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ABSTRACT

Many tasks in data mining and related fields can be for-
malized as matching between objects in two heterogeneous
domains, including collaborative filtering, link prediction,
image tagging, and web search. Machine learning techniques,
referred to as learning-to-match in this paper, have been
successfully applied to the problems. Among them, a class
of state-of-the-art methods, named feature-based matrix fac-
torization, formalize the task as an extension to matrix fac-
torization by incorporating auxiliary features into the model.
Unfortunately, making those algorithms scale to real world
problems is challenging, and simple parallelization strategies
fail due to the complex cross talking patterns between sub-
tasks. In this paper, we tackle this challenge with a novel
parallel and efficient algorithm for feature-based matrix fac-
torization. Our algorithm, based on coordinate descent, can
easily handle hundreds of millions of instances and features
on a single machine. The key recipe of this algorithm is
an iterative relaxation of the objective to facilitate paral-
lel updates of parameters, with guaranteed convergence on
minimizing the original objective function. Experimental
results demonstrate that the proposed method is effective
on a wide range of matching problems, with efficiency signif-
icantly improved upon the baselines while accuracy retained
unchanged.

1. INTRODUCTION

Many application tasks can be formalized as matching
between objects in two heterogeneous domains, in which
the association between some objects and information on
those objects are given. We refer to the objects from one
domain as queries and those from the other as targets, with
the distinction usually clear from the context. For example,

*These authors contributed equally to this work. The short
version of this paper [22] was published in ICDM 2014.

in collaborative filtering, given some items, one manages
to find the users who have best match to the items, by
using the preference of some users on some items as well as
the features of users and items. Another example is image
tagging, in which one wants to associate tags (keywords)
with images based on some tagged images as well as the
features of tags and images. Recent years have observed
a great success of employing machine learning techniques,
referred to as learning-to-match in this paper, to solve the
matching problems.

Among existing approaches, a family of factorization mod-
els that make use of feature spaces to encode additional
information, stand out as state-of-the-art in matching tasks.
Examples include factorization machines |17} [18], feature-
based latent factor models for link prediction (3| [14], and
regression-based latent factor models [1]. We refer to this
class of methods as feature-based matrix factorization (FMF)
in this paper. The basic idea of FMF is to formalize the task
as extension to plain matrix factorization for incorporating
the features of objects into the model. In this way, one can
make a full use of available information in the task to improve
the accuracies. In fact, FMF is the best performer on many
real world matching tasks. In collaborative filtering, FMF
models using user feedback [9} [10], attribute [1}, [23], and
content [3, 24] have outperformed other models including
plain matrix factorization. In web search, FMF models for
calculating matching scores (relevance) between queries and
documents have significantly enhanced relevance ranking [25]
26]. FMF models have also been successfully employed in
link prediction |14], and have been adopted by the champion
teams in KDD Cup 2012 [5, [18].

The learning of the FMF model can be conducted with a
coordinate descent algorithm or a stochastic gradient descent
algorithm. Since a matching problem is usually of a very
large scale, with hundreds of millions of objects and features
or more, it can easily become hard for FMF to manage.
It is therefore necessary to develop a parallel and efficient
algorithm for FMF. This is exactly the problem we attempt
to address in this paper.

Making FMF scalable and efficient is much more difficult
than it appears, due to the following two challenges. First,
training requires simultaneous access to all the features, and
thus the existing techniques for parallelization of matrix fac-



torization [8, |27, [29] are not directly applicable. Second, the
computation complexity of the coordinate descent algorithm
is still too high, and it can easily fail to run on a single
machine when the scale of problem becomes large, calling
for techniques to significantly accelerate the computation.
By making use of repeating patterns, the least-squares and
probit losses can be scaled up for coordinate descent [19],
but it does not provide guarantee for any general convex loss
functions. Existed parallel coordinate descent algorithms,
such as 6] and [15], due to the complex feature dependencies,
cannot be directly applied here. The Hogwild! [16] algorithm
for parallel stochastic gradient descent can be applied here,
but it is a generic algorithm and thus is still inefficient for
FMF.

In this paper, we try to tackle the two challenges by devel-
oping a parallel and efficient algorithm tailored for learning-
to-match. The algorithm, referred to as parallel and efficient
algorithm for learning-to-match (PL2M), parallelizes and
accelerates the coordinate descent algorithm through (1) it-
eratively relaxing the objective to facilitate parallel updates
of parameters, and (2) avoiding repeated calculations caused
by features. The main contributions of this paper are as
follows.

e We propose the parallel and efficient algorithm for
feature-based matrix factorization, which iteratively
relaxes the objective for parallel updates of parame-
ters, and neatly avoids repeated calculations caused by
features, for any general convex loss functions.

o We theoretically prove the convergence of the proposed
algorithms on minimizing the original objective func-
tion, which is further verified by our extensive experi-
ments. The parallel algorithm can automatically adjust
the rate of parallel updates according to the conditions
in learning.

e We empirically demonstrate the effectiveness and effi-
ciency of the proposed algorithm on four benchmark
datasets. The parallel algorithm achieves nearly lin-
ear speedup and the proposed acceleration helps the
parallel algorithm run about 5 times faster than the
Hogwild! [16] algorithm on average, using 8 threads.

Given the importance of the FMF models and difficulty of
their parallelization, the work in this paper represents a
significant contribution to the study of learning to match. To
our best knowledge, this is the first effort on the scalability
of the general FMF models.

The rest of the paper is organized as follows. Section
gives a formal description of the generalized matrix factoriza-
tion and Section [3| explains the efficient coordinate descent
algorithm. Section E| describes parallelization of the coor-
dinate descent algorithm. Related work is introduced in
Section Experimental results are provided in Section @
Finally, the paper is concluded in Section [7]

2. LEARNING TO MATCH

In this section, we give a formal definition of learning-to-
match and a formulation of a feature-based matrix factor-
ization. We also present our motivation of parallelizing this
learning task.

2.1 Problem Formulation

queries map to latent
feature spaces  space by P latent space
X1,X2, . Xg————— Uy, Uy, ..., Ug
matching
targets re Y..
g map to latent SCOTE Y,
— space by Q T

Zl,Zz, ...,Zp » l,Vz, ...,Vp

Figure 1: The general feature-based matrix factor-
ization model for learning-to-match, which we have
accelerated and parallelized in this paper.

Learning-to-match can be formally defined as follows. Let
X = [X1,X2 - - Xg4] be the instances in the query domain and
Z = [Z,,Z;---Z,)] be the instances in the target domain,
where X; € R™! and Z; € R™*! are query and target
instances (feature vectors) respectively. For some query-
target pairs, the corresponding matching scores {Y;|(4, ) €
O} are given as training data, where O is the set of indices
for all observed query-target pairs. Our problem is to learn
to predict the matching score Y;; = f(X;, Z;) between any
pair of query 7 and target j.

The setting is rather general and it subsumes many ap-
plication problems. For example, in collaborative filtering,
a user’s preference over an item can be interpreted as the
matching score between the user and the item. In social
link prediction, the likelihood of link between nodes on the
network can be as regarded as the matching score between
the nodes. Web search, in general document retrieval, can
also be formalized as a problem of first matching between a
given query and documents and then ranking of documents
based on the matching scores.

The goal of learning-to-match is to make accurate pre-
diction by effectively using the information on the given
relations between instances (e.g., similar users may prefer
similar items), as well as the information on the features of
instances (e.g., users may prefer items with similar proper-
ties).

2.2 Model

The query and target instances (feature vectors) are in two
heterogeneous feature spaces, and a direct match between
them is generally impossible. Instead, we map the feature
vectors in the two domains into a latent space and perform
matching on the images of the feature vectors in the latent
space. We calculate the matching score of a query-target
pair as

Yi; =U/V;, U, =PX,,V, = QZ, (1)

where P € R¥™"™ and Q € R*™ are transformation matrices
that map feature vectors from the feature spaces into the
latent space. U; and V; are latent factors of query instance 4
and target instance j. In this paper, we use U; to denote the
ith column of matrix U and V; to denote the jth column
of matrix V. We refer to the model in Equation as
the model of feature-based matrix factorization. The model
can be also interpreted as linear matching function of latent
factors, in which the latent factor of each instance is also



Algorithm 1: Coordinate Descent Algorithm for Learn-
ing to Match

randomly initialize P, Q;
U+ PX,V + QZ, Y «+ UTV {calculate U, V, Y}
while not converge do
for k=1 toddo
for s=1 ton do
T Zi,je@ giijinS
Yy B jeo V%szzs
APy, + T(LU, Y, PkS7 a, )‘)
Pks — Pks + APks
end
end
U = PX {recalculate buffered U}
update Q in the same way as P
end

linearly constructed from feature vectors. The query latent
factor U; can be expressed as U; = 37| X;sP,. The target
latent factor V; can be expressed similarly.

The model, as shown in Figure [} contains many exist-
ing models of feature-based matrix factorization as special
cases [17}]18, 3} 14} |1]. When no “informative” features are
available for objects of both domains, the feature matrices
contain only the indices of the objects. Clearly, in such
cases X and Z become identity matrices of sizes ¢ X ¢ and
p X p, the feature-based matrix factorization model naturally
degenerates to the plain matrix factorization [11].

The objective of the learning task then becomes

P,Q=argming o »_ I(Yi;,Yy) +QP)+ Q) (2)
1,7€0O

Here Z(Y,-j,Y,-j) is a strongly convex loss function that
measures the difference between the prediction Y;; and the
ground truth Y;;. The loss function [ can be square loss for
regression

l(Yij,Yij) = (Y” - Yij)2 (3)
or logistic loss for classification
(Y5, Yi;) = Yoy In(1+e Y9) 4+ (1-Yi;) In(1+e¥i) (4)

where Y;; € [0, 1]. Q is a regularization term based on elastic
net [30] which includes l> (ridge) and {; (lasso) regularization
as its special cases.

A A
Q(P) = o|[P|l: + ZIPlz, 2AQ) =allQll: + FIQIE (5)

2.3 Performance

The use of features in learning-to-match is crucial for the
accuracy of the task. Usually an FMF model, when properly
optimized, can produce a higher accuracy in prediction than a
model of plan matrix factorization (MF). This is because the
FMF model can leverage more information for the prediction,
particularly the feature information, while the MF model can
only rely on relations between instances which are usually
very sparse. For example, in the task of recommendation (3],
only about 0.1% entries are observed. In Tencent Weibo

U and V are not model parameters; they are only auxiliary
variables determined by P and Q.

Algorithm 2: Efficient Algorithm for Learning to Match
randomly initialize P, Q A
U<+ PX, V + QZ, Y + UTV {calculate U, V, Y}
while not converge do

for k=1 to d do

for i =1 to q do

Gri < Ljco, 9id Vii

Hoi e BS. o0, Vi,

end

for s=1 ton do

x4y GriXis

y >, HuiX3,

APy, + T(z,y, Prs,a, A)

Pis < Prs + APy

for i =1 to q do
| Gri <+ Gii + XisAPgsHy;

end

end

end

U = PX {recalculate buffered U}

update Q in the same way as P

end

dataset at KDD Cup 2012, about 70% of users in the test
set have no following records in the training set [4]. As a
result, MF cannot achieve satisfactory results in the tasks,
while FMF models give the best results.

In fact, it has been observed the FMF models (with dif-
ferent types of features used) achieve state-of-the-art results
on many different tasks, outperforming the models of MF
with big margin. For example, in collaborative filtering, user
feedback (SVD++) [9], user attribute [1], and product at-
tribute [23| are incorporated into models to further improve
the accuracies in prediction. In web search [25| [26], term
vectors of queries and documents are used as features to
significantly improve relevance ranking. FMF models also
give the best results in link prediction in KDD Cup 2012 14}
3, 14].

2.4 Scalability

The success of the FMF models strongly indicates the
necessity of scaling up the corresponding learning algorithms,
given that the existing algorithms still cannot easily handle
large datasets. By making use of repeating patterns, the
least-squares and probit losses can be scaled up for coordi-
nate descent [19], but it does not guarantee for any general
convex loss functions. Other algorithms of parallel coordinate
descent, such as 6] and [15] cannot be directly applied to
FMF, because it is difficult for them to handle complex fea-
ture dependencies in FMF. The Hogwild! [16] algorithm for
parallel stochastic gradient descent can be applied here, but
it is a generic algorithm and thus is still inefficient for FMF.
To our best knowledge, our work in this paper is the first
effort on scalability of learning-to-match, i.e., feature-based
matrix factorization.

3. EFFICIENT ALGORITHM FOR LEARN-
ING TO MATCH

In this section, we propose an acceleration of the coordi-
nate descent algorithm for solving the feature-based matrix
factorization problem. We prove the convergence of the ac-



celerated algorithm, and we also give its time complexity at

Section

3.1 Coordinate Descent Algorithm
Let gi; = ‘9 l(Y”,Y”) be the gradient of each instance

over predictlon and [ be constant of [, such that,

Wy +dy) < U(y) +U'(y)dy + gdy2 (6)

That is, 8 = sup, 8 P l(y, ij)- We can exploit the standard
technique to learn the model using coordinate descent (CD),
as shown in Algorithm Here, T is defined using the
following thresholding function to handle optimization of /1
norm

max(— AW+ , —’U)) w — T4+ Aw Z O
T(x7y7w7a,>‘) = . T+ j;);a z++)\/>u 0
min(—*#2E= —w)  w — LR <

(7
The regularization term only affects the result through
function 7', and thus makes most part of the algorithm inde-
pendent of regularization. Note that we implicitly assume
Y;; is buffered and kept up to date, when g;; is needed in
the algorithm.
The time complexity of one update in Algorithm [I] is
o(d|o|( HXHO + HZHO )), where || X||o and ||Z]|o denote numbers
of nonzero entrles in feature matrices X and Z, g and p denote
numbers of query and target instances, and (”)2”0 + HZJO)
denotes average number of nonzero features for each pair
(¢,7) € O. We note that the time complexity is the same
as the time complexity of stochastic gradient optimization
for Equation (2)). From the analysis, we can see that the
time complexity of algorithm is increased by order of O(d|O|)
when average number of nonzero features increases. This
can greatly hamper the learning of matching model, when a
large number of features are used.

3.2 Acceleration

We give an efficient algorithm for learning-to-match by
avoiding the repeated calculations caused by features. There
is only a little works focused on the acceleration of the FMF
models. The most relevant one is that scaling up some specific
coordinate descent by making use of repeating patterns of
features |19|. However, it is specialized for the least-squares
and probit losses. Although the idea is similar to the avoiding
repeated calculations in our work, we extend the idea to any
general convex loss functions.

One can see that there exist repeated calculations of sum-
mations for the same query or target when calculating x and
y in Algorithm [1} which gives us a chance to speed up the
algorithm. We introduce two auxiliary variables Gy; and Hy;
calculated by

Gri= > 9iVij, Hu=BY Vi, (3)

Jj€0; Jj€0;

where O; = {j|(¢,7) € O} is the set of observed target in-
stances associated with query instance i¢. The key idea of
efficient CD is to make use of Gx; and Hy; to save duplicated
summations in Algorithm [I} Since the gradient value g;; is

?In this paper, all matrix operations in algorithms have
taken the advantages of sparsity, e.g. summations are all
over nonzero entries implicitly. So do the time complex
analysis and implementations of all algorithms.

changed after each update, it is not trivial to let Gg; un-
changed. Our algorithm keeps making G; updated to ensure
the convergence of the algorithm. The efficient algorithm for
learning-to-match is shown in Algorithm

3.3 Convergence of Algorithm

Next, we prove the convergence of Algorithm [2] which
greatly reduces the time complexity of learning. Suppose
that the kth row of P is changed by APy,.. After the change,
the loss function can be bounded by

L(APy.) = Z (Y5 + ZAPkst’s)Vk]’aYij)

i,j€O

< Z ZYU,Y” + Z ngVkJ ZAPkS 25
7160 i,j€O
+ - Z hZ]Vk;] ZAPka 19

1,7€0

=3 (Y, Yy) +ZGM ZAPM is)
1]60
+ = ZH]CZ ZAPks 1,5

2L(APy,)

(9)

Intuitively, updating Gj; corresponds to minimizing the
quadratic upper bound L(APy.) + Q(Py,. + APy .) of the
original convex loss which is re-estimated each round. For-
mally, all the values of APy . are zero in the beginning. We
need to sequentially update Py for different s’s to minimize
L(AP.) +Q(Pg,. + APy,.). Assuming that we have already
updated Py,1 -+ Pg¢—1 and need to decide APy, we can
calculate the upper bound L as follows

L=c+ Z <sz + Z XZSAPMHM> Xis APy

s=1
1 2 2
+ 3 (; chiXit) APj,

The first order term of this equation is exactly the update
rule in Algorithm [2| Using AP} . to denote the change on
the kth row after carrying out the update, we arrive at the
following inequality

(10)

L(APZ,) + Q(Pk,: + APZ,) SL(APZ,) + Q(Pk,: + APZ,)
+ Q(Pg,. +0)
+ Q(Pg,. +0)

(11)
Note that we start from APy . = 0, and we have AP}, . =
AP}, . after the update. The inequality in Equation
shows that the original loss function decreases after each

round of update, and hence this proves the convergence of
Algorithm [2| for any differentiable convex loss function.

4. PARALLEL AND EFFICIENT ALGORITHM

FOR LEARNING TO MATCH

We propose a parallel and efficient learning-to-match al-
gorithm (PL2M) to further improve the scalability and ef-
ficiency by deriving an adaptive estimation of the conflicts



caused by parallel updates. Specifically, we consider paral-
lelizing and accelerating Algorithm [2] The statistics calcula-
tion and preprocessing steps in Algorithm [2] can be naturally
separated into several independent tasks and thus fully par-
allelized. However, there is strong dependency within P
update steps, making the parallelization of it a difficult task.
We will discuss how we solve the problem next.

4.1 Parallelization

Let S be a set of feature indices to be updated in parallel.
Assume that the statistics of Gg; is up to date as in Algo-
rithmand we want to change Py for s € S in parallel. For
simplicity of notation, we use APy . to represent the change
in Py .. The value of L after this change will be

L(APy.) = Z UYi;,Yi5)

i,je0
+ Z(Z GriXisAPps + % Z Hy X3, AP;,)
ses i i

+Z Z ZHkiXitXisAPktAPks

SEStES, t#s i
(12)

In a specific case in which X;;X;s = 0 for s # ¢;s,t € S,
the third line in Equation becomes zero. This means
that the features in the selected set do not appear in the
same instance. In such case, the loss can be separated into
|S| independent parts and the original update rule can be
applied in parallel. Not surprisingly, such condition does
not hold in many real world scenarios. We need to remove
these troublesome cross terms in the second line, by deriving
an adaptive estimation of the conflicts caused by parallel
updates, more specifically, by the inequality:

AP AP X Xis < | XuXis| (APR, + APR,)  (13)

N

With the inequality, we can bound L as follows

seES 1
1
306G S HulXal (3 [Xu)aPE,)  (14)
seS i tes
2LP(APy,.).

Obviously this new upper bound LP(APy .) can be sepa-
rated into |S| independent parts and optimized in parallel.
Moreover, the sum ), [X;¢| is common for all features
in set S and is only needed to be calculated once. With
this result, we give a parallel and efficient algorithm for
learning-to-match, shown in Algorithm

4.2 Convergence of Algorithm

The relaxation of L(APy,.) into LP(APy ) is performed
iteratively in the optimization, and it still attempts to op-
timize the original objective as in Equation , which is
a case much analogous to Expectation-Maximization algo-
rithm in finding a maximum-likelihood solution. Let AP .
be the change in Py, . after each parallel update. Since each
parallel update optimizes EP(AP;W), we have the following

Algorithm 3: Parallel Algorithm for Learning to Match
randomly initialize P, Q A
U<+ PX, V + QZ, Y + UTV {calculate U, V, Y}
while not converge do

schedule a partition P of {1,2,--- ,n}

for k=1 to d do

for i =1 to q in parallel do

Gri < Ljco, 9id Vii

Hiyi szeoi Vij

end

for each index set S € P do

for : =1 to q in parallel do
| Chi = 2 es 1 Xl

end

for s € S in parallel do

Y — > Hiil Xis|Chra
APy < T(z,y, Prs,a, A)
Pis < Prs + APy

end

for i =1 to q in parallel do
| Gri < Gri + ), cq XisAPgsHy

end

end

end

U = PX {recalculate buffered U}
update Q in the same way as P
end

inequality
-Z/(APZ,) + Q(Pk,: + APZ,)
S-Z/p(APZ,) + Q(:Pk,: + AP:,)
<L”(0) + Q(Pg,. +0)
=L(0) + Q(Py,. + 0)

(15)

It indicates that L decreases after each parallel update. It
then follows that the parallel procedure for optimizing the
original loss function in Algorithm [3| always converges.

The update rule depends on the statistics Cri = Y, o [Xit|-
With the following notation

Y He X+ A
Y Hei G Xas| + A

MNks (16)
It can be shown that the parallel update of APy is shrunken
by mrs compared to sequential update. Intuitively nis de-
pends on the co-occurrence between features s € S. When
features in S rarely co-occur, nxs will be close to one, which
means that we can update “aggressively”. When features
in S co-occur frequently, nis will get small and we need to
update more “conservatively”. In an extreme case in which
no feature co-occurs with each other, nrs = 1 and we get
perfect parallelization without any loss of update efficiency.
In another extreme case in which we have |S| duplicated
features ( X;s = X4 forall s,t € S ), mis = Tép which is
extremely conservative given the size of S. The advantage
of our algorithm is that it automatically adjusts its “level of
conservativeness” by the condition in learning, and thus it
always ensures the convergence of the algorithm regardless
of the number of threads and the nature of dataset.



The changes in loss function can be analyzed accordingly.
Let us consider the simple case in which a = 0 and only Iz
regularization is involved. The change of loss after parallel
update can be bounded by

L(AP} ) + Q(Py,. + AP}.) — L(0) — Q(Py,. +0)
GriXis)?
<_ 1 3 (X GriXis)
4ses > Hei| Xis|Cri + A (17)

1 (> Gkixis)2

"1 ;S"’“ >, HuXZ, + A

As this inequality indicates, compared to the ideal case in
which features do not co-occur, each parallel update’s contri-
bution to the loss change is scaled by 7,s. The above analysis
also intuitively justifies that ngs controls the efficiency of the
update.

4.3 Time Complexity

The time complexity of the efficient algorithm (Algo-
rithm [2)) is only of O(d(||X]lo + |Z|lo + |O])). It is linear
to numbers of nonzero entries of feature matrices and num-
ber of observed entries of Y. Recall the time complexity of
the coordinate descent algorithm (Algorithm , which is
O(d\(9|(“XqHO + HZJO)).

The speedup on P updates in Algorithm [2|is as follows:

OWOIZ) _ 0]

OWIX]o) ) (18)

This corresponds to average number of observed target in-
stances per query instance. Similarly, on the Q updates, the
speedup is about O(@) times. Therefore, the overall speedup
of Algorithm 2] over Algorithm [I]is at least,

O(do|(12e + 1Z1))

speedup :O(d(HXHO +1Z)|o +10]))
19
zmin{O(%%O('%)} (19)

=0(|0]/(q + p))

In application tasks, this can be at level of 10 to 100 such as
collaborative filtering and link prediction. When ||X|lo+|Z||o
is close to (or smaller than) |O] (datasets like Yahoo! Music,
Tencent Weibo and Movielens-10M), our algorithm runs
as fast as the algorithm of plain matrix factorization even
though it uses extra features.

For the complexity of the parallel and efficient learning-
to-match algorithm (PL2M) described in Algorithm [3] using
K threads to run the algorithm, the computation cost for
one round update is O(7=d(||X[lo + || Z][o + |O])). It is due
to the fact that all parts of the algorithm are parallelized.
This analysis does not consider the synchronization cost. In
real world settings, we need to take synchronization cost into
consideration, the corresponding time complexity becomes
O(%d((|Xllo+]|Zl0)(1+0)+|O])), where o denotes variance
of computation costs by parallel tasks. Assume that we have
K tasks and the time costs of the tasks are T1,7T5, - Tk.
We define 0 = max;(T;)/Mean;(T;), since the training is
delayed by the slowest task. To achieve maximum speedup,
we need to schedule the tasks well such that the load of each
task is average, which is always feasible when |S|, p, and ¢

are large. Therefore, our algorithm can gain almost K times
speedup.

In real world applications, there is a trade-off between
the size of parallel coordinate set |S| and the parameter o,
especially when different features have different levels of
sparsity in the dataset. When we increase the size of parallel
coordinate set |S|, we can divide the task into K threads in
a more balanced way. On the other hand, nis will decrease
as we increase |S|, making the update more conservative.
Thus a parallel coordinate set needs to be chosen to balance
convergence and acceleration. In fact, we need to empirically
choose S such that each instance is covered by only a few
nonzero features and the task size is large enough to run in
a fairly balanced way.

In this paper, we fix |S| and randomly partition elements
from the feature indices to generate a set of disjoint subsets S
in each round. We note that there can be more sophisticated
scheduling strategies to select S, which is beyond the scope of
this paper and can be an interesting topic for future research.

S. RELATED WORK

MF models |11] are arguably the most successful approach
to learning-to-match. They have been applied to a wide
range of real world problems, especially FMF models, which
achieve state-of-the-art results, outperforming the models of
MF in many different tasks, with different types of features
used. In collaborative filtering, user feedback information
(SVD++) [9], user attribute information [1], and product
attribute information [23] are incorporated into models to fur-
ther enhance the accuracies in prediction. In web search [25]
26|, term vectors of queries and documents are utilized as
features to significantly improve relevance ranking. FMF
models also give the best results in link prediction in KDD
Cup 2012 [14] |3 [4]. These works demonstrate the effec-
tiveness of the learning-to-match models, but also create
necessity for parallelization of the learning algorithms.

There has been much effort on parallelizing the process of
plain matrix factorization. For example, Gemulla et al. [§]
propose a method of distributed stochastic gradient descent
for MF. Yu et al. [27] introduce a parallel coordinate descent
algorithm for MF. An alternating least square method is
proposed for MF as well |28]. Recently, Zhuang et al. [29]
improve the efficiency of parallel stochastic gradient descent
for MF by making a better scheduling of updates. Liu et
al. [13] propose a distributed algorithm for nonnegative ma-
trix factorization for web dyadic data analysis. The method
of Probabilistic Latent Semantic Indexing is parallelized for
Google news recommendation [7]. However, all the models
on parallelizing plain matrix factorization replies on the fact
that the rows and columns can be naturally separated and the
parameters can be independently updated, and therefore can-
not work on FMF due to the complex feature dependencies
in the updating steps.

There is only a little work focusing on acceleration of
coordinate descent for FMF. The most recent one scales up
coordinate descent by making use of repeating patterns of
features [19]. However, it is specialized for the least-squares
loss and probit loss. Although the idea of avoiding repeated
calculations is similar, our algorithm takes a completely
different approach and can handle any general convex loss
functions. Other algorithms of parallel coordinate descent,
such as [6] and |15] cannot be directly applied to FMF,
because it is difficult for them to handle complex feature



Table 1: Detai

Is of 4 Datasets

Dataset qgxXp 1XIlo | |Z]lo |O] | Task Available Features

Yahoo! Music 1M x 0.6M | 263M | 1M | 250M | Collaborative Filtering | User Feedback [9], Taxonomy

Tencent Weibo 2M x 5K 55M | 83K | 93M | Social Link Prediction | Social Network, User Profile,
Taxonomy, Tag

Flickr 0.66M x 20K | 451M | 20K | 39M | Image Tagging MAP, Sift Descriptors of Image

Movielens-10M | 69K x 10K 10M | 10K | 9M | Collaborative Filtering | User Feedback [9]

dependencies in FMF.

As general parallelization technique, the Hogwild! algo-
rithm [16] can be applied to our problem. However, its time
complexity is O(d|O|(Xlo 4 @)), the same as Algorithm
due to the repeated ca(iculations. Using the same number
of threads, as analyzed in time complexity sections, it is
theoretically O(|O|/(q + p)) times slower than our parallel
algorithm. In experiments, our parallel algorithm runs aver-
agely about 5 times faster than Hogwild!. Another thread
of related work is parallelization of coordinate descent algo-
rithms. There have been studies on parallelizing coordinate
descent for linear regression |2} [20 [21], other than matrix
factorization [27]. The convergence of these algorithms de-
pends on the spectrum of covariance matrix, which changes
in each round in our learning setting (due to the changes
in U and V), and thus the algorithms cannot be directly
applied to our problem. Our algorithm makes use of parallel
update to minimize an upper bound re-estimated each round
to ensure convergence, which can also be viewed as a kind of
minorization-maximization algorithm [12].

6. EXPERIMENTS

In this section, we introduce our experimental results on
several matching tasks using benchmark datasets. We first
conduct comparison on accuracies between feature-based
matrix factorization and plain matrix factorization. We then
make comparisons on accuracies and efficiencies between
our method of parallel learning-to-match and the baselines,
including Hogwild! [16]. Finally, we conduct analysis on the
efficiency of our parallel learning algorithm.

6.1 Datasets

Four datasets representing different types of learning-to-
match tasks are chosen. Details of the datasets are summa-
rized in Table [

The first dataset is Yahoo! Music Trackl [l from the Ya-
hoo! Music website. The dataset is among the largest public
datasets for collaborative filtering. We use the official split of
the dataset for experiments. As features, we use the implicit
feedback of users [9] as well as the taxonomical information
between the tracks, albums and artists, in addition to the
indicators of users and tracks. Because it is an item rating
dataset, we choose square loss as the loss function and use
Root Mean Square Error (RMSE) as evaluation measure.

The second dataset is Tencent Weibo (microblog)ﬂ for
social link prediction. The task is to predict a potential list
of celebrities that a user will follow. The dataset is split into
training and test data by time, with the test data further
split into public and private sets for independent evaluations.
We use the training set for learning and the public test set

3http://kddcup.yahoo.com/datasets.php
*http:/ /kddcup2012.org/c/kddcup2012-trackl/data

for evaluation. We use logistic loss as the loss function and
MAPG@QK as evaluation metric, which is officially adopted in
the KDD Cup competition El The matrix data is extremely
sparse, with only on average two positive links per user.
Furthermore, about 70% of users in the test set have no
following records in the training set. However, there are lots
of additional information available, including social network
and interaction (i.e., retweeting and commenting) records,
profiles of users, categories of celebrities, and tags/keywords
of users. The information is used as features of the task.

The third dataset is for automatic annotating images
crawled from Flickil The dataset contains 0.65 million
images and each image is associated with on average four
tags. We select the 20,000 most frequently occurring tags as
the tag set. We randomly select 10,000 images as test set
and use the rest of images as training set. We use the bag-of-
words vector of SIFT descriptors as features for images, and
indicator vectors as features for tags. Logistic loss is chosen
as the loss function. In testing, we generate a rank list of
tags and use P@QK(Precision at K) and MAP as evaluation
metrics.

The fourth dataset is also for collaborative filtering, pro-
vided by Movielensﬂ We use the official split of dataset for
experiments. This dataset is added because Hogwild! cannot
run on Yahoo! Music dataset due to its high time complex-
ity. In addition to the indicators of users and movies, the
implicit feedbacks of users |9] are used as features. Similar
to Yahoo! Music dataset, we choose square loss as the loss
function and RMSE as evaluation metric.

6.2 Experiment Setting

We have implemented our parallel and efficient algorithm
for learning-to-match (PL2M) using OpenMPﬂ The experi-
ments are conducted on a machine with an Intel Xeon CPU
E5-2680 (8 cores, supporting 16 threads at 2.70GHz, 128GB
memory). We utilize up to 15 working threads and reserve
one thread for scheduling.

We compare the performance of PL2M with those of serial
algorithm for learning-to-match algorithm (denoted as L2M)
and the Hogwild! algorithm [16]. To simplify the notations,
here we use PL2M-T to refer to the parallel algorithm for
learning-to-match with parallel set |S| = T (e.g PL2M-5K
means the parallel algorithm with |S| = 5,000). Hogwild! is
the only one that can be directly applied to our problem as
mentioned in Section [5] We have also implemented Hogwild!
using OpenMP. All matriz operations mentioned in the algo-
rithms take the advantages of data sparsity. PL2M, L2M ,
and Hogwild! share the same codes of elementary operations.

http://kddcup2012.org/c/kddcup2012-
trackl/details/Evaluation
Shttp://www.flickr.com
"http://www.movielens.org/
Shttp://www.openmp.org
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Table 2: Results of Social Link Prediction (Tencent
Weibo) in MAP

Setting MAP@1 | MAPQ@3 | MAP@5
Popularity 22.54% | 34.65% | 38.28%
L2M-SNS 24.10% 36.56% 40.19%
PL2M-500-SNS | 24.18% 36.65% 40.27%
L2M-ALL 25.44% 38.02% 41.63%
PL2M-500-ALL | 25.52% 38.14% 41.75%

We empirically set A = 1,a = 0.1 and d = 64 for L2M and
PL2M through all our experiments. To make fair comparison,
the parameters of Hogwild! including learning rate, A\ and «
are tuned with cross validation on training set.

6.3 Usefulness of Features

We make comparison between FMF and MF to investigate
the effectiveness of the features. We first compare FMF (by
the algorithm of L2M) and MF in terms of test RMSE on the
Yahoo! Music dataset in Figure From the result, we can
find that the FMF model converges faster and achieves better
results than the MF model. This result is consistent with
the result reported in [9} |18] and confirms the importance of
using features in this problem. The test error first decreases
but increases again in different rounds of training, indicating
that training can stop at about 5 rounds.

The results of Tencent Weibo dataset are shown in Table 2l
Since MF gives similar performance as the popularity based
algorithm that only considers the popularity of each target
node, and thus the result is not reported. Here the suffix ALL
stands for the FMF model using all the available features
shown in Table [I} We also evaluate the performance of the
FMF model with only social network information, with suffix
SNS. From Table 2] we can see that this dataset is extremely
biased toward popular nodes. However, it is still possible to
improve the results using social network information, and the
auxiliary features can help to achieve the best performance.
Note that PL2M-500-ALL has achieved the best result in
Tencent Weibo dataset (actually our method is the same as
the champion system on this dataset [4]).

The performance on Flickr test set is shown in Table
Because training and test images do not overlap, we cannot
use MF to make prediction, and thus we adopt the use of
popularity scores as a baseline. From the result, we can find
that FMF can improve upon the popularity method, and
assign relevant tags using image content features.

The test RMSE curves of different algorithms on Movielens-
10M dataset are shown in Figure From the result, we
can find that the FMF model converges faster and achieves
better results than the MF model. This result demonstrates
the importance of using features in this problem. The test
error first decreases but increases again in different rounds
of training, which indicates that training can be stopped at

Table 3: Results of Image Tagging (Flickr) in Preci-
sion

Setting MAP pPa@i1 pa3
Popularity | 3.96% | 4.63% | 4.08%
L2M 7.18% | 11.05% | 8.76%
PL2M-50 7.59% | 11.86% | 9.19%

about 7 rounds.

6.4 PL2M versus L2M

We make comparison between PL2M and L2M in terms of
accuracy and efficiency.

As shown in Figure Table and Figure
PL2M always gives comparable or even better test errors as
L2M, indicating that PL2M makes no sacrifice on accuracy
in the parallelization.

Figure [2| gives the training loss curves of PL2M and L2M.
From the figure, we can observe that PL2M always converges
following the lower bound given by L2M at the beginning.
This is consistent with our theoretical result on convergence
in Section |4 That is, if PL2M and L2M start with the same
initial values, PL2M can perform at most as well as L2M.

The things get changed, however, as the training goes
on. On Tencent Weibo dataset, PL2M-500 converges slightly
better than L2M after 20 rounds. On Movielens-10M dataset,
although the training loss curves of L2M, PL2M-500, and
PL2M-50 are almost the same, the training loss of PL2M
is lower in the end. This may due to the fact that the loss
function is non-convex for P and Q. After several updates,
for example, 20 rounds, the values of P and Q are quite
different so that the two methods finally converge to different
local minimums.

From these figures, we can also observe that PL2M-50K
converges slower than PL2M-5K in Yahoo! Music dataset,
PL2M-5K converges slower than PL2M-500 on Tencent Weibo
dataset, PL2M-500 converges slower than PL2M-50 on Flickr
dateset. PL2M-500 converges a little slower than PL2M-50
on Movielens-10M dateset. These are consistent with our
previous theoretical result that smaller |S| leads to faster
convergence.

6.5 PL2M versus Hogwild!

We make comparison between PL2M and Hogwild!. Since
Hogwild! is based on stochastic gradient descent, some
parameters such as learning rate need to be tuned. After fine
tuning the parameters using cross validation on the training
set for Hogwild!, including learning rate, Iy coefficient A, and
l1 coefficient «, we have obtained its performance in Table
[ including test error, running time of one round of training,
and number of rounds needed to get the best test error. Both
Hogwild! and PL2M use 8 threads.

We can see that the running time for each round of PL2M
is much shorter than that of Hogwild!, while their test errors
are similar. The difference of running time on Tencent Weibo
is not as much as Movielens-10M and Flickr datasets because
they have less features. This is consistent with our theoretical
result about the time complexity in Section [3|and Section

Furthermore, Hogwild! needs more training than PL2M to
achieve its best test errors. For example, Hogwild! needs 20
rounds but PL2M needs only 7 rounds to achieve their best
test errors in Movielens-10M. Therefore, the total running
time for PL2M to get the best performance is much smaller
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Table 4: PL2M versus Hogwild! (8 threads)

Dataset Method | sec/round | rounds | test error
Tencent Weibo | Hogwild! 104.3 14 24.96%
(MAP@1) PL2M 70.1 5 25.52%
Flickr Hogwild! 1117.0 59 7.59%
(MAP) PL2M 155.0 33 7.59%
Movielens-10M | Hogwild! 162.2 20 0.8756
(RMSE) PL2M 18.5 7 0.8666

than that of Hogwild!.
6.6 Scalability of PL.2M

Finally, we evaluate the scalability of the parallel learning-
to-match algorithm (PL2M). We test the average running
time of PL2M-5K on Yahoo! Music dataset, PL2M-500 on
Tencent Weibo dataset, PL2M-50 on Flickr dataset, PL2M-
50 on Movielens-10M with varying numbers of threads and
evaluate the improvement in efficiency.

As shown in Figure[d] the speedup curves are similar on
Yahoo! Music, Tencent Weibo, and Flickr datasets, but the
curve converges earlier on the Movielens-10M dataset. This
is because that Movielens-10M is relatively smaller than
the others and PL2M-50 runs really fast on Movielens-10M,
which only needs about 18 seconds when 8 threads are used.
Although the speedup gained by parallelization is not as
much as that on other datasets, the parallel algorithm can
also provide accelerations.

On the first 3 datasets, PL2M can achieve almost linear
speedup with less than 8 threads, but the speedup gain
slows down with more threads. We observe that the work-
ing threads are still fully occupied with more than 8. We
conjecture that this turning point is due to the fact that the

number of physical cores of the machine is only 8. From the
results, we can find that PL2M is able to gain about 9 times
speedup using 10 threads, confirming the scalability of the
parallel algorithm.

In summary, the speedup gained by the parallel algorithm
is significant, and thus it can easily handle hundreds millions
of instances and features on a single machine.

7. CONCLUSION

We have proposed a parallel and efficient algorithm for
learning-to-match, more specifically feature-based matrix
factorization, a general and state-of-the-art approach. Our
algorithm employs (1) iterative relaxations to solve the con-
flicts caused by parallel updates, with provable convergence
guarantee on minimizing the original objective function, and
(2) accelerate the computation by avoiding the repeated cal-
culations caused by features, for any general convex loss
functions. As a result, our algorithm can easily handle data
with hundreds of millions of objects and features on a single
machine. Extensive experimental results show that our algo-
rithm is both effective and efficient when compared to the
baselines.

As future work, we plan to (1) extend the algorithm to
a distributed setting instead of the current multi-threading,
(2) find better scheduling strategies for making parallel up-
dates with a guaranteed bound of speedup, and (3) apply
the technique developed in this paper to the parallelization
of other learning methods, such as Markov Chain Monte
Carlo (MCMC) learning methods for learning-to-match prob-
lem.
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