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Abstract

Algorithms for mining very large graphs, such as those representing online social networks, to
discover the relative frequency of small subgraphs within them are of high interest to sociologists,
computer scientists and marketeers alike. However, the computation of these network motif statistics
via naive enumeration is infeasible for either its prohibitive computational costs or access restrictions on
the full graph data. Methods to estimate the motif statistics based on random walks by sampling only
a small fraction of the subgraphs in the large graph address both of these challenges. In this paper, we
present a new algorithm, called the Waddling Random Walk (WRW), which estimates the concentration
of motifs of any size. It derives its name from the fact that it sways a little to the left and to the right,
thus also sampling nodes not directly on the path of the random walk. The WRW algorithm achieves
its computational efficiency by not trying to enumerate subgraphs around the random walk but instead
using a randomized protocol to sample subgraphs in the neighborhood of the nodes visited by the walk.
In addition, WRW achieves significantly higher accuracy (measured by the closeness of its estimate
to the correct value) and higher precision (measured by the low variance in its estimations) than the
current state-of-the-art algorithms for mining subgraph statistics. We illustrate these advantages in speed,
accuracy and precision using simulations on well-known and widely used graph datasets representing
real networks.
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I. INTRODUCTION

The analysis of large graphs, such as those representing online social networks, is of in-
creasing scholarly interest to sociologists, mathematicians, economists, computer scientists and
marketeers [1]. In particular, mining of large graphs for their microstructure describing patterns
of relationships between neighboring vertices, is of significant interest to researchers in data
mining [2], [3], [4], [5]. This microstructure is best captured by motif or graphlet statistics, i.e.,
the relative frequencies with which different small subgraphs of a certain size appear in the
large graph [6], [7], [8], [9], [10], [11], [12], [13]. For example, the clustering coefficient (the
number of triangles in relation to the number of wedges) has long served as an important metric
in sociometry and social network analysis [14], [15]. In fact, the relative frequencies of network
motifs are indicative of important properties of graphs such as modularity, the tendency of nodes
in a network to form tightly interconnected communities, and even play a role in the organization
and evolution of networks [6]. Knowledge of these motif statistics combined with homophily,
the tendency of similar nodes to connect to one another, add to the ability of businesses such
as Facebook to better mine their graphs and monetize their social platforms through targeted
advertisements [16].

Computing motif statistics, however, is rendered difficult by two challenges: one computational
and the other having to do with restricted access to the full graph data. The computational
challenge arises because accurate computation of the relative frequencies of different motifs
requires enumeration of all the induced subgraphs and checking each for isomorphism to known
motif types. The time complexity of enumerating all induced subgraphs of size k in a graph
with V vertices and E edges is exponential in k with an upper bound of O(Ek) and a lower
bound of O(V ck−1) [17]. Even when k is as small as 4, in a graph with only millions of edges,
the number of motifs can reach hundreds of billions. The other problem is one of restricted
access because the data on many large graphs, especially online social networks, can only be
obtained piecemeal via the platform’s public interface encapsulated in its API for developers on
the platform. One common query allowed by most social network APIs is one that returns the
list of neighbors of a node — a feature that allows random walks on these large graphs even
when the full graph data is unavailable [18].

The computational and the access challenges above motivate the need for an approach to
estimating motif statistics via sampling the graph using a random walk and checking only a
small fraction of all the induced subgraphs for isomorphism [18], [15], [19], [12].

A. Problem statement
Consider a connected, undirected graph G = (V,E) with vertex set V and edge set E. We

assume that information about the graph can only be ascertained through querying each node
separately for a list of its neighbors.

For convenience and clarity, we denote each motif by a unique 2-tuple, M(k,m), where k
is the number of vertices in the motif and m is the motif id which uniquely identifies a motif
given k. Fig. 1 illustrates all motifs with k ≤ 5.

Let S(k) denote the set of all connected induced subgraphs with k vertices in G. Similarly,
let S(k,m) denote the set of all connected induced subgraphs which are isomorphic to motif
M(k,m). Now, the motif statistics or motif concentrations are given by the relative frequencies
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M(5, 1) M(5, 2) M(5, 3) M(5, 4) M(5, 5) M(5, 6) M(5, 7) M(5, 8) M(5, 9) M(5, 10) M(5, 11)

M(5, 12) M(5, 13) M(5, 14) M(5, 15) M(5, 16) M(5, 17) M(5, 18) M(5, 19) M(5, 20) M(5, 21)

M(2, 1) M(3, 1) M(3, 2) M(4, 1) M(4, 2) M(4, 3) M(4, 4) M(4, 5) M(4, 6)

Fig. 1. All 2, 3, 4 and 5 vertices undirected motifs.

of each of the motif types:

C(k,m) =
|S(k,m)|
|S(k)|

Given a large graph G, the problem considered in this paper is one of determining C(k,m)
for any k and m by visiting nodes in the graph only through its public interface via a random
walk. The goal is to make an estimate that is accurate and precise while visiting as few nodes
as possible.

B. Related Work
The earliest work on motifs in large graphs began with studies of triadic properties such as

triangle counts and the global clustering coefficient [20], [14]. Since then, a large body of work
has focused on understanding and estimating the properties of graphs related to 3-node motifs.
Yet, computing the accurate statistics of even these smallest of motifs (wedges and triangles)
is prohibitively expensive for large graphs, inspiring multiple efforts based on making estimates
using edge sampling [21], [22], [23]. The class of approaches based on random walks, however,
solve not only the computational challenge but also the typical restrictions imposed on full access
to the graph — they allow piecemeal collection of data by walking the graph querying a node
at a time for its list of neighbors [18], [15].

A smaller but increasing body of work has tried to develop graph sampling methods that
apply to motifs of size larger than three [24], [7], [25], [13], [9]. Applications in bioinformatics,
in particular, have inspired these efforts due to the need for motif detection and motif-related
computations in biology [26], [27]. There have been at least two classes of approaches in the
estimation of the statistics of larger-size motifs: one based on edge sampling and the other based
on random walks. Edge sampling approaches are able to reduce the computational complexity of
making an estimation, but they usually require knowledge of global properties of the graph (such
as the total number of edges in the graph) or they require access to the full graph. Only methods
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based on random walks rely entirely on the public interface of live networks and are able to
address both the computational and the access challenges mentioned in the previous section.

One approach based on random walks uses the Metropolis-Hastings method [28] which can
collect uniformly random nodes to infer motif statistics. However, since nodes selected uniformly
randomly may not necessarily induce connected subgraphs, a better approach is to build a graph
of connected induced subgraphs (CIS) and conduct a random walk on this CIS graph [12], [7],
[11]. Two subgraphs in this CIS graph are directly connected by an edge if they differ in only one
node in the original graph. Starting from one subgraph, one can move to a neighboring subgraph
by dropping and adding a node without having pre-computed the entire graph of subgraphs.
This approach to a subgraph random walk is improved in [7] using a Metropolis-Hastings based
sampling method to perform a uniform sampling of CISs in the large graph, leading to a Markov
Chain Monte Carlo sampling method for estimating the motif frequency distribution of 3-node,
4-node and 5-node motifs. The use of Metropolis-Hastings for walking the CIS graph is further
refined in [11] to collect motif statistics, in an algorithm called the Metropolis-Hastings Random
Walk (MHRW).

An alternative approach, also based in random walks on CIS graphs, is one that avoids
the Metropolis-Hastings method for its inefficiency involving randomized selections and the
consequent rejections of nodes in determining the next step in the walk. Instead, in this approach,
the unbiased sampling of Metropolis-Hastings method is replaced with the use of the Horvitz-
Thompson construction to unbias the estimation [29]. Such a method is used in [12] which
develops the Pairwise Subgraph Random Walk (PSRW), which cleverly samples a set of CISs
with a smaller number of k − 1 nodes to estimate the concentrations of motifs with k nodes.

Both PSRW and MHRW are capable of estimating motif concentrations of any size. As
presented in [12], [11], these two algorithms are significantly better than the existing methods
in terms of accuracy and speed. However, both of these algorithms rely on some subgraph
enumeration which adds significantly to the runtime. The Waddling Random Walk (WRW),
proposed in this paper, however, avoids such enumeration and instead uses a randomized approach
to sample subgraphs and reduce computational costs. WRW achieves a significant improvement
in speed as well as in the accuracy and the precision of its estimates.

C. Contributions
We present a new random walk algorithm, called Waddling Random Walk (WRW), named so

because it sways left and right and also samples nodes not directly in the path of the random
walk. In Section II, we develop the theoretical foundation for the algorithm and show that motif
statistics can be inferred from the probability with which we sample sets of nodes and whether
or not the subgraphs induced by those nodes are isomorphic to the motifs of interest.

Section III presents the WRW algorithm to sample k-node motif statistics for any k along
with a pseudocode description of it. The algorithm relies on a randomized waddling protocol
to sample nodes in the neighborhood of the random walk. A key strength of the algorithm is
that the waddling protocol can be customized for specific access or other constraints, with the
only requirement being that it be a randomized protocol so that the probabilities of sets of nodes
selected by the protocol can be computed. Section III also describes the specific version of the
algorithm for collecting 4-node and 5-node motif statistics.
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Section IV describes a thorough performance analysis of WRW in comparison to the best
two algorithms which address the same problem: PSRW introduced in 2014 [12] and MHRW
introduced in 2015 [11]. We show that WRW achieves a significantly improved running time.
Most importantly, we show, using graph datasets representing real networks, that the WRW
algorithm achieves significantly higher accuracy (in terms of the closeness of its answers to the
actual values) and higher precision (in terms of the variance in its estimations). We also show
that WRW can estimate the number of motifs of any type if the size of the network is known
or is estimated.

Section V concludes the paper.

II. THE RATIONALE

In this section, we build the theoretical rationale for the Waddling Random Walk. In particular,
we illustrate the need for waddling during the random walk by first considering a simpler
algorithm without waddling.

A. Preliminaries and Notation
Given a graph G = (V,E), let v ∈ V denote a vertex in G and let N(v) denote the set of

neighbors of vertex v in G. Let d(v) denote the degree of vertex v and let D =
∑

v∈V d(v)
denote the sum of the degrees of all the vertices in G.

Consider the k-node motif M(k,m). Let l(k,m) denote the number of vertices in the shortest
path (allowing repeated vertices) in motif M(k,m) that includes all of the motif’s k vertices.
For example, l(4, 1) is 5 while l(4, 2) is 4.

A path is called simple if it does not have any repeated vertices. Let L(k,m) denote the
number of vertices in the longest simple path of motif M(k,m). For example, L(4, 1) is 3 while
L(4, 2) is 4.

Let Tk denote the number of different k-node motifs. For example, T3 = 2, T4 = 6 and
T5 = 21.

Let Pr(k,m, s) denote the number of different paths with s vertices (allowing repeats) in motif
M(k,m) which include all of the k nodes. For example, Pr(3, 1, 3) is 2 while Pr(3, 2, 3) is 6.
Similarly, Pr(4, 1, 5) is 6, Pr(4, 2, 4) is 2 while Pr(4, 6, 4) is 24.

Consider a random walk on G, (r1, r2, . . . ), where r1 denotes the starting node and ri denotes
the node visited in step i. Let t denote the number of steps in the random walk required to
reach the mixing time [30], i.e., when the probability of visiting a given node in a given step
reaches a stationary distribution and is largely independent of the initial node r1 chosen to begin
the random walk. In many real networks, including social networks in particular, t is small and
usually of the order of a few hundreds of nodes [15], [28].

Let φi(vj) denote the probability that the random walk visits node vj in step i. For i > t,
the mixing time, we can drop i from the notation and denote by φ(vj) the probability that the
random walk visits node vj in any given step. In the rest of this paper, we assume that all
the computations are based on observations made in the random walk after the mixing time is
reached. As shown in [31], in a random walk, φ(vj) is given by:

φ(vj) =
d(vj)

D
(1)
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Let R(s) denote the set of all sequences of s nodes which may appear in a random walk in
G; it is the set of all s-node paths (allowing revisits to nodes) in G. Let X(s) = (x1, x2, . . . , xs)
represent a sequence of s nodes such that X(s) ∈ R(s). At any given point in the random walk,
let φ(X(s)) denote the probability that it steps through exactly the sequence of nodes X(s). Then,
φ(X(s)) is given by:

φ(X(s)) =
d(x1)

D

1

d(x1)

1

d(x2)
· · · 1

d(xs−1)

=
1

D

1

d(x2)
· · · 1

d(xs−1)
(2)

Let H(X(s)) denote the subgraph in G induced by the set of vertices in the random walk
sequence X(s). If the number of distinct nodes in X(s) is k, then H(X(s)) is isomorphic to one
of the k-node motifs. Define the function ω(X(s), k,m) as follows to indicate if H(X(s)) is
isomorphic to motif M(k,m):

ω(X(s), k,m) =

{
1 if H(X(s)) is isomorphic to M(k,m),
0 otherwise.

Note that the function ω(X(s), k,m) does not depend on the order of the nodes in the sequence
X(s).

As we traverse nodes in the random walk, we can observe the sequences of nodes visited and
compute the probability that those sequences are encountered using the expression in Eqn. (2)
above. Then, we can evaluate ω(X(s), k,m) for those sequences to check if they induce a
subgraph isomorphic to a certain motif. The rest of this section explains how we can infer
motif statistics from these quantities.

B. Motif statistics without waddling
Given a motif M(k,m) which appears in G, there are Pr(k,m, s) ways in which an s-node path

may traverse this motif visiting all its nodes. Therefore, if we sum up the function ω(X(s), k,m)
for every path X(s) ∈ R(s), we should get the total number of motifs of type M(k,m) multiplied
by Pr(k,m, s). More formally,∑

X(s)∈R(s)

ω(X(s), k,m) = Pr(k,m, s)|S(k,m)| (3)

For any sequence of nodes on the random walk, X(s), define f(X(s)) as follows using Eqn. (2):

f(X(s)) =
1

φ(X(s))D
= d(x2)d(x3) · · · d(xs−1) (4)

Let R(s)
i ∈ R(s) denote the sequence of s nodes visited during steps i− s+ 1 through i, i.e.,

(ri−s+1, ri−s+2, . . . , ri). Consider the expected value of ω(R
(s)
i , k,m)f(R

(s)
i ) over the random

walk:

E
[
ω(R

(s)
i , k,m)f(R

(s)
i )
]

=
∑

X(s)∈R(s)

φ(X(s))
(
ω(X(s), k,m)f(X(s))

)
=

(
1

D

) ∑
X(s)∈R(s)

ω(X(s), k,m) (5)
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Fig. 2. An example to illustrate the collection of 4-node motif statistics in a random walk (shown by red arrows) without a
waddle. 5-node paths are examined only to check for motif M(4, 1).

Using Eqn. (4) for f(R
(s)
i ) on the LHS and substituting for the above summation using Eqn. (3)

on the RHS, we get:

E

[
ω(R

(s)
i , k,m)

s−2∏
j=1

d(ri−j)

]
=

(
1

D

)
Pr(k,m, s)|S(k,m)| (6)

Eqn. (6) suggests a simple algorithm for sampling motif statistics via a random walk. For
each motif type M(k,m), let s = l(k,m), the number of vertices in the shortest path in the
motif that includes all of its k vertices. As we visit nodes in the random walk, we can check if
the previous s nodes induce a subgraph isomorphic to M(k,m) to evaluate ω(R

(s)
i , k,m). Fig. 2

illustrates motifs recognized by such an algorithm during a random walk.
At each step, if the isomorphism test passes, we can compute the product of the degrees of the

middle s−2 nodes in R(s)
i and obtain the average of these results to get the LHS in Eqn. (6) for

M(k,m), which we denote by LHS(k,m). In the RHS of Eqn. (6), since Pr(k,m, s) is known
for all the motifs and D is a constant, we can compute the fraction of k-node motifs in a graph
which are of a certain type as follows:

C(k,m) =

(
LHS(k,m)

Pr(k,m, s)

)/(
Tk∑
j=1

LHS(k, j)

Pr(k, j, s)

)

C. Why waddle?
The algorithm suggested by Eqn. (6) in the previous section works well when l(k,m) is equal

to k but can become less accurate when l(k,m) is larger than k. For example, in the case of
the 4-star motif or M(4, 1), l(4, 1) is 5 and so the random walk has to take 5 steps within the
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TABLE I
A GLOSSARY OF SELECTED BASIC TERMS.

Notation Definition
d(v) Degree of node v in G.

D Sum of the degrees of all nodes in G.

Tk Number of different k-node motifs.

M(k,m) k-node motif with id m.

S(k,m) Set of all connected induced subgraphs which
are isomorphic to M(k,m).

l(k,m) Number of vertices in the shortest path in
M(k,m) that includes all of its k vertices.

L(k,m) Number of vertices in the longest simple path
of motif M(k,m).

Pr(k,m, s) Number of different paths (allowing repeated
nodes) of length s in motif M(k,m)

R
(s)
i Sequence of s nodes visited during steps i −

s+ 1 through i.

H(R
(s)
i ) Subgraph in G induced by the set of vertices in

the random walk sequence R
(s)
i .

C(k,m) Motif concentration of M(k,m).

motif to encounter and recognize the motif; this means that motifs with larger l(k,m) would be
encountered and recognized with lower probability, especially so in large social network graphs
with high average degree.

A significant improvement is possible if we allow our random walk to waddle a little (sway
left and right) and query random nodes to the right and the left of the random walk as well. For
example, consider the random walk illustrated in Fig. 2 to collect 4-node motif statistics. Suppose,
in addition to the nodes visited on the random walk, we also query a random neighboring node
of each node visited directly on the random walk. Suppose we query node g at the step in which
the walk visits node h. Then, when the walk visits node d for the first time, we can recognize
the 4-star motif M(4, 1) induced by nodes h, b, g and d in addition to recognizing motif M(4, 4)
in the same step induced by nodes a, b, h and d.

Waddling, since it also examines nodes not in the direct path of the random walk, allows us to
restrict the number of previously visited nodes along the walk that we examine for isomorphism
to a motif M(k,m) to no more than the length in the number of nodes, L(k,m), of the longest
simple path on the motif. Since L(k,m) ≤ k, we will sample motifs with a higher probability
during every step of the walk. Waddling helps count more motifs and thus improves the accuracy
of the motif statistics collected. As we will show in the next section, for best efficiency, how
we waddle (i.e., which other nodes we query along the random walk and how deep a chain of
nodes we query) depends on the motif for which we are seeking to collect statistics. But, as
long as we can correctly compute the probability of choosing the set of nodes for which we
examine the induced subgraphs, the methodology detailed in this section can be transferred to
the waddling algorithm to estimate the motif statistics.
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Algorithm 1 Waddling Random Walk
Require: Graph G = (V,E), motif size k, motif id m, random walk length n.
Ensure: Motif concentration C(k,m)

1: cm ← 0, 1 ≤ m ≤ Tk
2: Perform random walk until after the mixing time, reaching node ri−1 at step i− 1
3: while i < n do
4: ri ← Random node in N(ri−1)
5: for m : 1, . . . , Tk do
6: s = L(k,m)

7: R
(s)
i ← (ri−s+1, . . . , ri)

8: if Nodes in R(s)
i are all distinct then

9: if s = k then
10: if H(R

(s)
i ) is isomorphic to M(k,m) then

11: cm ← cm +

(
s−2∏
j=1

d(ri−j)

)/
Pr(k,m, s)

12: end if
13: else
14: Pick a random s-node path of M(k,m) and map it on the nodes in R(s)

i

15: W
(k−s)
i ← Set of k − s nodes chosen by the randomized waddle protocol

16: if H(R
(s)
i ∪W

(k−s)
i ) is isomorphic to M(k,m) then

17: cm ← cm +


Z(k,m)

s−2∏
j=1

d(ri−j)

φ(W
(k−s)
i |R(s)

i )Pr(k,m, s)Pw(k,m, s)


18: end if
19: end if
20: end if
21: end for
22: i← i+ 1
23: end while

24: ct ←
Tk∑
j=1

cj

25: return cm/ct

III. WADDLING RANDOM WALK

Algorithm 1 presents the pseudocode of the Waddling Random Walk (WRW) to compute
the concentrations of k-node motifs for any k. In our algorithm, we use Tk different temporary
variables, cm for 1 ≤ m ≤ Tk, in which we record the Tk motif concentrations, one for each
type. Lines 1–2 in the pseudocode perform necessary initializations, begin the random walk and
proceed until the mixing time is reached.

9



Lines 3–23 describe the walk after the mixing time, during which period we collect the motif
statistics. Line 4 takes the next step in the random walk to reach node ri. At each step of the
walk, the for loop in lines 5–21 loops through the processing required for each motif type —
the loop can be further optimized for computational efficiency; we present the pseudocode as
such for clarity at the expense of some efficiency. Consider a motif M(k,m) and let s = L(k,m),
the number of vertices in its longest simple path. Note that s ≤ k. Let R(s)

i = (ri−s+1, . . . , ri)
denote the sequence of s nodes visited during steps i− s+ 1 through i.

Lines 8–20, expressed in generalized form, is the heart of the algorithm and we will describe
these at length. If the nodes in R

(s)
i are not all distinct, we will not recognize any motifs of

the type being considered and we will move forward to either check for the next motif type or
take the next step in the random walk if all motif types at the current step have already been
considered.

If the nodes in R
(s)
i are all distinct, there are two cases to consider depending on the motif

type: s = k and s < k. If s = k, then there is no need to waddle and we can use the approach
in the previous section to check for the isomorphism of H(R

(s)
i ) and M(k,m), and add to the

motif count toward estimation of the motif concentration C(k,m). Lines 9–12 handle this case
when s = k.

In the other case when s < k, we can map the longest simple path of the motif M(k,m)

onto these R(s)
i nodes (line 14). Note that there are Pr(k,m, s) different assignments that can

accomplish the mapping and we randomly choose one of them. To test for isomorphism to
M(k,m), we now need at least an additional k− s nodes. This is accomplished by waddling in
line 15 described in greater detail below.

Consider a randomized waddle protocol which queries an additional set of k − s choices of
nodes, W (k−s)

i , such that R(s)
i ∪W

(k−s)
i induces a connected subgraph. The querying of these

nodes in W
(k−s)
i , which may be to the right or the left as we take the random walk, produces

the waddle for which the algorithm is named. Note that the waddle protocol chooses the nodes
W

(k−s)
i randomly and cannot guarantee if the induced subgraph will be isomorphic to M(k,m)

for some m or even if it has exactly k − s distinct nodes (due to the randomization, it may
choose the same node more than once). A powerful feature of our algorithm is that it does not
actually prescribe a specific waddle protocol — for the Waddling Random Walk to work, we
only need the waddle protocol to be randomized. In fact, the waddle protocol may be customized
and optimized for different motifs; we will provide the waddle protocol optimized for 4-node
and 5-node motifs later in this section.

Let φ(W
(k−s)
i |R(s)

i ) denote the probability that the randomized waddle protocol chooses exactly
the nodes in W (k−s)

i when the random walk visits the nodes in the sequence R(s)
i . In the 4-node

motif sampling example illustrated in Fig. 2, if R(3)
i = (b, h, d) and if the waddle protocol

randomly chooses a neighbor of h to include in W
(1)
i , then the probability φ(W

(1)
i |R

(3)
i ) is

1/d(h).
Consider φ(R

(s)
i ,W

(k−s)
i ), the probability that the random walk visits the sequence of nodes

R
(s)
i and then the waddle protocol chooses the set of nodes W (k−s)

i at step i of the random walk.
Using Eqn. (2), it is given by:

φ(R
(s)
i ,W

(k−s)
i ) =

φ(W
(k−s)
i |R(s)

i )

D
∏s−2

j=1 d(ri−j)
(7)
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Let H(R
(s)
i ∪ W

(k−s)
i ) denote the subgraph induced by the set of nodes in R

(s)
i ∪ W

(k−s)
i .

As in the previous section, define the function ω(R
(s)
i ∪W

(k−s)
i , k,m) as follows to indicate if

H(R
(s)
i ∪W

(k−s)
i ) is isomorphic to motif M(k,m):

ω(R
(s)
i ∪W

(k−s)
i , k,m) =

{
1 if H(R

(s)
i ∪W

(k−s)
i ) is isomorphic to M(k,m),

0 otherwise.

Let W(k−s) be the set of all collections of k− s nodes (allowing repeated nodes) such that if
Y (k−s) ∈W(k−s), then for some X(s) ∈ R(s), X(s) ∪Y (k−s) induces a connected subgraph in G.

Depending on the motif type, note that the node-to-node mapping of R(s)
i ∪W

(k−s)
i to the nodes

in the motif may not be possible if the mapping of nodes in R(s)
i to the longest simple path of

the motif is reversed, i.e., if the node mapped to ri is now mapped to ri−s+1 and vice-versa and
so on. Define Z(k,m) as 1 if the mapping is possible under such a reversal and 2 otherwise;
note that Z(k,m) is a property of the motif indicating if the motif is lengthwise symmetric
around the longest simple path.

Similarly as in the case of Eqn. (3),∑
X(s)∈R(s)

∑
Y (k−s)∈W(k−s)

ω(X(s) ∪ Y (k−s), k,m)

=

(
1

D

)(
Pr(k,m, s)Pw(k,m, s)|S(k,m)|

Z(k,m)

)
(8)

where Pr(k,m, s) is the number of different paths of length s in motif M(k,m), and Pw(k,m, s)
is the number of different ways in which nodes in Y (k−s) can then be mapped on to the nodes not
on the s-node path in motif M(k,m). While Pr(k,m, s) captures the number of different ways
in which an s-node path can be mapped on to the longest simple path of the motif, Pw(k,m, s)
captures the number of different ways one can map the additional k − s nodes chosen by the
waddle protocol on to the remaining k − s nodes of the motif. Fig. 3 shows examples of some
k-node motifs whose longest simple path is of length s < k and the corresponding values of
Z(k,m), Pr(k,m, s) and Pw(k,m, s).

Using Eqn. (7), define a function f(.) such that:

f(R
(s)
i ,W

(k−s)
i ) =

1

φ(R
(s)
i ,W

(k−s)
i )D

=

∏s−2
j=1 d(ri−j)

φ(W
(k−s)
i |R(s)

i )

M(4, 1)

Pr(4, 1, 3) = 6

Pw(4, 1, 3) = 1

Pr(5, 1, 4) = 4

M(5, 1)

Pw(5, 1, 4) = 1 Pw(5, 1, 3) = 2

Pr(5, 1, 3) = 12

M(5, 2) M(8, 2)

Pr(8, 2, 4) = 18

Pw(8, 2, 4) = 2!2! = 4

Z(4, 1) = 1 Z(5, 2) = 2 Z(5, 1) = 1 Z(8, 2) = 1

M(4, 1)
Z(4, 1) = 1
Pr(4, 1, 3) = 6
P!(4, 1, 3) = 1

M(5, 2)
Z(5, 2) = 2
Pr(5, 2, 4) = 4
P!(5, 2, 4) = 1

M(5, 3)
Z(5, 3) = 1
Pr(5, 3, 3) = 12
P!(5, 3, 3) = 2

M(5, 6)
Z(5, 6) = 2
Pr(5, 6, 4) = 8
P!(5, 6, 4) = 1

                            

M(4, 1)
Z(4, 1) = 1
Pr(4, 1, 3) = 6
P!(4, 1, 3) = 1

M(5, 3)
Z(5, 3) = 1
Pr(5, 3, 3) = 12
P!(5, 3, 3) = 2

M(5, 6)
Z(5, 6) = 2
Pr(5, 6, 4) = 8
P!(5, 6, 4) = 1

M(5, 2)
Z(5, 2) = 2
Pr(5, 2, 4) = 4
P!(5, 2, 4) = 1

Fig. 3. Z(k,m), Pr(k,m, s) and Pw(k,m, s) values for some motifs.
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Fig. 4. An example to illustrate the collection of 4-node motif statistics in Waddling Random Walk. The random walk is shown
by red arrows and the waddles are shown by dotted-line green arrows.

Let Ω(k,m,X(s), Y (k−s)) denote the function given by the product:

φ(X(s), Y (k−s))ω(X(s) ∪ Y (k−s), k,m)f(X(s), Y (k−s))

As in Eqn. (5), we have the following expected value:

E[ω(R
(s)
i ∪W

(k−s)
i , k,m)f(R

(s)
i ,W

(k−s)
i )]

=
∑

X(s)∈R(s)

∑
Y (k−s)∈W(k−s)

Ω(k,m,X(s), Y (k−s)) (9)

Using Eqns. (7) and (8), we get:

E

[
ω(R

(s)
i ∪W

(s)
i , k,m)

∏s−2
j=1 d(ri−j)

φ(W
(k−s)
i |R(s)

i )

]

=

(
1

D

)(
Pr(k,m, s)Pw(k,m, s)|S(k,m)|

Z(k,m)

)
(10)

Fig. 4 shows an example of how 4-node motif statistics are estimated using a combination of
a random walk and a randomized waddle.

Lines 16–17 of the pseudocode use Eqn. (10) to compute the sum |S(k,m)| by computing
the LHS of the above equation and using known values of Z(k,m), Pr(k,m, s) and Pw(k,m, s)
for each motif. Lines 24–25 finally compute and return the motif concentration.

A. Example: 4 and 5-node motif statistics
While Algorithm 1 shows the pseudocode for the Waddling Random Walk in the general case

for k-node motifs, it is illustrative to show how the waddle works in the case of 4 and 5-node
motifs. Algorithm 2 and Algorithm 3 replace the lines 3–23 in Algorithm 1 for the 4-node case
and 5-node case, respectively.

Lines 5 and 10 in the 4-node case are surprisingly simple compared to the generalized case
represented in line 17 of Algorithm 1. This is because φ(W

(k−s)
i |R(s)

i ) is simply 1/d(ri−1). The
motif type M(4, 1) is the only case in which s = 3, for which Pr(4, 1, 3) = 6, Pw(4, 1, 3) = 1
and Z(k,m) = 1.

In the 5-node case, only motif types M(5, 2), M(5, 3) and M(5, 6) have the number of vertices
in their longest simple path less than 5. The corresponding values of Pr, Pw and Z are presented
in Fig. 3.
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Algorithm 2 Snippet of WRW for 4-node motifs
1: while i ≤ n do
2: ri ← Random node in N(ri−1)

3: if Nodes in R(4)
i are distinct then

4: m← id of the motif induced by R(4)
i

5: cm ← cm +
d(ri−1)d(ri−2)

Pr(4,m, 4)
6: end if
7: if Nodes in R(3)

i are distinct then
8: w ← Random node in N(ri−1)

9: if H(R
(3)
i ∪ w) is isomorphic to M(4, 1) then

10: c1 ← c1 +
d(ri−1)

2

6
11: end if
12: end if
13: i← i+ 1
14: end while

B. Theoretical bound
We present a theoretical analysis of the number of steps required in the random walk in order

to get an accurate estimate. Let T = T (ε) be the ε-mixing time of a Markov Chain on G where
ε is at most 1

8
. Let Q be the product of the top k degrees in G.

Lemma 1: For 0 < δ < 1, there exists a constant ξ, such that for t ≥ ξ TDQ
|S(k,m)|δ2 log 1

α
, we

have

Pr

[(
1− 2δ

1 + δ

)
C(k,m) ≤ Ĉ(k,m) ≤

(
1 +

2δ

1− δ

)
C(k,m)

]
> 1− 2α

where Ĉ(k,m) is the estimated C(k,m), the concentration of motif M(k,m). The detailed proof
is presented in the appendix.

When the number of steps in the random walk t ≥ ξ TDQ
|S(k,m)|δ2 log 1

α
, the relative error of an

estimate of the concentration of motif M(k,m) is at most 2δ
1−δ with probability greater than

1−2α . Besides α and δ, the number of steps is also determined by the mixing time, the degree
distribution of the graph and the number of subgraphs which are isomorphic to motif M(k,m).

IV. PERFORMANCE ANALYSIS

In this section, we conduct a comparative performance analysis of Waddling Random Walk
(WRW) against the best two, both recently proposed, graph sampling algorithms which address
the same problem under the same constraints on access to the full graph. The Metropolis-
Hastings Random Walk (MHRW) estimates the concentrations of k-node motifs by adopting
the Metropolis-Hastings method to perform a uniform random sampling of connected induced
subgraphs (CIS) with k nodes in the large graph [11]. The Pairwise Subgraph Random Walk
(PSRW), samples a set of CISs with k − 1 nodes by walking on the graph of these CISs to
estimate the k-node motif statistics [12]. Both PSRW and MHRW, like WRW, are capable of

13



Algorithm 3 Snippet of WRW for 5-node motifs
1: while i ≤ n do
2: ri ← Random node in N(ri−1)

3: if Nodes in R(5)
i are distinct then

4: m← id of the motif induced by R(5)
i

5: cm ← cm +
d(ri−1)d(ri−2)d(ri−3)

Pr(5,m, 5)
6: end if
7: if Nodes in R(4)

i are distinct then
8: w ← Random node in N(ri−2)

9: if H(R
(4)
i ∪ w) is isomorphic to M(5, 2) then

10: c2 ← c2 +
d(ri−1)d(ri−2)

2

2
11: else if H(R

(4)
i ∪ w) is isomorphic to M(5, 6) then

12: c6 ← c6 +
d(ri−1)d(ri−2)

2

4
13: end if
14: end if
15: if Nodes in R(3)

i are distinct then
16: w1 ← Random node in N(ri−1)
17: w2 ← Random node in N(ri−1)

18: Rtemp ← R
(3)
i ∪ {w1, w2}

19: if H(Rtemp) is isomorphic to M(5, 3) then

20: c3 ← c3 +
d(ri−1)

3

24
21: end if
22: end if
23: i← i+ 1
24: end while

estimating motif concentrations of any size. As presented in [11], [12], these two algorithms are
significantly better than previously known methods in terms of both accuracy and speed, which
motivates our choice of these algorithms for the comparative analysis in this section.

We performed our experiments on real graphs from the Stanford Network Analysis Project
(SNAP) [32] and the Koblenz Network Collection [33]. For each graph dataset used, we run

TABLE II
GRAPH DATASETS USED IN THE ANALYSIS.

Graph
(LCC)

Nodes
|V |

Edges
|E| C(4, 1) C(4, 6) C(5, 3) C(5, 21)

com-Amazon 3.35e+05 9.26e+05 6.99e-01 1.55e-03 7.45e-01 7.24e-06
soc-Slashdot 7.73e+04 4.69e+05 6.86e-01 9.19e-05 6.15e-01 1.15e-06
socfb-Penn94 4.15e+04 1.36e+06 6.52e-01 3.59e-04 6.18e-01 2.30e-06
com-Youtube 1.13e+06 2.99e+06 9.82e-01 8.55e-07 — —
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(a) com-Amazon (Q = 8K)
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(c) socfb-Penn94 (Q = 8K)
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(d) com-Youtube (Q = 20K)

Fig. 5. Comparison of the relative errors in the estimates of 4-node motif concentrations.

the random walk algorithms on the largest connected component (LCC) of it. The name, the
number of vertices and the number of edges in these graphs are listed in Table II along with
the actual values of selected 4-node and 5-node motif concentrations. Exact values of the motif
concentrations are obtained by using Orbit Counting Algorithm (Orca) [34]. It reduces the time
complexity of existing direct enumeration methods by an order of magnitude. One objective of
this work is to make large graph analysis possible, through sampling algorithms, on ordinary

TABLE III
RUNTIME FOR EXACT COMPUTATION OF MOTIF CONCENTRATIONS (IN SECONDS).

4-node motif 5-node motif
Graph Exact computation Exact computation

com-Amazon 2.14 76.98
soc-Slashdot 9.21 7030.17
socfb-Penn94 47.58 178845.84
com-Youtube 102.62 —
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(b) socfb-Penn94(Q = 18K)

Fig. 6. Comparison of the relative errors in the estimates of 5-node motif concentrations.

desktops and, therefore, all of the performance analysis in this paper was conducted on an iMac
with 8GB 1600MHz DDR3 memory and a 2.7GHz Intel Core i5 processor. The runtime of using
Orca to calculate 4-node and 5-node motif concentrations on the iMac is reported in Table III. As
shown in the table, the runtime for calculating motif concentrations increases dramatically as the
graph size increases. For example, for socfb-Penn94 graph, it takes more than 2 days to obtain
the exact concentrations of 5-node motifs. For com-Youtube graph, the largest graph among all
four graphs, we estimate more than one month of runtime to complete the exact computation of
5-node motif concentrations — the data of 5-node motifs in com-Youtube graph, therefore, is
not provided here.

We conduct our comparative analysis based on four key metrics: the number of queries, the
run time, the accuracy (how close is the estimate to the correct answer?), and the precision (how
low is the variance in the estimates?). The first two address the speed of the algorithms and the
latter two address the confidence we should have in the estimates. If the amount of processing
done per query by the algorithms are different, the number of queries is not directly indicative
of the speed of the algorithm — therefore, we also use the actual run time of the algorithms in
our analysis. The number of queries, however, is still meaningful as a metric since it indicates
the amount of information collected by the algorithm.
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(h) com-Youtube: C(4, 6)/Actual

Fig. 7. Comparison of the ratio of the average estimated values of C(4, 1) and C(4, 6) and their actual values. Red line
indicates 1. The error bars indicate 95% confidence intervals over 200 independent runs.

A. Accuracy and precision
Figs. 5 and 6 show relative errors in estimating the concentrations of each of the 4-node and

5-node motifs for each of the three algorithms. We measure the relative error as:

Relative error =
Average estimate− Actual value

Actual value

The average estimate is calculated as the mean of the estimated value over 200 independent
runs.

For each graph, we fixed Q, the number of queries. For PSRW and MHRW, since the CIS
sampled in the next step differs from the CIS of the current step in only one node, we assume
only one query per CIS considered. As shown in Figs. 5 and 6, for almost all motif types, the
WRW algorithm proposed in this paper yields a smaller relative error, i.e., higher accuracy, for
the same number of queries than the other two algorithms, and especially so when the actual
concentration of the motif is low.
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(a) soc-Slashdot: C(5, 3)/Actual
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(b) soc-Slashdot: C(5, 21)/Actual
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(c) socfb-Penn94: C(5, 3)/Actual
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(d) socfb-Penn94: C(5, 21)/Actual

Fig. 8. Comparison of the ratio of the average estimated values of C(5, 2) and C(5, 3) and their actual values. Red line
indicates 1. The error bars indicate 95% confidence intervals over 200 independent runs.

Figs. 7 and 8 help evaluate both the accuracy and the precision of the WRW algorithm in
comparison to PSRW and MHRW in 4-node case and 5-node case. They show the ratio of
the average estimated motif concentration to the actual value for each of the four graphs with
increasing number of queries.

In large graphs, the star motifs, e.g., M(4, 1) and M(5, 3), typically have the largest concen-
tration. The clique motifs, such as M(4, 6) and M(5, 21), have the smallest concentration in
most cases. In order to demonstrate accuracy and precision spanning the full range of actual
motif concentrations, we choose to plot the estimates for C(4, 1) and C(4, 6) in case of 4-node
motifs (in Fig. 7) and C(5, 3) and C(5, 21) in case of 5-node motifs (in Fig. 8). As shown in
Fig. 7 and 8, to obtain similar accuracy and precision, fewer nodes are queried for the star motifs
than the clique motifs. When the concentration is high, it is easier to reach good accuracy and
precision since the random walk will encounter more samples. But, note that, as also shown in
Figs. 5 and 6, the WRW algorithm achieves especially good accuracy and precision when doing
so is harder, i.e., when the motif concentration is very low.

The closeness of the WRW plot to the red line indicates its significantly better accuracy than
the other algorithms. Also, the smaller error bars on the WRW plot show that, besides being more
accurate, the estimates made by WRW are also more precise compared to the other algorithms.
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(a) com-Youtube: C(4, 1)
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(b) socfb-Penn94: C(5, 3)

Fig. 9. Comparisons of the relative error in estimating C(4, 1) and C(5, 3) against the runtime in seconds.

B. Runtime
The WRW algorithm achieves an improvement in the runtime by avoiding the enumeration

of subgraphs but instead simply picking a random set of nodes and checking for isomorphism.
This makes a particular difference in the case of graphs with high average node-degree.

We implemented the three algorithms, WRW, PSRW and MHRW, in Python using iGraph
routines. Since part of the point of graph sampling is to make Big Data analysis feasible on
ordinary desktops, we ran all of the simulations on the same ordinary iMac as that used for
Table III. We assume that the graph datasets are stored on the local machine and, so, the time
lost to querying corresponds to the time involved in accessing the memory.

Fig. 9 plots the relative error of the estimates of C(4, 1) and C(5, 3) made by the three
algorithms against the total runtime, averaged over 100 independent runs on com-Youtube and
socfb-Penn94 graphs. The figure shows that WRW achieves significantly better accuracy for the
same runtime than other algorithms in both 4-node and 5-node motif cases.

C. Application to motif counting
Motif analysis has been used as an important technique for analyzing complex networks

[35]. Networks with identical global graph properties, such as global clustering coefficient and
diameter, may have different local structures [6]. The number of occurrences of each motif has
been widely used for uncovering the local structure of the networks. [36] summarized a protein’s
local structure in a protein-protein interaction (PPI) network via the motif degree signature.
[37] proposed efficient graph kernels based on counting or sampling motifs to characterize and
compare graphs. In [38], motif counts were used to build subgraph ratio profiles for comparing
P2P networks with protein structure networks.

Our algorithm can also be applied to estimating the motif counts with the help of the network
size estimator in [15]. As presented in Eqn. (10), the number of subgraphs which are isomorphic
to motif M(k,m) equals the ratio of E[ω(R

(s)
i ∪W

(s)
i , k,m)

∏s−2
j=1 d(ri−j)

φ(W
(k−s)
i |R(s)

i )
] and

(
1
D

) (Pr(k,m,s)Pw(k,m,s)
Z(k,m)

)
.

The former can be estimated by running the WRW algorithm. Pr(k,m, s), Pw(k,m, s) and
Z(k,m) are known for all the motifs. D is the sum of the degrees of all the nodes in G. We
assume that the entire graph is not accessible, so the real value of D remains unknown; however,
we can estimate the value of D via random walk.
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TABLE IV
THE RELATIVE ERRORS IN THE ESTIMATES OF THE SUM OF DEGREES OF ALL NODES (D). ONLY 1% OF THE NODES IS

MINED.

Graph Sample size D Relative error (%)
soc-Slashdot 774 938,360 0.5753
socfb-Penn94 415 2,724,440 0.6748

TABLE V
THE RELATIVE ERRORS IN THE ESTIMATES OF THE NUMBER OF SELECTED 4,5-NODE MOTIFS WHEN 1% OF THE NODES IS

MINED.

4-node motifs
Graph |S(4,1)| Relative error (%) |S(4,6)| Relative error (%)

soc-Slashdot 1.49e+10 3.9656 1.99e+06 4.1792
socfb-Penn94 5.69e+10 4.0676 3.13e+07 0.3927

5-node motifs
Graph |S(5,3)| Relative error (%) |S(5,21)| Relative error (%)

soc-Slashdot 5.73e+12 5.6742 1.07e+07 9.2719
socfb-Penn94 3.86e+13 0.6748 1.44e+08 8.0219

Let xi ∈ V denote the node visited in step i. Consider the expected value of 1
d(xi)

over the
random walk:

E

[
1

d(xi)

]
=

∑
v∈V

d(v)

D

1

d(v)
=
|V |
D

(11)

Eqn. (11) shows that D is equal to the ratio of the number of nodes in the entire graph and the
expected value of 1

d(xi)
. [15] presents a sampling method which estimates the number of nodes

by counting the neighbor collision of node pairs in the random walk.
Having the estimated value of D, WRW is capable of estimating the number of motifs of

any type. Given a k-node motif M(k,m), WRW can estimate the number of subgraphs which
are isomorphic to M(k,m) without performing any estimation of other types of k-node motifs.
Other motif counting algorithms, such as [9], require the estimates of all non-star-like motifs in
order to estimate the motif count of a star-like motif.

Table IV reports the accuracy of the estimates of D, and Table V shows the relative errors in
the estimates of selected 4,5-node motif counts. As mentioned in Section IV-A, in most of the
cases, the star motifs have the largest concentration, while the clique motifs have the smallest
concentration. So we choose to present the estimates for |S(4,1)| and |S(4,6)| in case of 4-node
motifs, and |S(5,3)| and |S(5,21)| in case of 5-node motifs. As presented in Table V, even
with only hundreds of nodes queried, our method still has a relative error lower than 10%.

V. CONCLUSIONS

This paper demonstrates a simple approach, based on a random walk, to collect and estimate
the motif statistics of a large graph by sampling only a small fraction of the motifs in the graph.
The algorithm, called Waddling Random Walk, is significantly faster than other known algorithms
that address both the computational and access challenges in the subgraph mining of large graphs.
The key feature of WRW that contributes to its speed is the fact that it avoids any enumeration
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of subgraphs, relying instead on a randomized protocol to sample subgraphs. Further, WRW also
avoids a dependence on the node degree in the critical path of its computations and therefore,
performs particularly well on graphs with large average node-degree. Besides the improvement
in speed, the algorithm is also more accurate (its estimates are closer to the correct answer) and
more precise (its estimates have low variance) than the best of previously known algorithms.

A powerful feature of our methodology is that it also offers a generalized approach which can
be customized to optimize for specific motifs of interest. In fact, the theoretical rationale used for
our approach only requires that our method of waddling used in the algorithm be a randomized
protocol. Within this approach, there is much room for improving the waddling protocol and
we hope this paper will form the foundation for new approaches leading to newer and better
algorithms in the computationally feasible analysis of large graphs.

APPENDIX

In this section, we present the proof of Lemma 1.
Theorem 1: (Theorem 3 [39]) Let M be an ergodic Markov chain with state space [n] and

stationary distribution π. Let T = T (ε) be its ε-mixing time for ε ≤ 1/8. Let (x1, ..., xt) denote
a t-step random walk on M starting from an initial distribution ϕ on [n]. For every i ∈ [t], let
fi : [n] → [0, 1] be a weight function at step i such that the expected weight Ex←π[fi(x)] = µ
for all i. Define the total weight of the walk (x1, ..., xt) by X ,

∑t
i=1 fi(xi). There exists some

constant c (which is independent of µ, ε and δ) such that

Pr

[∣∣∣∣Xt − µ
∣∣∣∣ > δµ

]
≤ c||ϕ||πe−δ

2µt/(72T )

where 0 < δ < 1.
The above theorem, presented in [39], provides the theoretical foundation of our proof.

Lemma 2: There exists a constant ξ, such that for t ≥ ξ TDQ
|S(k,m)|δ2 log 1

α
, we have

Pr

[
(1− δ) |S(k,m)|

D
≤ cm

t
≤ (1 + δ)

|S(k,m)|
D

]
> 1− α

Proof: Define Q as the product of the top k degrees in G. Let

fi =
1

Q
[ω(R

(s)
i ∪W

(s)
i , k,m)

∏s−2
j=1 d(ri−j)

φ(W
(k−s)
i |R(s)

i )
]

(
Z(k,m)

Pr(k,m, s)Pw(k,m, s)

)
.

This function comes from our estimator in Eqn. (10). Suppose that the random walk starts from
a stationary distribution π, and thus we have ||ϕ||π = 1. The expected value E[fi] = |S(k,m)|

DQ
.

Applying Theorem 1,

Pr
[∣∣∣ cmtQ − |S(k,m)|

DQ

∣∣∣ > δ |S(k,m)|
DQ

]
= Pr

[∣∣∣ cmt − |S(k,m)|
D

∣∣∣ > δ |S(k,m)|
D

]
≤ ce−δ

2 |S(k,m)|t
72DQT

As a reminder, we use Tk different temporary variables, cm for 1 ≤ m ≤ Tk, to record the Tk
motif concentrations (see Algorithm 1). Thus, we have

cm =
t∑
i=1

fi

21



Taking the expectation of cm,

E
[cm
t

]
= E

[
ω(R

(s)
i ∪W

(s)
i , k,m)

∏s−2
j=1 d(ri−j)

φ(W
(k−s)
i |R(s)

i )

](
Z(k,m)

Pr(k,m, s)Pw(k,m, s)

)
=
|S(k,m)|

D

Let α = ce−δ
2 |S(k,m)|t

72DQT , and thus we have t ≥ ξ TDQ
|S(k,m)|δ2 log 1

α
.

Lemma 3: There exists a constant ξ, such that for t ≥ ξ TDQ∑Tk
m=1 |S(k,m)|δ2

log 1
α

, we have

Pr

[
(1− δ)

Tk∑
m=1

|S(k,m)|
D

≤ ct
t
≤ (1 + δ)

Tk∑
m=1

|S(k,m)|
D

]
> 1− α

Note ct =
∑Tk

j=1 cj .
Proof: The proof is similar to the one in Lemma 2.

Applying Lemma 2 and 3, we can find that when the number of steps t ≥ ξ TDQ
|S(k,m)|δ2 log 1

α
,

the relative errors of the estimates of |S(k,m)|
D

and
∑Tk

m=1
|S(k,m)|

D
are at most δ with probability

greater than 1− α. Thus, there exists a constant ξ, such that for t ≥ ξ TDQ
|S(k,m)|δ2 log 1

α
, we have

Pr

[(
1− δ
1 + δ

)
|S(k,m)|∑Tk
m=1 |S(k,m)|

≤ cm
ct
≤
(

1 + δ

1− δ

)
|S(k,m)|∑Tk
m=1 |S(k,m)|

]
> 1− 2α

Noting that C(k,m) = |S(k,m)|/(
∑Tk

m=1 |S(k,m)|),

Pr

[(
1− 2δ

1 + δ

)
C(k,m) ≤ cm

ct
≤
(

1 +
2δ

1− δ

)
C(k,m)

]
> 1− 2α

This proves Lemma 1.
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