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Abstract

We propose a new tensor factorization method, called the Sparse Hier-
archical Tucker (Sparse H-Tucker), for sparse and high-order data tensors.
Sparse H-Tucker is inspired by its namesake, the classical Hierarchical
Tucker method, which aims to compute a tree-structured factorization of
an input data set that may be readily interpreted by a domain expert.
However, Sparse H-Tucker uses a nested sampling technique to overcome
a key scalability problem in Hierarchical Tucker, which is the creation of
an unwieldy intermediate dense core tensor; the result of our approach is
a faster, more space-efficient, and more accurate method.

We extensively test our method on a real healthcare dataset, which
is collected from 30K patients and results in an 18th order sparse data
tensor. Unlike competing methods, Sparse H-Tucker can analyze the full
data set on a single multi-threaded machine. It can also do so more
accurately and in less time than the state-of-the-art: on a 12th order
subset of the input data, Sparse H-Tucker is 18× more accurate and 7.5×
faster than a previously state-of-the-art method. Even for analyzing low
order tensors (e.g., 4-order), our method requires close to an order of
magnitude less time and over two orders of magnitude less memory, as
compared to traditional tensor factorization methods such as CP and
Tucker. Moreover, we observe that Sparse H-Tucker scales nearly linearly
in the number of non-zero tensor elements. The resulting model also
provides an interpretable disease hierarchy, which is confirmed by a clinical
expert.

1 Introduction

This paper proposes a new tensor factorization method, designed to model
multi-modal data, when the number of modes is high and the input data are
sparse. Analyzing multi-modal data arises in data mining due to the abun-
dance of information available that describes the same data objects [28]. We
are motivated to study tensor methods because they are recognized as one of
the most promising approaches for mining multi-modal data, with proof-of-
concept demonstrations in a broad variety of application domains, such as neu-
roscience [29, 8], epidemics [32], human behavior modeling [22], natural language
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processing [23], social network analysis [35], network intrusion detection [39],
and healthcare analytics [21, 20, 42], to name just a few. However, tensors also
pose numerous computational scalability challenges, in all the senses of time,
storage, and accuracy. This paper addresses these challenges.

By way of background, a tensor generalizes the concept of a matrix to more
than two dimensions (rows and columns). A tensor may be dense, meaning one
must assume nearly all its entries are non-zero, or sparse, meaning most entries
are zero, so that tensor may be stored compactly and many computational
operations may be eliminated. In data analysis, each dimension is referred
to as a mode, order, or way [26]. For example, a 10th order disease tensor
might be constructed so as to capture interactions across 10 different disease
groups. Examples of well-known tensor decomposition methods include CP
(CANDECOMP-PARAFAC) and Tucker methods [19, 6, 41, 11]. However,
despite their known value to data analysis problems, these methods have been
largely limited to the analysis of data sets with a relatively small number of
modes, typically 3 to 5, and so would not apply to our hypothetical 10th order
example. There are two principal challenges:

1. Modeling assumptions. Traditional tensor models like CP or Tucker reveal
strictly flat structures. By contrast, the 10 different disease groups in our
hypothetical example might have natural subgroups, or even hierarchical
structure; CP and Tucker ignore the possibility of such structure. Indeed,
one might rightfully expect that, as the order grows, so, too, does the number
of subgroups or the depth of the hierarchy.

2. Exponential computational cost. With respect to the order of the tensor,
there may be exponential costs in space and time. In the case of the Tucker
method, the cause is the need to store a fully dense core tensor C as output,
even if the input tensor is sparse. To see why this is problematic, consider
an order d = 50 input tensor for which we wish to compute just a very low-
rank approximation of, say, r = 2. Then, the dense core has size rd, which
in this case is nearly 9 Petabytes, assuming 8 bytes per (double-precision
floating-point) value [18].

To tackle the challenges above, we propose a scalable hierarchical tensor fac-
torization for sparse high-order tensors, which we call the Sparse Hierarchical
Tucker (or Sparse H-Tucker) method. Sparse H-Tucker expresses mode inter-
actions as a binary tree, which is further parameterized in order to allow the
approximation accuracy and cost to be tuned. For the same approximation er-
ror, it provides close to an order of magnitude gain in terms of the time required,
when compared to a state-of-the-art CP factorization, and over two orders of
magnitude gain in terms of the space required, when compared to a state-of-
the-art Tucker factorization method. At the same time, it respects sparsity in
the input, achieving a near-linear scale-up in time and space with respect to
the non-zeros of the input tensor. Perhaps somewhat surprisingly, this level
of performance is not achieved at the cost of accuracy; on the contrary, as we
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Figure 1: Basic tensor network notation.

verify experimentally, Sparse H-Tucker achieves remarkable gains in accuracy
as well, particularly as the tensor density and order increase.

Another subtle but important challenge in dealing with high-order tensors is
the lack of intuitive and generic representation for tensors and tensor operations,
which may hinder end-user analysts from adopting tensor methods. As a result,
most works on new tensor models are presented for a specific low-order tensor
(e.g., 3 orders [37, 15]). For example, recent work by Fang et al. models the
interactions of each one of the three modes with the two others through a
tensor, the horizontal slices of which are further decomposed into two low-
rank matrices [15]. The case of d > 3, when each horizontal slice would be
a tensor, is not addressed. In order to tackle this limitation as well, we adopt a
recently proposed tensor formalism called tensor networks, originally developed
for applications in quantum chemistry and physics [7, 24, 25]. This formalism
has a nice visual representation as well, the basic elements of which appear in
Figure 1 and are reviewed in Section 2.

Besides their simple and intuitive graphical representations, tensor networks
also provide a set of computational strategies to approximate a high-order dense
tensor by an interconnected graph of low-order tensors (typically, 2nd and 3rd
order tensors) [34, 17, 33, 9]. These methods enable the compression of a tensor
of size nd into a form that is linear in d, while preserving favorable numeri-
cal properties. However, successfully applying tensor networks to unsupervised
learning has not been demonstrated in practice. One reason is that, despite
their nice theoretical properties, tensor network methods target dense tensors,
which is the usual case in quantum chemistry and physics applications; by con-
trast, data tensors are usually sparse. Also, the design of tensor networks has
hereto focused on compression, rather than interpretation and pattern discovery,
though their potential for the latter has been appreciated by some.1 Neverthe-
less, to our knowledge, this paper is the first to try to really apply tensor network
modeling to a knowledge discovery application, through experimental evaluation
as well as discussion on the interpretability of the model.

An earlier version of the present work appeared in the proceedings of IEEE

1The intuition behind and potential applications of tensor networks in data processing
appear in recent surveys by Cichocki [9, 10].
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ICDM 2015 [36]. In addition to the ones of [36], our contributions in this
extended version can be summarized as follows:

• Tensor networks for data mining: We showcase how our method may
be derived and understood from the vantage point of the tensor networks
mathematical formalism, rather than strictly algebraic representations,
which we review. This description renders the work simpler and more eas-
ily accessible. This work is the first to apply the tensor networks formal-
ism as a modeling tool for unsupervised learning purposes, and evaluate
its practicality.

• Theoretical backing and explanations: We underpin Sparse H-Tucker
with the necessary theoretical proofs and extensive discussions required to
fully understand its mathematical foundations and its functionality.

• Thorough experimental evaluation on real healthcare data: We
complement our disease phenotyping case study using electronic health
records (EHR), by providing experimental evaluation of the low-order sce-
nario as well; in that case, we identify close to an order of magnitude gains
in time and over two orders of magnitude gains in memory, as compared
to traditional tensor factorization methods. As such, we justify the suit-
ability of our work to low-order tensor problems as well. We also provide
a detailed discussion on the interpretability of the resulting hierarchical
disease model, guided by a domain expert.

2 Background

This section introduces the necessary definitions and the preliminaries of matrix
and tensor operations. Table 1 lists the notations used throughout the paper.

2.1 Matrix factorizations

The Eckhart-Young Theorem for the Singular Value Decomposition (SVD) [16]
for UΣV = svd(A), where A ∈ Rm×n defines that if k < r = rank(A) and

Ak =
∑k
i=1 σiuiv

T
i , then: min

rank(B)=k
||A − B||2 = ||A − Ak||2 = σk+1. In-

stead of using the singular vectors in SVD, the CUR decomposition [30] uses
representative columns C and rows R to approximate the input matrix. The
relative-error guarantees of this method [14] depend on the notion of lever-
age score sampling2. The leverage scores π for each j = 1, . . . , n column of
A are: πj = 1/k

∑k
ξ=1 (vj(ξ))

2
, where vj is the j-th right singular vector of

A (out of k computed in total). Symmetrically, row sampling for matrix R
is achieved by applying the above process on AT . It is proven that sampling
O(klogk/ε2) columns (and rows of AT ) based on the distribution π and defining

2Alternative ways of lower-cost sampling (e.g. based on the row/column norms) are known
to give much coarser additive error estimates [13].
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U = C+AR+ gives: ||A −CUR||F ≤ (2 + ε)||A −Ak||F . Tensor versions of
CUR approximation are given in [31, 40], but cannot handle high-order tensors
due to cost limitations faced, similar to the ones of Tucker.

2.2 Tensor operations and factorizations

Tensors are high-order generalizations of matrices. A fiber is a vector extracted
from a tensor by fixing all modes but one and a slice is a matrix extracted from
a tensor by fixing all modes but two [26]. Let a d-order tensor A ∈ RI . The
index set over which the tensor is defined is: I := I1 × · · · × Id and the index
set of each individual mode is Iµ := {1, . . . , nµ}, µ ∈ {1, . . . , d}.

Matricization (or reshaping, unfolding) logically reorganizes tensors into
other forms, without changing the values themselves. Let the index set I(µ) :=
I1 × · · · × Iµ−1 × Iµ+1 × · · · × Id. Then, the µ-mode matricization is a map-

ping: A(µ) : RI → RIµ×I(µ) . As a result, the mode-µ fibers of the ten-
sor become columns of a matrix. Given Uµ ∈ RJµ×Iµ , the µ-mode multipli-

cation is defined by (Uµ ◦µ A)(µ) := UµA(µ) ∈ RJµ×I(µ) . Given matrices
Uv ∈ RJv×Iv with v = 1, . . . , d the multi-linear multiplication is defined as:
(U1, . . . ,Ud) ◦ A := U1 ◦1 . . .Ud ◦d A ∈ RJ1×···×Jd .

The factorization of a tensor into a sum of component rank-one tensors is
called the CP/PARAFAC [19, 6] factorization. If the rank of a d-order tensor

A is equal to R, then: A =
∑R
r=1 λr a

(1)
r • a(2)

r • · · · • a(d)
r . The most popu-

lar factorization method approximating the above model is the CP-Alternating
Least Squares (ALS) [19, 6, 26], which optimizes iteratively over each one of the
output matrices by fixing all others. The Tucker format is given by the follow-
ing form [41, 11]: A = (U1, . . . ,Ud) ◦ C, where Uµ ∈ Rnµ×kµ are (columnwise)
orthonormal matrices and C ∈ Rk1×···×kd is a core tensor, The tuple (k1, . . . , kd)
with (elementwise) minimal entries for which the above relation holds is called
the Tucker rank. In data analysis applications, the above relation is expected
to hold only approximately. For fixed Uµ matrices, the unique core tensor min-
imizing the approximation error is given by: C = (UT

1 , . . . ,U
T
d ) ◦ A. If the core

tensor is computed in the above way and each Uµ contains the leading kµ left
singular vectors of A(µ), the factorization of tensor A is called the higher-order
SVD (HOSVD) [11, 26]. HOSVD is considered as a good initialization to the
higher-order orthogonal iteration (HOOI) [12], which is also an ALS-type algo-
rithm, being the most popular way to approximate the Tucker format in real
world applications.

2.3 Tensor networks

A tensor network diagram, or just tensor network hereafter, provides an intu-
itive and concise graphical notation for representing tensors and operations on
tensors [9, 10]. A scalar, vector, matrix, or tensor is represented by the “ball-
and-stick” symbol that appears in Figure 1, where each circle denotes the object
and each edge an order or mode. Annotated circles indicate special structure,
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Symbol Description

A tensor A
A matrix A

A+ pseudo-inverse of A
⊗ Kronecker product
• vector outer product

< a, b > vector inner product
TI dimension tree
L(TI) leaf tree nodes
I(TI) interior tree nodes
s(t) set of successors of parent node t
tr root node of the dimension tree
It index set of subset t of modes
|It| cardinality of set It

Table 1: List of notations used

such as being sparse. Where an open edge represents a mode, a closed edge that
connects two tensors represents a contraction along the given edge. Contracting
two tensors A ∈ RI1×···×IN and B ∈ RJ1×···×JM on common modes In = Jm
yields another tensor, C ∈ RI1×···×In−1×In+1×···×IN×J1×···×Jm−1×Jm+1×···×JM .
Hierarchical Tucker and its Limitations One popular model of the tensor
network family that shares structural similarities with our proposed model is
the Hierarchical Tucker (H-Tucker in short) presented in [17]. Intuitively, the H-
Tucker factorization algorithm proposed in [17] first decomposes the input tensor
into the Tucker format through the HOSVD and then recursively factorizes
the output tensor of this process. Such a strategy though suffers from severe
scalability issues as the tensor order d increases. Despite the fact that the final
form of H-Tucker requires linear storage to d, the size of the intermediate core
tensor computed increases exponentially to d; and this core tensor is dense. As
a result, this method faces a potential memory blow-up as it requires further
decomposing an intermediate result that may not even fit into memory.

Another factorization scheme that is based on H-Tucker and is similar to
ours was proposed in the tensor community by Ballani et al [5, 3]. However,
that work exclusively targets dense tensors (does not work for sparse input),
while ours focuses on sparse ones and data mining applications.

3 Sparse Hierarchical Tucker

3.1 Model

Our proposed target model is called the Sparse Hierarchical Tucker (Sparse
H-Tucker). An example of this model in tensor network notation appears in
Figure 2. In Sparse H-Tucker, the tensor modes are split recursively, resulting

6
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BI1 BI2
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I1 I2 I3 I4
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kI1 kI2

Figure 2: Sparse Hierarchical Tucker format in tensor network notation (4-order
tensor, balanced dimension tree).

in a binary tree that we call the dimension tree and denote by TI . Each node
of this tree contains a subset t ⊂ {1, . . . , d} of the modes and is either a leaf
and singleton t = µ or the union of its two disjoint successors t1, t2 : t = t1 ∪ t2.
Each tree node is associated with an output factor of the model. We denote
these output factors by,

(Bt)t∈I(TI) ∈ Rkt×kt1×kt2 , (Ut)t∈L(TI) ∈ RIt×kt .

The tensors Bt are called the transfer tensors, which correspond to the interior
nodes, I(TI); the matrices Ut correspond to the leaves of the tree, L(TI),
where s(t) = {t1, t2} denotes the set of successors of node t. By definition, the
matrices Ut associated with the leaves of this tree structure are sparse. The
tensor associated with the root node tr is a degenerate one (i.e., it is a matrix
since ktr = 1), because unlike other interior nodes, only the root node connects
to 2 nodes instead of 3.

Our proposed model’s tree structure is like that of the H-Tucker model [17].
However, Sparse H-Tucker preserves sparsity. By contrast, in H-Tucker, the
matrices corresponding to the leaf nodes are dense, which fundamentally limits
the scalability of any algorithms operating on it.

3.2 Sparse H-Tucker factorization algorithm

The proposed factorization method can be conceptually divided into two phases:

• Phase 1 computes a sampling-based low-rank approximation of all A(t) as-
sociated with each tree node except for the root. Notice that A(t) combines
all modes contained in t as row indices and the rest of the modes into column
indices.

• Phase 2 uses the output of Phase 1, in order to assemble the final Sparse
H-Tucker model in parallel.
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The rationale behind these two phases is first to conduct all the preparation
work in Phase 1 and then to compute the expensive steps fully in parallel in
Phase 2.

ALGORITHM 1: Sparse Hierarchical Tucker factorization

Data: Input tensor A ∈ RI , tree TI , accuracy parameter ε
Result: (Bt)t∈I(TI), (Ut)t∈L(TI)

// Phase 1

1 {Pt, Qt,Mt} = TreeParameterization(A, tr,∅, ε) ;
// Phase 2: fully-parallelizable loop

2 foreach t ∈ TI do
3 if t ∈ I(TI) then
4 Compute Bt through Equation 2 ;
5 else

// t ∈ L(TI)
6 Compute sparse matrix Ut through Equation 1 ;

7 end

8 end

ALGORITHM 2: TreeParameterization

Data: Tensor A, tree node t, sampled column indices Qt, accuracy
parameter ε

Result: {Pt, Qt,Mt}∀t ∈ TI\tr
1 {t1, t2} = s(t) ;
2 [Pt1 , Qt1 ,Mt1 ,A1] = NestedSampling(A, t1, Qt, ε) ;
3 [Pt2 , Qt2 ,Mt2 ,A2] = NestedSampling(A, t2, Qt, ε) ;
4 if t1 ∈ I(TI) then
5 TreeParameterization(A1, t1, Qt1 , ε)
6 end
7 if t2 ∈ I(TI) then
8 TreeParameterization(A2, t2, Qt2 , ε)
9 end

Algorithm 1 is our top-level procedure to compute the Sparse H-Tucker form.
It takes as input the original tensor A, the dimension tree structure TI and a
parameter ε which governs the accuracy of low-rank approximations. In Line 1
of Algorithm 1, we invoke Algorithm 2, by starting the recursion from the root
node of the tree (tr) to parameterize the dimension tree.

Within Algorithm 2, Lines 2 and 3 call the function NestedSampling to
compute the factors for the approximation of each A(t). If Ct and Rt con-
tain column and row samples from A(t), respectively, and Mt is a small matrix
minimizing the error of approximation, then the the product CtMtRt is an
approximation of A(t). To avoid the materialization of Ct and Rt, we main-
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tain the index sets Pt, Qt denoting the row and column indices sampled from
A(t) respectively. The challenges emerging so as to execute the NestedSam-
pling function and its exact operation will be explained in Section 3.4. The
recursive procedure TreeParameterization is continued until we reach the
leaf nodes. 3

In Phase 2 of Algorithm 1, we construct the output factors of the Sparse
H-Tucker model, by exploiting the sampling results from Phase 1. Since the
construction over a single node is completely independent to others, we can fully
parallelize this step.

To assemble the matrices Ut corresponding to the leaf nodes, we directly
sample from the column fibers of A(t):

((Ut)i)t∈L(TI) = A(t)(:, qi), qi ∈ Qt. (1)

Since we are sampling directly from the sparse input tensor for the construction
of the (Ut)t∈L(TI) matrices, our leaf output factors maintain the sparsity of
the input tensor. Thus, the requirement of our model for sparsity on matrices
associated with leaf nodes is satisfied.

A great advantage of the model is that the transfer tensors are directly
assembled without the need of computing a huge, dense intermediate result
(as in the case of the H-Tucker model). Below, we provide the equation for
computing the factors (Bt)t∈I(TI) for the interior tree nodes. The proof of its
correctness is given in the Appendix. Given nodes t, t1, t2 where {t1, t2} = s(t):

(Bt)i,j,l =
∑
p∈Pt1

∑
q∈Pt2

(Mt1)qj ,pA
(t)
(p,q),qi

(Mt2)ql,q, (2)

where qi ∈ Qt, qj ∈ Qt1 , ql ∈ Qt2 .

3.3 Tensor approximation via the model’s factors

Below, we describe how to approximate the input tensor through the Sparse H-
Tucker model. First, each pair of leaves (matrices) that share a parent (tensor)
are combined into a matrix Ut as follows:

(Ut)i =

kt1∑
j=1

kt2∑
l=1

(Bt)i,j,l ((Ut1)j ⊗ (Ut2)l) (3)

where {t1, t2} = s(t), Bt ∈ Rkt×kt1×kt2 , Ut ∈ R(It1It2)×kt , Ut1 ∈ RIt1×kt1 , and
Ut2 ∈ RIt2×kt2 . This process is followed for all interior nodes in a bottom-up
fashion.

3A remark regarding Algorithm 2 is that only for the root node’s successors (i.e., when

{t1, t2} = s(tr)), it holds that: A(t1)
T

= A(t2). To reduce redundant computations within
the actual implementation, Line 3 of Algorithm 2 is executed only in the case when t 6= tr.
Otherwise (t = tr), we set: Pt2 = Qt1 , Qt2 = Pt1 ,Mt2 = MT

t1
.
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Given that we have re-constructed the matrices Ut1 ,Ut2 ({t1, t2} = s(tr)),
corresponding to the second level of the tree, the final input tensor approxima-
tion is given in vectorized form as follows:

vec(A) ≈
kt1∑
j=1

kt2∑
l=1

(Btr )j,l ((Ut1)j ⊗ (Ut2)l) (4)

Equation 4 is a special case of Equation 3, accounting for the root node being
associated with a matrix rather than a tensor.

We need not construct the full representation if we need only specific re-
constructed entries, such as the reconstruction of a tensor’s sub-block. Instead,
we just have to prune the Ut matrices associated with the leaves, so that each
one only contains the rows corresponding to the desired mode indices. A spe-
cial case of this property is an element-wise query, when out of each Ut leaf
matrix we use a single row vector for the desired element’s approximation. For
example, the reconstruction of A(i, j, k) cell of a 3-order tensor A requires the
Ut1(i, :),Ut2(j, :),Ut3(k, :) to be used as input, if t1, t2, t3 correspond to the
mode sets of the leaves.

The equations that govern the reconstruction of our model also apply in the
H-Tucker model [17], where Equation 3 reflects a property called nestedness; we
will use the same terminology hereafter.

3.4 Nested sampling

Below, we describe the NestedSampling function that is called within Algo-
rithm 2. Its role is to compute the factors required to approximate the matri-
cizations A(t) for each subset of modes t associated with each tree node. Our
approach is to form the factors approximating A(t) through the CUR decom-
position based on leverage score sampling [30]. The biased samples from CUR
decomposition help to boost the accuracy of our approach. More specifically,
we follow the same sampling strategy as in [30], by retrieving O(k log k/ε2) rows
or columns for each required approximation, where k is the rank of SVD, which
is set to a small value (k = 5)4.

However, a simple application of the CUR decomposition within our fac-
torization framework would completely fail, due to challenges related to the
consistency of each A(t) approximation with the whole framework. Assume
calling the NestedSampling function with arguments A, t1, Qt, ε (as happens
in Line 2 of Algorithm 2). Before even attempting to execute a nested sampling
of A(t1), we have to ensure that the available set of rows and columns is con-
sistent across the entire dimension tree. In other words, we have to ensure that
the way we extract our model’s transfer tensors (Equation 2) is consistent to
each individual A(t) approximation.

To do so, we have to guarantee the validity of the nestedness property (Equa-
tion 3). The way we exploit this property towards the proof of correctness of

4We detected no significant change in the accuracy of the final approximation by tuning
k, hence we keep it fixed.
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1 2
3 4

5 6
7 8A =

A(t) =

1 2


1 5
3 7
2 6
4 8

A(t1) =

(1 , 1 ) (2 , 1 ) (1 , 2 ) (2 , 2 )[ ]
1 2 5 6
3 4 7 8

A(t2) =

(1 , 1 ) (2 , 1 ) (1 , 2 ) (2 , 2 )[ ]
1 3 5 7
2 4 6 8

Figure 3: Nested index restriction within the sampling framework. Let {t1, t2} =
s(t), t = {1, 2}, t1 = 1, t2 = 2, Qt = {1}, It2 = {1, 2}. Then, the successor node
associated with t1 can sample (and fill Qt1) from one of the two first columns
of A(1), since Qt is restricted.

Equation 2 is contained in the Appendix. In the following, we will explain the
manner in which we guarantee that this property holds and how this relates
to the column indices Qt in each NestedSampling call and tensors A1,A2 in
each TreeParameterization call of Algorithm 2.

Equation 3 dictates that we should be able to construct each column vector
of (Ut)t∈I(TI) through linearly combined Kronecker products of column vectors
of Ut1 ,Ut2 . Within our framework, where the Ut matrices contain actual fiber
samples from the input tensor, this restriction is translated to enforcing the
following reduction on the available column fibers for the CUR decomposition:

Qt1 ⊆ It2 ×Qt (5)

where {t1, t2} = s(t). The notation × denotes the cartesian set product. Rela-
tion 5 implies that the columns sampled (Qt1) by the successor node associated
with t1 will be a subset of all possible combinations formed between the un-
restricted index set It2 and the fixed index set Qt (which had been previously
defined by the parent node). By symmetry, Qt2 ⊆ It1 ×Qt. In order to clarify
this index restriction, we use a toy example in Figure 3. Given that the 1st
column of A(t) is selected (which means that Qt = {1}), the available fibers for
the successor node are those containing the 1st element of the 3rd mode in their
multi-index. Thus, the available multi-indices for Qt1 are of the form (x, 1),
where x ∈ It2 .

A single node’s (e.g., associated with subset of modes t) index restriction
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has to hold for all successors as we recursively visit the tree nodes in a top down
fashion; thus, tensors A1,A2 are passed in each TreeParameterization call
so as to avoid starting the index dropping from scratch at each NestedSam-
pling call. Those tensors are obtained by finding the subset of tensor entries of
A that obey to the rule of Relation 5.

4 Experiments

4.1 Setup

Our experiments were conducted on a server running the Red Hat Enterprise
6.6 OS with 64 AMD Opteron processors (1.4 GHz) and 512 GB of RAM.
We used Matlab R2015a as the programming framework as well as Matlab
Tensor Toolbox v2.6 [2] in order to support tensor operations. In order to
promote reproducible and usable research, our code is open-sourced and publicly
available 5.

The methods under comparison are the following:

• Sparse H-Tucker (Sequential): Sparse H-Tucker implementation with
sequential execution in Phase 2.

• Sparse H-Tucker (Parallel): Sparse H-Tucker implementation with
parallel execution in Phase 2.

• H-Tucker: Hierarchical Tucker implementation provided in htucker tool-
box [27]6;

• CP-ALS: Tensor Toolbox [2] implementation; and

• Tucker-ALS: Tensor Toolbox [2] implementation of HOOI.

4.2 Experiments on real healthcare data

Dataset and task description We used publicly available healthcare data for
our experimental evaluation. The dataset is called MIMIC-II and can be found
in [38] 7. It contains disease history of 29, 862 patients where an overall of
314, 647 diagnostic events are recorded over time. The task is about extracting
co-occurring patterns of different diagnoses in patient records, in order to better
understand the complex interactions of disease diagnoses. To acquire accurate
phenotyping, we exploit the domain knowledge provided by the International
Classification of Diseases (ICD) hierarchy [1] and guide the tensor construction
with it. The ICD hierarchy consists of a collection of trees representing hier-
archical relationships between diagnoses. As such, diagnoses belonging to the

5http://www.cc.gatech.edu/~iperros3/src/sp_htucker.zip
6In order to enable sparse tensor input, we modified the computation of the left leading

singular vectors by re-directing to the ”nvecs” function of the ”sptensor” Tensor Toolbox class.
7http://physionet.org/mimic2/
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same diagnostic family reside under the same sub-tree. We map each tensor
mode to a node of the top-level hierarchy. Thus, the order of our tensor will be
equal to the number of top-level nodes. Furthermore, the lower-level diagnoses
that are contained in each top-level node will be the elements of a tensor mode.
Input tensor construction In order to end up with the previously described
tensor, we sum over the number of co-occurrences for each multi-index of diag-
noses. This means that each one of the input tensor cells contains the sum of
the corresponding diagnoses found for all patients. For example, consider the
case of a 3-order tensor T where each one of the 3 modes corresponds to a group
of similar diseases. If a certain combination of diseases (i, j, k) is co-occurring
in 3 patients out of the whole dataset, then T (i, j, k) = 3. Since the top-level of
the ICD hierarchy contains 18 nodes, our complete tensor input is an 18-order
tensor. For the purposes of our experimental evaluation, we constructed tensors
from the same dataset with varying tensor order (less than 18) by limiting the
subset of disease groups. Also, to each one of the modes, we added an additional
element corresponding to ”no disease”, so that we model the case when a mode
does not participate in a certain co-occurrence at all.
Cost-Accuracy Trade-offs At first, we would like to examine the re-construction
error achieved by the methods under comparison, as a function of the cost
(time/space). Since many baseline methods do not scale to higher orders, we
decide to use 4-order tensor where all methods can run without memory issues.

In Figure 4, we observed the time-error and space-error trade-offs for the
methods under comparison. Here we varied the parameters governing the qual-
ity approximation in all cases. The results were averaged over 10 runs in order
to avoid fluctuations caused by random artifacts. For our implementation exe-
cuting Phase 2 in parallel, we set the number of Matlab workers to 8 (through
the ”parpool” command).

The superiority of Sparse H-Tucker as compared to all methods in terms
of the time-error trade-off is evident. In particular, it achieves close to an
order of magnitude gain (8x) as compared to the CP-ALS method and 66x
gain as compared to the Tucker-ALS. It is worth stressing out that even with a
sequential execution of Phase 2, Sparse H-Tucker outperforms traditional tensor
methods.

As concerns the space-approximation error trade-off, the savings of Sparse
H-Tucker against Tucker and H-Tucker for the same error are remarkable: it
achieves over than 2 orders of magnitude reduction on the peak memory alloca-
tion (396x). The reasons behind this stark difference lie in the fact that Sparse
H-Tucker does not form any huge, dense intermediate result that increases with
the tensor order. We were not able to reliably measure the peak allocation
memory of our method using parallelism in Phase 2. However, we empirically
noticed that the total memory required in this case is still orders of magnitude
less than the one required by Tucker and H-Tucker.

Tucker-ALS method achieves the worst time-error tradeoff, while requiring
the same peak memory requirements as the H-Tucker for the same low-rank
parameter. Both methods form the same d-order dense tensor, either as a final
output or as an intermediate result. Tucker-ALS just achieves slightly better
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Figure 4: a) Observed time and re-construction error (Frob. norm). b) Observed
peak space requirements and re-construction error (Frob. norm). Input tensor: 4-
order tensor (number of non-zeros: 11100, total size: 1.54 × 109) created from the
MIMIC real dataset. The Sparse H-Tucker and H-Tucker methods run for the same
balanced dimension tree. Points of Sparse H-Tucker correspond to runs with different
ε parameter: ε ∈ {1, .8, .6, .4, .3}. Points of H-Tucker correspond to runs with varying
low-rank parameter : k = {2, 4, 6, 8, 10} for the left and k = {2, 4, 6, 8} for the right
panel. Points of CP-ALS correspond to runs with varying number of target rank-one
factors: R = {2, 4, 6, 8, 10, 12}. Points of Tucker-ALS correspond to runs with varying
target rank: k = {2, 4, 6, 8}.

approximation for the same space.
Scalability We also conducted experiments in order to assess the scalability
behavior of the methods under comparison, with respect to both the time and
space required for increasing tensor order and number of non-zero elements. The
input tensors having different density and order were constructed as explained
above. For Sparse H-Tucker (parallel), we set the number of Matlab workers to
16, so as to exploit the full parallelism potential of our method for higher orders.
We were not able to reliably measure the memory overhead for this version
of our approach. Still, we empirically remark that the memory required for
parallel Sparse H-Tucker shares the same scalability properties as the sequential
version. The results are presented in Figure 5. It is remarkable that the H-
Tucker factorization could not run for none but the 4-order tensor case. For the
6-order case and beyond, the memory it required exceeded the available memory
of our server. The same behavior is observed in the case of Tucker-ALS. On the
other hand, despite having comparable scalability behavior to Sparse H-Tucker,
the CP method could not factorize the highest order tensors (16, 18) due to
numerical issues (matrix being close to singular, in a sub-problem assuming a
full-rank matrix). Our proposed Sparse H-Tucker enjoys near-linear scalability
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7.5x less time, 18x less error

Figure 5: a) Observed time and number of non-zero tensor elements b) Observed
peak space requirements and number of non-zero tensor elements. c) Observed time
and re-construction error (Frob. norm) of sampled non-zero entries. The methods
under comparison are: Sparse H-Tucker (ε = 0.6), H-Tucker (k = 6), CP-ALS (R =
6) and Tucker-ALS (k = 6). The Sparse H-Tucker and H-Tucker methods run for
the same balanced dimension tree. Each one of the points corresponds to tensors of
increasing density and order (d) created from the MIMIC real dataset. A
complete description of the tensors used is in Table 4.2.

#Non-zeros (approx.) Total size Order
11 K 1.5× 109 4
55 K 1017 6
730 K 1.9× 1022 8
4.6 Mil 2.1× 1033 12
13 Mil 1.2× 1044 16
18 Mil 4.7× 1049 18

Table 2: Description of tensors used in our experiments derived from real data

properties with respect to increasing the non-zero elements or tensor orders for
both time and space requirements.
Cost-Accuracy Trade-off for increasing orders We would finally like to
evaluate the time-error trade-off as the tensor order increases. It was intractable
for any method to re-construct the full (dense, due to approximation errors)
tensor for any order but the 4th; as such, we evaluated a random sample of 50K
out of all the non-zero tensor elements, for each one of the methods (element-wise
evaluation). Then, we measured the approximation error of those re-constructed
entries with the real ones from the original input tensor. Since the 4th order
tensor contained less than 50K non-zero values, we measured the error for the
whole tensor. In Figure 5c), we present the results of this experiment. We
would like to highlight the fact that as the tensor order increases, our method
achieves increasingly beneficial cost-error trade-offs over the CP-ALS method.
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In particular, for the 12-order tensor, Sparse H-Tucker achieves 18x reduction
of the re-construction error in 7.5x less time.

4.3 Disease phenotyping case study

In this section, we apply Sparse H-Tucker method to disease phenotyping. The
qualitative analysis refers to the results of factorizing the full 18-order disease
co-occurrence tensor.

The factors of the Sparse H-Tucker model are fit according to a certain tree
structure. Such a tree can be obtained directly from existing knowledge such as
a domain medical ontology or derived from data. In this case study, we build this
dimension tree in a completely data-driven fashion using hierarchical clustering.
For each one of the m non-zero values of the input tensor, we create a binary
vector of size d, the order of the input tensor. This vector contains ones in the
non-null positions of each specific entry. The columns of the m×d matrix formed
are considered as data points into a m-dimensional space and are hierarchically
clustered according to the Jaccard coefficient. The tree construction for the
H-Tucker model is attempted by the recent work in [4]. However, the cost of
their algorithm is prohibitive.
Interpretation of output factors We propose the following interpretation of
the output factors: the non-zero elements that correspond to each one of the
column vectors of the matrices (Ut)t∈L(TI) form a concept for each individual
mode t of the input tensor. Also, the numerical values of those elements are
clear indicators of their “contribution” to each concept, since these are actual
fibers containing co-occurrence counts from the input tensor.

As concerns the interpretation of transfer tensors Bt with {t1, t2} = s(t),
they should be considered as reflecting the interactions between the concepts
of the successor nodes t1, t2. Thus, the (Bt)(i,j,v) elements having the largest
absolute value within each i-th slice reflect a joint concept formed through the
j-th concept of t1 and the v-th concept of t2. Also, due to our tree construction,
the most significant concept interactions are expected to emerge in a bottom-
up fashion, which facilitates the interpretability if one wants to focus on the
dominant emerging concepts.
Qualitative analysis We now describe the qualitative results of our applica-
tion, as they were examined by a domain expert who verified their clinical value
and meaningfulness. Our target is to extract clinically meaningful connections
between diagnoses from different diagnostic families, which could potentially
co-occur and form valuable phenotypes. The most significant concepts grouped
together as the result of applying our tensor factorization method, are shown in
Table 3.

At first, the connections within each diagnostic family reflect well-known
clinical associations. For example, concerning intra-mode connections of the
endocrine-related diseases, inherited hypercholesterolemia is known to predis-
pose a patient to develop hyperlimidemia due to the inability of receptors in cells
to bind cholesterol. Also, hypercholesterolism and hyperlipidemia are associated
with type II diabetes mellitus.
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Diagnostic family Grouped clinical concepts

Endocrine, Nutritional, Metabolic Pure hypercholesterolemia , Type II diabetes mellitus,
Diseases and Immunity Disorders Other and unspecified hyperlipidemia

Diseases of the Circulatory System
Coronary atherosclerosis of native coronary artery,

Hypertension, Atrial fibrillation, Congestive heart failure
Diseases of the Blood Anemia unspecified, Acute posthemorrhagic anemia,

and Blood-Forming Organs Thrombocytopenia, Secondary thrombocytopenia

Diseases of the Respiratory System

Chronic airway obstruction, Asthma unspecified type
without mention of status asthmaticus, Iatrogenic

pneumothorax, Pulmonary collapse, Pleural effusion,
Pneumonia organism unspecified

Symptoms, Signs, Ill-defined conditions Undiagnosed cardiac murmurs

Infectious and Parasitic Diseases
Other Staphylococcus infection in conditions

classified elsewhere and of unspecified site, Septicemia

Table 3: Dominant phenotype emerging through Sparse H-Tucker

The most important aspect of our results is that the inter-mode relation-
ships reflect meaningful disease co-occurrences as well. The connection between
elements of endocrine-related and of circulatory system diseases reflects a well-
known association, since many diabetes patients may also be hyperlipidemic.
Also, hypercholesterolemia and hypertension are known to have synergistic ef-
fects on coronary function. Furthermore, the grouping of blood-related dis-
eases with the above is clinically meaningful, since the blood disease anemia
is known to co-occur with them. In addition, the coupling of the extracted
respiratory-related diseases to the aforementioned groups, is also known to have
clinical association. For example, hypercholesterolemia is a potential risk factor
for asthma and pre-existing heart failure may impact pneumonia development.
The infectious diseases emerging could also form a phenotype with the above,
since staphylococcus directly affects heart valves’ functionality. Finally, car-
diac murmurs are associated with abnormalities contained in circulatory and
blood-related diseases.

5 Conclusion

In this work, we propose a scalable high-order tensor factorization method
specifically designed for data analytics. Our experiments on real healthcare
data established the accuracy and scalability of our approach. Also, its ap-
plication to the problem of disease phenotyping confirmed its usefulness for
healthcare analytics and verified the correctness of our way of interpreting the
resulting factors. This work is the first to use the tensor networks’ formalism
in practice for unsupervised learning in data mining applications. We would
like to stress the fact that Sparse H-Tucker is not limited to healthcare appli-
cations; healthcare is just the focus of the current work and the application on
more datasets and domains is left as a future work. Besides this, despite being
designed to tackle high-order tensors, our proposed method is not limited to
them and obvious benefits can be seen even in the case of low-order tensors,
as we experimentally verified. Future work will focus on further examining the
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underlying tree’s construction and the method’s theoretical properties.

APPENDIX

Proof of Equation (2)

Proof. The main target is to prove that if we directly form the Bt tensors through
Relation (2), then Relation (1) holds for interior nodes as well. Formally, we
want to prove that, if Relation (2) holds and {t1, t2} = s(t) then:

((Ut)i)t∈I(TI) = A(t)(:, qi), qi ∈ Qt (6)

We will prove the above proposition for the nodes of the penultimate level
of the tree. By induction, this will hold for all interior nodes.

Due to the restriction on each node’s available column indices w.r.t. its parent
node (Relation (5)), the nestedness property of Relation (3) holds, so that we
have (element-wise):

(Ut)it,i =
∑
j∈Qt1

∑
l∈Qt2

(Bt)i,j,l (Ut1)it1 ,qj (Ut2)it2 ,ql (7)

where it ∈ It with it = (it1 , it2) and qi ∈ Qt.
At this point, let the assumption that Relation (2) holds. Then, Relation (7)

gives:

(Ut)it,i =
∑
j∈Qt1

∑
l∈Qt2

∑
p∈Pt1

∑
q∈Pt2

(Mt1)qj ,p A
(t)
(p,q),qi

(Mt2)ql,q

(Ut1)it1 ,qj (Ut2)it2 ,ql

(8)

Relation (1) (direct column fiber sampling for leaf nodes) holds by construc-
tion. Thus, Relation (8) gives:

(Ut)it,i =
∑
q∈Pt2

∑
l∈Qt2

∑
p∈Pt1

∑
j∈Qt1

A
(t1)
it1 ,qj

(Mt1)qj ,p A
(t)
(p,q),qi

(Mt2)ql,q A
(t2)
it2 ,ql

(9)

By definition of the CUR decomposition, under the assumption that it is
exact, we have:

A
(t)

(it1 ,q),qi
=
∑
p∈Pt1

∑
j∈Qt1

A
(t1)
it1 ,qj

(Mt1)qj ,p A
(t)
(p,q),qi

Thus, Relation (9) gives:

(Ut)it,i =
∑
q∈Pt2

∑
l∈Qt2

A
(t2)
it2 ,ql

(Mt2)ql,q A
(t)

(it1 ,q),qi
= A

(t)

(it1 ,it2),qi
(10)

where the last equation follows again from the CUR decomposition. Since we
ended up to Relation (6), then using Relation (2) is correct.

18



References

[1] Centers for disease control and prevention (cdc). international classification
of diseases. ninth revision, clinical modification (icd-9-cm), 2013.

[2] B. W. Bader, T. G. Kolda, et al. Matlab tensor toolbox version 2.6. Avail-
able online, February 2015.

[3] J. Ballani. Fast evaluation of near-field boundary integrals using tensor
approximations. 2012.

[4] J. Ballani and L. Grasedyck. Tree adaptive approximation in the hierarchi-
cal tensor format. SIAM Journal on Scientific Computing, 36(4):A1415–
A1431, 2014.

[5] J. Ballani, L. Grasedyck, and M. Kluge. Black box approximation of ten-
sors in hierarchical tucker format. Linear Algebra and its Applications,
438(2):639 – 657, 2013. Tensors and Multilinear Algebra.

[6] J. D. Carroll and J.-J. Chang. Analysis of individual differences in multi-
dimensional scaling via an n-way generalization of eckart-young decompo-
sition. Psychometrika, 35(3):283–319, 1970.

[7] S. R. Chinnamsetty, M. Espig, B. N. Khoromskij, W. Hackbusch, and H.-
J. Flad. Tensor product approximation with optimal rank in quantum
chemistry. The Journal of chemical physics, 127(8):084110, 2007.

[8] A. Cichocki. Tensor decompositions: a new concept in brain data analysis?
arXiv preprint arXiv:1305.0395, 2013.

[9] A. Cichocki. Era of big data processing: A new approach via tensor net-
works and tensor decompositions. arXiv preprint arXiv:1403.2048, 2014.

[10] A. Cichocki. Tensor networks for big data analytics and large-scale opti-
mization problems. CoRR, abs/1407.3124, 2014.

[11] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular
value decomposition. SIAM journal on Matrix Analysis and Applications,
21(4):1253–1278, 2000.

[12] L. De Lathauwer, B. De Moor, and J. Vandewalle. On the best rank-1 and
rank-(r 1, r 2,..., rn) approximation of higher-order tensors. SIAM Journal
on Matrix Analysis and Applications, 21(4):1324–1342, 2000.

[13] P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte carlo algorithms
for matrices iii: Computing a compressed approximate matrix decomposi-
tion. SIAM Journal on Computing, 36(1):184–206, 2006.

[14] P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Relative-error cur ma-
trix decompositions. SIAM Journal on Matrix Analysis and Applications,
30(2):844–881, 2008.

19



[15] X. Fang and R. Pan. Fast dtt: a near linear algorithm for decomposing
a tensor into factor tensors. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
967–976. ACM, 2014.

[16] G. H. Golub and C. F. Van Loan. Matrix computations, volume 3. JHU
Press, 2012.

[17] L. Grasedyck. Hierarchical singular value decomposition of tensors. SIAM
J. Matrix Anal. Appl., 31(4):2029–2054, May 2010.

[18] L. Grasedyck, D. Kressner, and C. Tobler. A literature survey of low-rank
tensor approximation techniques. GAMM-Mitteilungen, 36(1):53–78, 2013.

[19] R. A. Harshman. Foundations of the parafac procedure: Models and con-
ditions for an” explanatory” multi-modal factor analysis. 1970.

[20] J. C. Ho, J. Ghosh, S. R. Steinhubl, W. F. Stewart, J. C. Denny, B. A.
Malin, and J. Sun. Limestone: High-throughput candidate phenotype gen-
eration via tensor factorization. Journal of biomedical informatics, 52:199–
211, 2014.

[21] J. C. Ho, J. Ghosh, and J. Sun. Marble: high-throughput phenotyping from
electronic health records via sparse nonnegative tensor factorization. In
Proceedings of the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 115–124. ACM, 2014.

[22] M. Jiang, P. Cui, F. Wang, X. Xu, W. Zhu, and S. Yang. Fema: flexible
evolutionary multi-faceted analysis for dynamic behavioral pattern discov-
ery. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1186–1195. ACM, 2014.

[23] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos. Gigatensor: Scaling
tensor analysis up by 100 times - algorithms and discoveries. In Proceedings
of the 18th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD ’12, pages 316–324, New York, NY, USA, 2012.
ACM.

[24] V. Kazeev, M. Khammash, M. Nip, and C. Schwab. Direct solution of the
chemical master equation using quantized tensor trains. PLoS computa-
tional biology, 10(3):e1003359, 2014.

[25] B. Khoromskij. Structured data-sparse approximation to high order ten-
sors arising from the deterministic boltzmann equation. Mathematics of
computation, 76(259):1291–1315, 2007.

[26] T. Kolda and B. Bader. Tensor decompositions and applications. SIAM
Review, 51(3):455–500, 2009.

20



[27] D. Kressner and C. Tobler. Algorithm 941: htucker—a matlab toolbox for
tensors in hierarchical tucker format. ACM Transactions on Mathematical
Software (TOMS), 40(3):22, 2014.

[28] D. Lahat, T. Adaly, and C. Jutten. Challenges in multimodal data fusion.
In Signal Processing Conference (EUSIPCO), 2013 Proceedings of the 22nd
European, pages 101–105. IEEE, 2014.

[29] C.-F. V. Latchoumane, F.-B. Vialatte, J. Solé-Casals, M. Maurice, S. R.
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