
n 

 
 
 
 
 
Anagnostopoulos, C., and Triantafillou, P. (2015) Learning set cardinality in 
distance nearest neighbours. In: IEEE International Conference on Data Mining 
(IEEE ICDM 2015), Atlantic City, NJ, USA, 14-17 Nov 2015, pp. 691-696. ISBN 
9781467395038 
 
 
There may be differences between this version and the published version. You are 
advised to consult the publisher’s version if you wish to cite from it. 
 
 
 
 
 
 
 
 

http://eprints.gla.ac.uk/108932/ 
     

 
 
 
 
 
 
Deposited on: 17 August 2015 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk 



Learning Set Cardinality in Distance Nearest Neighbours

Christos Anagnostopoulos
School of Computing Science, University of Glasgow

G12 8QQ, Glasgow, UK
Email: christos.anagnostopoulos@glasgow.ac.uk

Peter Triantafillou
School of Computing Science, University of Glasgow

G12 8QQ, Glasgow, UK
Email: peter.triantafillou@glasgow.ac.uk

Abstract—Distance-based nearest neighbours (dNN) queries
and aggregations over their answer sets are important for
exploratory data analytics. We focus on the Set Cardinality Pre-
diction (SCP) problem for the answer set of dNN queries. We
contribute a novel, query-driven perspective for this problem,
whereby answers to previous dNN queries are used to learn the
answers to incoming dNN queries. The proposed novel machine
learning (ML) model learns the dynamically changing query
patterns space and thus it can focus only on the portion of
the data being queried. The model enjoys several comparative
advantages in prediction error and space requirements. This is
in addition to being applicable in environments with sensitive
data and/or environments where data accesses are too costly to
execute, where the data-centric state-of-the-art is inapplicable
and/or too costly. A comprehensive performance evaluation
of our model is conducted, evaluating its comparative ad-
vantages versus acclaimed methods (i.e., different self-tuning
histograms, sampling, multidimensional histograms, and the
power-method).

Keywords-Query-driven set cardinality prediction; distance
nearest neighbors analytics; hetero-associative competitive
learning; local regression vector quantization.

I. INTRODUCTION

Given a multi-dimensional (m-d) data space, analysts
often wish to provide a focal data point in the space and
a radius around the focal point, determining a subspace
of interest. dNN queries do exactly this. They return the
subset of data points (answer set) from a data space, whose
distance from the query (focal) point are within a speci-
fied distance threshold (radius). Such queries are common
in exploratory analytics, and applications like spatial data
management GIS, CAD, bioinformatics, etc. Frequently,
analysts are in search of answers to aggregation operators
over such dNN subspaces. Imagine exploratory analytics
based on a stream of such aggregation operators over dNN
subspaces being issued, until the analyst locates the exact
subspace of interest. Note that the analyst issuing these
dNN subspace aggregation queries does not require to know
the set of actual data points in each subspace, but just the
aggregate (at least not until the final subspace of interest is
found). The answer set cardinality prediction (SCP) of dNN
queries is a typical aggregation operator. Hence, dNN SCP
is important for query-driven data exploration. In addition,
dNN SCP amounts to estimating the selectivity size of dNN
queries, which is in its own right important for dNN query

optimization. The selectivity of a dNN query is just the
fraction of the answer set cardinality out of the total number
of points in the dataset. Efficient optimization of complex
queries relies heavily on accurate SCP, i.e., prediction of the
cardinality of the intermediate answer set of a dNN query
drives the evaluation of different execution plans, deciding
if /which indices to use, the order to perform operations, etc.

Fundamentally, this work represents a drastic departure
from the state-of-the-art methods, which are data-driven in
the sense that they require to access the raw data and con-
struct structures and synopses (e.g., histograms and samples)
which will be used to answer dNN SCP. Data-driven ap-
proaches, in general, bear the high costs for constructing and
maintaining synopses and related structures. Furthermore,
the state-of-the-art approaches, as we shall qualitatively and
quantitatively elaborate shortly, are inefficient and error-
prone when used to handle dNN SCP queries. Finally, and
perhaps more importantly, data-driven approaches for dNN
SCP are not applicable in environments with sensitive data,
prohibiting the access scans over raw-data and knowledge
of raw-data updates required to build and maintain such
structures. Similarly, in situations where accesses to raw data
are costly money-wise (e.g., when datasets are maintained
in the cloud) it is highly desirable to accurately solve the
dNN SCP problem based only on the answers to a small
set of previous dNN SCP queries. Enter our work, which
offers a machine learning (ML) model for dNN SCP, based
on answers of previously executed dNN SCP queries.

II. RELATED WORK & CONTRIBUTION

Consider a set B of d-dim. real-valued data points x =
[x1, . . . , xd] ∈ Rd. The result of any dNN query depends
on the underlying distance metric (norm). The most widely
used metric is the p-norm (Lp).

Definition 1: The p-norm (Lp) distance between two
points x and x′ from Rd for 1 ≤ p < ∞, is ‖x − x′‖p =

(
∑d
i=1 |xi − x′i|p)

1
p and for p = ∞, is ‖x − x′‖∞ =

maxi=1,...,d{|xi − x′i|}.
Definition 2: Given x ∈ Rd and θ ∈ R, θ > 0, a

dNN query is represented by the vector q = (x, θ), which
retrieves all points x′ ∈ B such that ‖x− x′‖p ≤ θ.

Definition 3: Given a dNN query q = (x, θ), y ∈ N is
the cardinality of the answer set: |{x′ ∈ B : ‖x−x′‖p ≤ θ}|.



Given a data (sub)space of Rd most approaches for
predicting the cardinality of the answer set use some form
of m-d histograms. Histograms partition the data space into
buckets by inspecting the (possibly huge) underlying set B
and then estimate the probability density function (pdf) p(x).
In histograms, the estimation of p(x) is highly exploited
for SCP limited under L∞ like in [1], [2]. However, his-
tograms do not scale well with big datasets. Histograms
need be periodically rebuilt to incorporate updates (i.e.,
p(x) is updated), increasing the overhead of this approach
[9]. Further, the local uniformity assumption rarely holds
in real datasets. Hence, histogram-based approaches can
be both expensive and error-prone. Self-tuning histograms
(STHs) [3], [12], [11] were introduced to alleviate some
of the above problems. STHs estimate p(x) from scratch;
starting with no buckets and relying only on the cardinality
provided by the execution of queries, referred to as query
feedback records (QFR): given a query q with output y,
STHs learn the conditional pdf p(x|y,q). Fundamentally,
STHs limitations stem from the need to estimate p(x|y,q)
thus having to deal with the (i) high data dimensionality,
(ii) real valued domains, (iii) data variability, and (iv) the
need to make assumptions of the statistical dependencies of
data. Other histogram-based SCP methods utilize wavelets
[4], singular value decomposition [5], value transformations
[6], and entropy-based [8]. Overall, STHs and the other
advanced histogram-based approaches, are associated with
the above-mentioned problems of building and maintenance
costs and of lack of support for evaluating the volume of
the hypersphere of radius θ with center x under Lp, p 6=∞.
There are SCP methods for dNN queries under any Lp. In
[19] methods use the B set’s fractal dimensions relying on
the assumption that the density of the number of points given
a point x follows the power-law distribution with radius θ.
Sampling methods [7] have been also proposed for SCP.
They share the common idea to evaluate the query over a
small subset of B and extrapolate the observed cardinality. In
conclusion, approaches from related work are data-centric,
since they require explicit access of the data to construct
and maintain their structures, which is not applicable to our
problem, where any knowledge on the underlying data (e.g.,
p(x)) is not available for private and cost-execution reasons.

Contribution. One should rest on a definitely query-
driven approach to deal with our case. The first central
point is that we dynamically learn the query patterns p(q).
The second central point is that we extract knowledge on
how a query q and its answer set cardinality (output) y are
associated by incrementally learning the association q→ y.
To this end, we introduce a novel Machine Learning (ML)
model that learns the unknown p(q) and, in parallel, the
unknown p(y|q) for dNN queries. The third central point
is that the q → y association is learned without relying on
the underlying data distribution p(x), which is considered
totally unknown/unavailable/inaccessible. Then, we predict

the answer set cardinality ŷ of an unseen dNN query without
actually executing it. Our model swiftly adapts and learns
on-the-fly new query patterns.

Our query-driven model is based only on the pairs (q, y)
and given unseen query q returns a ŷ that is close to the
actual y. In learning phase, our model operates in two dimen-
sions. First, it adaptively quantizes the query pattern space to
discover prototypes of query patterns. This is achieved by
proposing a conditional unsupervised competitive learning
(UCL) scheme. Second, the model locally associates proto-
type queries with their output cardinality. This is achieved by
a novel local hetero-associative competitive learning (HCL)
scheme based on stochastic gradient descent. In prediction
phase, upon an unseen query, the model projects it onto a
prototype and through local quantized regression predicts its
cardinality. The major contributions are:
• An novel incremental UCL ML model for quantizing

the dNN query pattern space under any Lp;
• A novel incremental HCL ML model based on local

regression over regions of the dNN query pattern space;
• We provide comprehensive experimental results show-

casing the benefits of our model vis-à-vis the data-
centric approaches: GenHist histogram [1], ISOMER
[11], a learning framework for STHs [13] under L∞,
the power-method in [19] under any Lp and a sampling
method for SCP.

III. THE dNN SET CARDINALITY LEARNING MODEL

Overview. In the remainder, we assume normalized
points, i.e., the domain of each dimension xk is scaled
to [0, 1], and scalar θ ∈ [0, 1], thus the query space is
q ∈ Q ⊆ [0, 1]d × [0, 1]. Consider a ML model M that
estimates the SCP function F : Q→ N given training pairs
(q, y) drawn from the unknown p(q, y), i.e., y = F(q). Two
queries q,q′ ∈ Q are similar if their corresponding points
x,x′ and scalar θ, θ′ are equally-weighted close under Lp
and L1, respectively.

Definition 4: The normalized L(p,1) distance between
queries q = (x, θ) and q′ = (x′, θ′) is ‖q − q′‖(p,1) =
1
2

(
d−

1
p ‖x− x′‖p + |θ − θ′|

)
, with d−

1
p be a normalization

factor since 0 ≤ ‖x− x′‖p ≤ d
1
p .

Definition 5: Given model M and query q, we define
J(y, ŷ) as the absolute J1 and square J2 loss between esti-
mated ŷ and actual y: J1(y, ŷ) = |y−ŷ|, J2(y, ŷ) = (y−ŷ)2.

The proposed model M learns the unknown p(q) and
unknown p(q, y) through UCL and HCL. The model learns
in an on-line fashion by performing two parallel stochas-
tic learning tasks: (i) quantization of the query space Q,
i.e., estimation of p(q), by incrementally adapting query
prototypes; (ii) on-line quantized regression (OQR) over
Y ⊆ N, i.e., estimation of p(q, y). The overall idea is to
partition the query space Q ≡ ∪Ni=1Qi into finite regions Qi
by discovering their prototypes qi. Simultaneously, in each



region locally, we associate Qi with a region Yi ⊆ Y and,
correspondingly, identify the cardinality prototype yi of Yi.
The yi prototype is used for prediction.

Conditional Unsupervised Competitive Learning. Our
goal is finding the best possible approximation (in L(p,1))
of a Q-valued random q out of a set Q = {qi}Ni=1

of (finite) N query prototypes. UCL considers a closest
neighbor projection of q to a prototype qj , which repre-
sents the j-th partition Qj satisfying Qj ⊂ {q ∈ Q :
‖q − qj‖(p,1) = minqi∈Q‖q − qi‖(p,1)}. In our case, the
number of prototypes N > 0 is completely unknown and
not necessarily constant. Prototype qj of partition Qj being
the closest to query q is the winning prototype of q, i.e.,
j = arg minqi∈Q‖q − qi‖(p,1). The expected quantization
error is: E1(q1, . . . ,qN ) = E

[
minqi∈Q‖q− qi‖(p,1)

]
. The

proposed UCL incrementally minimizes E1 with the pres-
ence of a random query q by updating the wining qj ∈ Q.
The key problem is to decide an appropriate N = |Q| value.
In the literature a variety of UCL methods exists however
not suitable for incremental implementation, because the car-
dinality of Q (resolution of quantization) must be supplied
in advance. We propose an incremental, conditional UCL
(CUCL) method over L(p,1) (a) in which the prototypes
are sequentially trained directly for incoming patterns and
(b) is adaptively growing, i.e., increases N if a conditional
criterion holds true. Given that N is not available a-priori,
CUCL minimizes E1 with respect to a threshold value ρ,
which determines the current number of prototypes N .
CUCL initiates the Q partitioning with a unique (random)
prototype, i.e., N = 1. Upon the presence of a series of
pattern pairs, CUCL locally updates the winning qj if the
condition ‖q − qj‖(p,1) ≤ ρ holds true, thus, quantizes
the local region Qj . Otherwise, q is currently considered
as a new prototype and is inserted in Q, thus, increasing
N by one. CUCL leaves the random pattern pairs to self-
determine the resolution of quantization. Evidently, high ρ
would result to coarse vector quantization (low resolution)
while low ρ yields a fine-grained quantization. Parameter ρ is
associated with the stability-plasticity dilemma also known
as vigilance in Adaptive Resonance Theory [14]. In our
case vigilance ρ represents a threshold of similarity between
random patterns and prototypes, thus, guiding CUCL in
determining when a new prototype should be formed. To
give a physical meaning to ρ, it is expressed through a set of
percentages ak ∈ (0, 1) and aθ ∈ (0, 1) of the value ranges
of each dimension xk, k = 1, . . . , d and θ, respectively. Then
ρ = ‖[a1, . . . , ad]‖p + aθ and if we let ak = aθ = a,∀k,
then ρ = a(d

1
p + 1). A high a value over high dimensional

data result to a low number of prototypes and vice versa. In
a 2-dim. Euclidean space (i.e., p = 2, d = 2) the region of
a query prototype qj ∈ [0, 1]3 is represented by a cylinder
with radius a

√
2 and height 2a. The problem for CUCL over

L(p,1) is to determine the update rules for prototypes in Q.

On-line Quantized Regression. OQR learns the joint
p(q, y) by defining an associative set of cardinality pro-
totypes Y given the quantized Q space defined by query
prototypes. Although OQR requires CUCL to priorly quan-
tize Q, we introduce an on-line, parallel HCL scheme, in
which CUCL progressively optimizes E1, while at the same
time OQR learns the specificities of a quantized, localized
regression model over the current associated domain Y.
By having quantized Q, OQR quantizes Y through a set
Y = {y1, . . . , yN} of prototypes yi, each one correspond-
ing to (query) prototype qi ∈ Q. OQR learns localized
regression models over each region Yi of prototype yi, thus,
providing a framework for SCP. Consider a random pair
(q, y) and the corresponding winning qj . The associated
y is used to implicitly quantize the corresponding Yj by
updating the associated prototype yj ∈ Y (corresponding
to qj). Nonetheless, the adaptation of yj is not a mere
quantization of Yj , but also refers to an incrementally lo-
calized learning of a regression model over the cardinalities
reside in Yj . To this end, the quantization and regression
error is expressed through J(y,F(q, yj)), i.e., loss between
actual y and localized predicted ŷ = F(q, yj). Observe that
F(q, yj) depends not only on q but also on the associated
prototype yj of the winning qj . This provides us with the
flexibility to introduce two classes of SCP functions F :
(1) one which takes into account statistical information of
the quantized Yj space; in this case F(q, yj) = yj with
j = arg minqi∈Q‖q−qi‖(p,1), and (2) one which takes into
account the dependency between cardinality and query in the
space Yj ; in this case F(q, yj ;wj) refers to a parametric
regression function with yj and q being the dependent and
predictor variable, respectively, while wj is the parameter of
the localized regression model, still needs to be trained. OQR
minimizes E2(y1, . . . , yN ) = E [J(y,F(q, yj))|qj ] subject
to j = arg minqi∈Q‖q− qi‖(p,1).

Learning Model. Since we deal with incrementally,
parallel learning of p(q) and p(q, y), both tasks (CUCL
and OQR) upon the presence of a random pair (q, y)
minimize E(Q;Y) = E1(Q) + E2(Y). Given a series of
pattern pairs, M estimates the unknown model parameter
α = {q1, . . . ,qN} ∪ {y1, . . . , yN} with qj ∈ Q being
associated with yj ∈ Y . The model progressively minimizes
E though stochastic gradient descent.

Theorem 1: Given pattern pair (q, y), model M con-
verges if the components xj = [xj1, . . . , xjd] and θj of
winning prototype qj are updated as

∆xjk = ηj
|xk − xjk|p−2(xk − xjk)

‖x− xj‖p−1p

, if 1 ≤ p <∞,

∆xjk =

{
ηjsgn(xk−xjk), if |xk−xjk| = max

`=1,...,d
{|x`−xj`|}

0, otherwise.
if p =∞, and

∆θj = ηjsgn(θ − θj) (1)



k = 1, . . . , d, sgn(·) is the signum function, and ηj ∈ (0, 1)
is the adaptive learning rate of j-th prototype depending on
the current update step.

Proof: The expected quantization error depends on the
j-th winner prototype, i.e., E1 =

∫
X ‖x − xj‖pdP (X ) +∫

S |θ − θj |dP (S) being taken over an infinite sequence of
X = {xj(1),xj(2), . . .} and S = {θj(1), θj(2), . . .}; P (X )
and P (S) is the distribution of X and S, respectively. Based
on Robbins-Monro stochastic optimization [15], the stochas-
tic sample at step t, E1(t) = ‖x(t)−xj(t)‖p+ |θ(t)−θj(t)|
should decrease with random query q(t) = (x(t), θ(t))
by descending in the negative direction of the gradient
descent w.r.t. xj and θj . The update rules are: ∆xj(t) =

−ηj(t)∂E1(t)
∂xj(t)

and ∆θj(t) = −ηj(t)∂E1(t)
∂θj(t)

where ηj(t) is
a step-size hyperbolic schedule. Both partial derivatives are
expressed in the closed form in (1) for each p-norm.

Note, {ηj(t)} defines a slowly decreasing sequence of
learning rates ηj ∈ (0, 1) satisfying

∑∞
t=0 ηj(t) = ∞ and∑∞

t=0 η
2
j (t) < ∞ [15]. Convergence in Theorem 1 means

that M estimates the optimal α; see also Theorem 3 for
stability and convergence analysis. The learning phase of
OQR is processed in parallel with the learning phase of
CUCL. Given a (q, y) the corresponding yj is updated to
estimate the function F(q, yj).

Quantization Model (QM): Here, F(q, y) = y, i.e.,
the prototype yj is used for SCP. Given an unseen q, the
predicted ŷ = yj corresponds to the winning qj of q.
The loss J(y,F(q, yj)) = J(y, yj) drives the update rule
for cardinality prototypes. We provide the adaptation rules
of yj for the two loss functions J1 and J2. Note, other
loss functions can be also adopted, e.g., the λ-insensitive
loss J(y, yj) = max{|y − yj | − λ, 0}, λ > 0 or 0-1 loss
J(y, yj) = I(y 6= yj) with I be the indicator function. We
adopt J1 because it is widely used for SCP in [1], [10], [11].

Theorem 2: Given pattern pair (q, y) and F(q, y) = y,
M converges if the associated prototype yj is updated as

∆yj = ηjsgn(y − yj) w.r.t. J1 (2)
∆yj = ηj(y − yj) w.r.t. J2 (3)

Proof: The proof is omitted here due to space limit.
The rationale behind the update rules (1) and (2) (or (3))

is that (xj , θj) is moved toward pattern (x, θ) to capture
the changes in query distribution and, simultaneously, the
cardinality prototype moves toward y to represent by a
degree of ηj the new cardinality value.

Theorem 3 (Convergence & Stability):

P (yj = mj) = 1 at equilibrium w.r.t. J1 (4)
P (yj = ȳj) = 1 at equilibrium w.r.t. J2 (5)

where mj and ȳj is the median and mean, respectively, of
the partition Yj ⊆ Y of the representative yj ∈ Y .

Proof: We report on the proof of (4). Let yj be a proto-
type corresponding to qj , which the latter quantizes the Qj .

Assume the image of Qj to subspace Yj via the estimated
function y = F(q) and consider the median mj of Yj , i.e.,
satisfying the inequalities: P (y ≥ mj) = P (y ≤ mj) = 1

2 .
Suppose that yj has reached equilibrium, i.e., ∆yj = 0,
which holds with probability 1. By taking the expectations
of both sides assuming a zero-mean property of the noise
process and replacing ∆yj with the update rule (2) we obtain

E[∆yj ] =

∫
Yj

sgn(y − yj)dP (y) = P (y ≥ yj)
∫
Yj

p(y)dy −

P (y < yj)

∫
Yj

p(y)dy = 2P (y ≥ yj)− 1.

Since ∆yj = 0 thus yj is constant, then P (y ≥ yj) = 1
2 ,

which denotes, by definition of median, that yj (at equilib-
rium) converges to the median mj of Yj . The proof of (5)
is omitted for space limitations.

Linear Model (LM): Here, F(q, y;w) = w>θ with θ =
[1, θ]. Fix a point x. We notate as local yx(θ) as the number
of points in B with distances in Lp no greater than θ from
x in a (hyper)sphere of radius θ. Let us focus on a region
Yi. We claim that if Y is partitioned into a finite (large)
number of regions Yi, the local cardinality yxi(θ) in Yi
linearly depends on radius θ. That is, we approximate the
relation between θ and y in Yi through a local line, i.e., ŷ =
wi0 +wi1θ or ŷ = w>i θ with θ = [1, θ] and local parameter
wi = [wi0, wi1]. In this case, given an unseen q = (x, θ),
the predicted cardinality ŷ = F(q, yj ;wj) = w>j [1, θ] with
j = arg minqi∈Q‖q − qi‖(p,1). The update rules refer to
learning the parameter wj given that qj is the winner of q.

Theorem 4: Given pattern pair (q, y) and F(q, y;w) =
w>θ, model M converges if the local parameter wj of the
associated winning prototype yj is updated as

∆wj = ηjsgn(y −w>j θ)θ w.r.t. J1 (6)

∆wj = ηj(y −w>j θ)θ w.r.t. J2 (7)

Proof: The proof is omitted here due to space limit.
Not surprisingly, (7) refers to a (local) stochastic gra-
dient descent variant of the Least Mean Square method
on Yj . The learning phase processes successive ran-
dom pattern pairs until a termination criterion T ≤ ε,
ε > 0. T is the L(p,1) and L1 norm between suc-
cessive estimates of prototypes and cardinalities T =∑N
i=1

(
‖qi(t)− qi(t− 1)‖(p,1) + |yi(t)− yi(t− 1)|

)
.

In prediction phase, M does not update any more the
prototypes, thus, parameter α is left untouched. We then
predict ŷ given an unseen query q = (x, θ) through
competition on the quantized Q. Firstly, we find the winning
qj ∈ Q under L(p,1); projection of q onto Q. Secondly, we
obtain the corresponding prototype yj ∈ Y . If we rely on
QM, ŷ = yj . If we rely on LM, ŷ = wj0 + wj1θ, since
the local line is learned by the (θ, y) pairs in Yj of those



queries projected onto qj . The prediction error is given by
J1 or J2.

IV. PERFORMANCE EVALUATION

The model requires O(dN) space to store the prototypes
of Q and Y . During CUCL, M finds the wining query
prototype in O(dN) time and then retrieves the associated
cardinality prototype in O(1). Since prototypes are updated
during CUCL, the learning phase requires O(d/ε) [17]
iterations. SCP requires O(d logN) assuming an one-nearest
neighbor search for the wining prototype using a d-dim.
tree structure over Q. The update given a pair requires also
O(d logN) time.

We will show that by extracting significant knowledge
from the pairs (q, y) without relying on the underlying data,
our approach achieves similar or even better prediction re-
sults than data-driven approaches. We study the performance
of M over real datasets on SCP accuracy, required training
patterns, and storage. We provide a comparative assessment
with data-centric approaches (although inappropriate to our
problem): (i) GenHist histogram [1], (ii) learning framework
for STH [13], (iii) ISOMER STH [11], (iv) the power-
method (PM) in [19], and (v) a random sampling method
using reservoir sampling [20]. The relative percentage pre-
diction error e is defined as e(y, ŷ) = J1(y,ŷ)

y = |y−ŷ|
y . This

metric is used in [4] and [13] and adopted for comparison
assessment.

Datasets & Workloads: The real dataset RS1 is taken
from the UCI Machine Learning Repository (MLR)1 con-
taining 2 · 106 real points with d ∈ {2, . . . , 6}. We use RS1
for comparison of M with PM and the sampling method.
The real dataset RS2 refers to 0.5 · 106 10-dim. real points
from the UCI MLR2. We use RS2 for comparison with
GenHist. To be aligned with the comparison with GenHist,
all points in RS2 are normalized as in the GenHist paper
[1]. RS3 refers to the Census dataset [18] from UCI MLR
consisting of 2 · 105 3-dim. points adopted for comparison
with [13] and ISOMER. We generate certain sets of query
patterns (workloads) for trainingM, i.e., training set T and
different evaluation set E thus assuring completely unseen
queries with |E| = 100|T |. The sizes of |T | is defined as
follows: |T | = γ|B| is a very small fraction γ ∈ [1‰, 1%] of
the dataset size |B|. The number of prototypes N ≤ γ|T | is
then a percentage of |T |. The converge threshold ε = 10−3

and the vigilance coefficient a ∈ {0.8, . . . , 2}%.
The workload WL1 for ISOMER, EquiHist and SpHist is

generated exactly as in [13]. In WL1, center xi, i = 1, . . . , d
is selected uniformly at random from the data range. Then,
each query is a d-dim. hyper-rectangle centered around x
and with volume 2θ at most 20% of the total volume. For
GenHist, we create two workloads WL2 and WL3 exactly

1http://archive.ics.uci.edu/ml/machine-learning-databases/00235/
2kdd.ics.uci.edu/summary.data.type.html

as generated in [1]. WL2 contains queries whose points
are chosen uniformly at random in the data domain. WL3
contains queries with points x such that (xi ≤ oi),∀i for
a randomly point o = [o1, . . . , od]

> ∈ [0, 1]d. Comparison
with the histogram-based approaches is obtained under L∞.

Models Comparison: An approach to SCP is random
sampling [7] where samples points from B randomly and
uniformly without replacement, thus obtaining the random
sample B′. The cardinality values for B′ are used as esti-
mates of the cardinality values for the entire B. We obtain B′
by adopting the reservoir sampling algorithm [20]. ISOMER
[11] uses the information-theoretic principle of maximum
entropy to approximate p(x) being consistent with the QFRs.
The learning framework of STHs in [13] uses QFRs by intro-
ducing (i) the EquiHist algorithm, which learns a fixed size-
bucket Equi-width histogram and (ii) the SpHist algorithm,
which adopts Haar wavelets and compressed sensing for
treating the histogram learning problem as a sparse-vector
recovery problem. GenHist in [1] estimates p(x) by allowing
the buckets to overlap assuming that within each bucket,
p(x) is approximated by the average data density of the
bucket. The power-method (PM) in [19] exploits the self-
similar intrinsic dimensions of B assuming that the number
of points within a radius θ of a given point x ∈ B follows a
local power law (LPLaw). SCP is achieved by pre-computing
the LPLaw for a setA ⊆ B of representative points (anchors)
xa randomly sampled from B.

The error of the sampling method shown in Figure 1(left)
is very higher than LM and QM for 2-dim. data from RS1
using a = 0.01, given exactly the same number of stored
points. Here, the sample size is |B′| = |T | and storage is
represented as a percentage γ ∈ [1‰, 8‰] of dataset size |B|
with evaluation set size |E| = 100|T |. We compare LM and
QM with EquiHist, SpHist and ISOMER using the same RS3
as used in [13]. The WL1 is generated with the exact same
way as generated in [13] based on the L∞ query generation
model in [16]. We use |T | = 1%|B| and a different
evaluation set E to compute the average error based on WL1;
|E| = 100|T |. Figure 1(right) shows error against stored
values for LM and QM (here, N corresponds to a fraction
γ|B| with γ ∈ [1‰, 8‰]), SpHist, EquiHist, and ISOMER.
Both LM and QM achieve significantly the lowest error than
the other approaches. This is due to the fact that, as SpHist,
EquiHist, and ISOMER attempt to tune a histogram with
more QFRs (training samples) (as storage capacity increases
the corresponding error decreases), LM and QM are trying
to learn and maintain significant statistical information of
those training pairs through prototypes, without focusing on
learning the underlying data distribution. We obtain the same
error for LM and QM with less training pairs, thus no need
for higher storage.

We compare LM and QM with GenHist over RS2 as used
in [1] and workloads WL2 and WL3 generated in exactly
the same way as in [1] under L∞. Figure 2 (left) shows the



error e vs. stored values (as a fraction of |B|) for d = 10
using WL2 and WL3. We vary the training set size such that
|T | = γ|B| with γ ∈ [1‰, 8‰]. The set E is different with
T and |E| = 100|T |. LM and QM outperform GenHist by
achieving at most 51% lower error for WL2 and 70% lower
error for WL3. This is attributed to the fact that LM and
QM are trained to deal with the pattern space corresponding
to WL2 and WL3. Moreover, an increase in N does not
significantly contribute to better accuracy. Hence, we could
utilize fewer prototypes to learn WL2 and WL3. We compare
the performance of LM and QM with PM under L2 with
different distributions of θ (different µθ values) and storage
capacity over 2-dim. data from RS1. Figure 2(right) shows
the impact of the mean value of θ, µθ ∈ [0.05, . . . , 0.4]
(with σ2

θ = 0.1) on error for LM, QM and PM models.
LM and QM are trained with |T | = 1%|B| and the size of
the anchors set is also |A| = 1%|B| for PM. We create a
different evaluation set E with |E| = 100|T |. Our models
achieve very lower error than PM for all µθ values and
utilizing at most 30% of |T |. Our models do not depend
on µθ, since their main purpose is to learn the association
of θ with y given a region of points. On the other hand, PM
stores all anchor points (randomly sampled from B) and
obtains error which progressively increases as µθ increases
too. This is due to the fact that PM depends on θ (the major
characteristic of the LPLaw) and the SCP is based on the
LPLaw coefficients of each anchor point.
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Figure 1. (Left) Error e for LM, QM and Sampling vs. storage (% of
|B|), a = 0.01, under 2-dim. data from RS1; (right) error e for ISOMER,
SpHist, EquiHist, LM and QM against storage (% of |B|), a = 0.01 using
WL1 under 3-dim. data from RS3.
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Figure 2. (Left) Error e for LM, QM and GenHist against storage (%
of |B|), a = 0.01 under 10-dim. data from RS2 using WL2 & WL3;
(right) error e for LM, QM and PM against mean µθ (σ2

θ = 0.1) with
|T | = |A| = 1%|B| under 2-dim. data from RS1.

V. CONCLUSIONS

We introduce a ML model for SCP of dNN queries achiev-
ing (i) incremental learning of the query patterns space, (ii)
SCP of new queries based on previous similar queries, (iii)
operating the above tasks in parallel, yielding an efficient
model. A comprehensive evaluation showcased the model’s
robustness and that it significantly outperforms related works
(based on m-d or self-tuning histograms, sampling, or the
power method) which are data-driven. The proposed model
is the only one that is applicable in environments including
sensitive data, prohibiting access scans over raw-data and
knowledge of raw-data updates (required by data-driven
methods) and environments where accesses to raw data are
costly money-wise (e.g., data maintained in the cloud).
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