LeFevre and E. Terzi, “GraSS: Graph structure summarization,” in
SDM. SIAM, 2010, pp. 454–465.

[2] S. Navlakha, R. Rastogi, and N. Shrivastava, “Graph summarization with
bounded error,” in SIGMOD, 2008, pp. 419–432.

[3] J. H. Ward, “Hierarchical grouping to optimize an objective function,”
J. Amer. Statist. Assoc., vol. 58, no. 301, pp. 236–244, 1963.

[4] K. Jain and V. V. Vazirani, “Approximation algorithms for metric facility
location and k-median problems using the primal-dual schema and
Lagrangian relaxation,” J. ACM, vol. 48, no. 2, pp. 274–296, 2001.

[5] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and
V. Pandit, “Local search heuristics for k-median and facility location
problems,” SIAM J. Comput., vol. 33, no. 3, pp. 544–562, 2004.

[6] P. Indyk, “Stable distributions, pseudorandom generators, embeddings,
and data stream computation,” J. ACM, vol. 53, no. 3, 2006.

[7] R. R. Mettu and C. G. Plaxton, “The online median problem,” SIAM J.
Comput., vol. 32, no. 3, pp. 816–832, 2003.

[8] A. Aggarwal, A. Deshpande, and R. Kannan, “Adaptive sampling for
k-means clustering,” in APPROX-RANDOM, 2009, pp. 15–28.

[9] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theor.,
vol. 28, no. 2, pp. 129–137, 1982.

[10] D. Arthur and S. Vassilvitskii, “k-means++: the advantages of careful
seeding,” in Proc. of 18th SODA, 2007, pp. 1027–1035.

