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Abstract—Evaluating the clinical similarities between pairwise
patients is a fundamental problem in healthcare informatics. A
proper patient similarity measure enables various downstream
applications, such as cohort study and treatment comparative
effectiveness research. One major carrier for conducting patient
similarity research is the Electronic Health Records(EHRs),
which are usually heterogeneous, longitudinal, and sparse.
Though existing studies on learning patient similarity from EHRs
have shown being useful in solving real clinical problems, their
applicability is limited due to the lack of medical interpretations.
Moreover, most previous methods assume a vector based rep-
resentation for patients, which typically requires aggregation of
medical events over a certain time period. As a consequence,
the temporal information will be lost. In this paper, we propose
a patient similarity evaluation framework based on temporal
matching of longitudinal patient EHRs. Two efficient methods are
presented, unsupervised and supervised, both of which preserve
the temporal properties in EHRs. The supervised scheme takes a
convolutional neural network architecture, and learns an optimal
representation of patient clinical records with medical concept
embedding. The empirical results on real-world clinical data
demonstrate substantial improvement over the baselines. We
make our code and sample data available for further study. 1

Index Terms—Patient Similarity, Deep Matching, Medical
Concept Embedding

I. INTRODUCTION

Patient similarity learning has been identified as one of the
key techniques for healthcare transformation. During the past
decade, Electronic Health events (EHR), including diagnosis
codes, lab results, prescription data, are becoming readily
available for a huge amount of patients. This makes EHR
a valuable resource for evaluating the clinical similarities
between pairwise patients. Patient similarity, which measures
how similar a pair of patients are according to their historical
information under a specific clinical context, will be the
enabling technique for making various healthcare applica-
tions possible, such as cohort analysis, case based reasoning,
treatment comparison, disease sub-typing, and personalized
medicine. In addition, learning patient similarity is a funda-
mental problem in evidence based medicine, which has been
identified as one of the major thrust areas for transforming
healthcare and improving the quality of delivery of care.

Motivation. One of the key challenges to derive patient
similarity measure is how to represent the medical events of
patients effectively without loss of information. Since a great

1https://github.com/yinchangchang/patient similarity

deal of healthcare analytics applications critically rely upon
patient similarity, the similarity measures need to be both clin-
ically effective and accurate. Though important, there are only
a handful studies on patient similarity learning [1] [2]. Existing
methods have successfully derived the similarity measure from
EHR data through mapping the medical events into vector
spaces, however, their applicability is limited due to the lack of
convincing explanations for patient representations in medical
domain. There has been some existing work on applying
patient similarity to various applications in medical literatures.
However, there are still significant challenges on learning
effective patient similarities, which, to our knowledge, have
not been systematically addressed. (i) Temporal-Sensitivity:
Temporal information is important to medical events, and is
crucial to understand the dynamics of medical expressions.
(ii) High Dimensionality and Sparsity: EHR includes a wide
range of data (such as diagnosis, medication, lab test) and a
large number of possible medical events (over ten thousands
of diseases and medications), so that EHR data is usually
represented in a high dimensional space. Besides, EHR data is
also very sparse, since a record exists if and only if the patient
pays a visit to a specific clinical institute, for a particular
condition. (iii) Limited interpretability: Due to the complexity
of medical data, existing patient representation models are
often weak at the perspective of clinical interpretations, which
if addressed would significantly widen their applicability.

Proposal. Taking into account all challenges mentioned
above, inspired by the idea of words embedding [3], we
propose a method to represent patients and derive a similarity
measure based on it. Unlike previous methods that model
each medical event as a binary event vector over time (one
if the medical event happened and zero otherwise), we derive
a fixed-length vector representation from EHRs by medical
concept embedding. In text mining, a particular word can be
predicted based on the context around it [4] [3]. Similarly,
events happened before and after a specific medical event
can be viewed as its medical context, which may be used
to make event predictions in medical domain. Based on the
medical context, each event is compressed into a given length
vector with medical concept embedding. Similar to the word
embedding [3], the event embedding presented in our model
hold its natural medical concept. Furthermore, we adjust the
range of context, with respect to the specific conditions of a
medical event, to achieve an event embedding with temporal
information. By stacking all event embedding vectors together,

ar
X

iv
:1

90
2.

03
37

6v
1 

 [
st

at
.M

L
] 

 9
 F

eb
 2

01
9

https://github.com/yinchangchang/patient_similarity


each patient is then represented as an embedding matrix.
Note that, compared to describing patients using binary event
vectors, the embedding extracts clinical features of a patient
from EHRs and represent them in a reasonable dimension,
resulting a natural dense embedding matrix for every patient.

Based on the embedding matrix representation of patients,
we propose two methods, supervised and unsupervised, to de-
rive the similarity measures. Note that the number of medical
events varies from patients to patients, and both the supervised
and unsupervised approaches are required to measure the
similarity between matrices with different dimensions. As for
the unsupervised method, we adopt the RV coefficient [5]
and dCov coefficient [6], respectively, to measure linear and
non-linear relations between pairwise patients based on the
embedding matrix. In the supervised model, we measure the
patients similarity using the Convolutional Neural Network
(CNN), where the deep medical embedding is obtained from
the intermediate convolutional feature maps. With the given
number of convolutional filters, an event embedding matrix
is mapped to a fixed-length feature vector. The deep medical
concept embedding contributes to improved patients similarity
measures. We shall later in the paper make a comparison
amongst different types of patient representations, including
the binary event matrix representation.

Empirical Study. Patient cohort study is the most effective
way to analyze the causes, treatments, and outcomes of
diseases. To evaluate the representations we proposed, we
conduct a cohort analysis based on the obtained measures of
patient similarity. Our model is tested on a real-world EHR
dataset containing a wide range of medical events over a
long time period. The experimental results demonstrate the
effectiveness of our model in measuring patient similarity.

Contributions. Our work makes the following distinctive
technical contributions:

• We adopt a state-of-the-art distributional representation
model to project medical events to fixed-length vectors,
which are then used to measure patient similarity.

• We effectively extract the low-dimensional and dense
representation for patients from EHR data, with the
temporal information preserved.

• We propose two solutions for patient similarity Learning,
unsupervised and supervised. This makes our frame-
work applicable to most similarity-related applications in
healthcare analytics.

The rest of this paper is organized as follows. Section
II introduces related studies. Details about our model are
presented in Section III. The experimental results are reported
in Section IV, and Section V concludes.

II. RELATED WORK

In this section, we first review some related work on
evaluating the clinical patient similarities, and then review
some relevant problems associated with deep learning.

A. Patient Similarity

In healthcare informatics domain, there are a lot of works
focusing on patient similarity. For example, [7] proposed a
patient similarity algorithm named SimSvm that uses Support
Vector Machine(SVM) to weight the similarity measures. [8]
proposed a patient similarity based disease prognosis strategy
named SimProX. This model uses a Local Spline Regression
(LSR) based method to embed these patient events into an
intrinsic space, then measure the patient similarity by the
Euclidean distance in the embedded space. These methods
do not take the temporal information into consideration when
evaluating patient similarities. Wang [9] presented an One-
Sided Convolutional Matrix Factorization for detection of
temporal patterns. Cheng [1], [10] proposed an adjustable
temporal fusion scheme using CNN-extracted features. Based
on patients similarity, plenty of applications are enabled. In
[11], Ng provided personalized predictive healthcare model
by matching clinical similar patients with a locally supervised
metric learning measure. [12] proposed Integrated Method
for Personalised Modelling (IMPM) to provide personalised
treatment and personalised drug design.

There are many research have been conducted on clustering
patients based on machine learning. In order to rate patients
health perceptions, Sewitch [13] make cluster analysis using k-
means to identify the patients groups based on the discovering
the multivariate pattern. To capture underlying structure in the
history of present illness section from patients EHR, Henao
[14] proposed a statistical model that groups patients based
on text data in the initial history of present illness (HPI) and
final diagnosis (DX) of a patients EHR. For human disease
gene expression, Huang [15] presented a new recursive K-
means spectral clustering method (ReKS) to efficient cluster
human diseases. Most of these research have demonstrate
effectiveness of their model with real-world experiments, that
convinces us of the applicability of clustering patients on
cohorts discovering.

B. Embedding Learning and Semantic Matching

One of the most important components in our patients
similarity measure is deep distributional medical concept
embedding. Distributional representations has gone through
the long evolution, and shows state-of-the-art results in many
fields recently. [3], [4] proposed continuous Bag-of-Words
model and Skip-gram model to represent words in vector
space. The word representations using neural networks pro-
vide state-of-the-art performance on measuring syntactic and
semantic word similarities. Many works as well as ours are
inspired by the words embedding with neural networks. [16]
learned image embedding by concatenating skip-gram linguis-
tic representation vectors with visual concept representation
vectors. [17] encoded a query-document pairs into discriminate
feature vectors using distributional sentence model. Similar
embedding also has been used in other applications [18], [19].
Our model achieves the goal of embedding patients clinical
features in the dense matrices with modest dimensionality.
This



With medical concept embedding, we look forward to
calculating the similarity amongst patients according to their
EHRs. Considering the representations of patient medical
events do not have a common time dimension, we cannot
compare the patient event matrix directly. [20] provided a
relevant similarity measures between temporal series of brain
functional images belonging to different subjects. Similar to
[20], we adopt the RV coefficient to measure patient similari-
ties. Note, however, that this coefficient only considers linear
relationships between two data sets. To do more systematic
research on measuring similarity of patient, our model also
measures non-linear correlation between two patients using
dCov coefficient. Apart from those unsupervised approach, we
adopt the supervised learning method. We modify the Convo-
lutional Neural Network(CNN) to derive the similarity scores
for pairs of patients. The Convolutional networks models
which are originally invented for image processing have wide
applications in other domains. [17], [21] and [22] respectively
obtains the continuous representations of the sentences or short
texts by a convolutional deep network, then the similarity can
be effectively established.

III. THE PROPOSED METHOD

Accessing patients similarities in EHR data is a very chal-
lengeable task. In this section, we will fist propose to learn the
ontextual embedding of each medical concept. Then we pro-
vide an unsupervised method to estimate the similarity score,
which takes the learned medical concept as the input. After
that we exploit an architexture building with convolutional
neural network to measure the similarity of pair patient records
with some supervision encoded.

A. Contextual Embedding of Medical Concepts

Our goal in this step is to get the contextual embedding
of each medical concept from patient EHR, which provide a
better representation for medical concepts than general one-
hot encoding representation. By “context around a medical
concept A we really mean the medical events happening
before and after A within the patient EHR corpus. For each
patient, by concatenating all medical events in his/her EHR
according to their happening timestamps (for events with the
same timestamp we do not care about the order), we obtained a
paragraph describing the historical condition of him/her. So the
context around a specific medical event is similar to the context
around a word in a paragraph. How to derive effective word
representations by incorporating contextual information is a
fundamental problem in Natural Language Processing (NLP)
and has been extensively studied. One recent advance is the
Word2Vec technique [4] that trains a two-layer neural network
from a text corpus to map each word into a vector space
encoding the word contextual correlations. The similarities
(usually cosine distance) evaluated in such embedded vector
space reflect the contextual associations (e.g., words A and B
with high similarity suggests they tend to appear in the same
context).

In NLP, the context around each word is usually identified
as the adjacent words before and after it. In Word2Vec such
context is defined by a sliding window around each word
and the length of the window reflects the scope of the
context. In EHR, as there is a timestamp associated with
each medical concept, we do not just want to consider the
relative positions when defining the context, but consider the
actual timestamps. For example, we may want to treat event
B happened one year after A differently comparing to event
B happened one week after A. Another factor we need to
consider is the context scope around each event, i.e., the
length of the sliding windows. In Word2Vec models for NLP
every word is assigned with the same window length. In
contrast, for EHR, we may want medical concepts related to
chronic conditions to have larger scopes while acute condition
concepts to have smaller scopes. Moreover, because of the
variabilities among individual patients, the scope for the same
event could be different for different patients. Therefore we
propose an adaptive way to determine the window length for
an event in the EHR of a specific patient. Our heuristic is
that chronic conditions are more likely to appear repeatedly
in a patients EHR and thus have higher frequency, and acute
conditions will be less frequent. Then for medical event i and
patient p,

L(i, p) = f(i, p) ∗ a+ θ (1)

where f(i, p) is the frequency of event i in the EHR of patient
p. a and θ are constants.

B. Temporal Patient Representation
After the medical concepts embedding step, We expect

that the medical concept representations learned by Skip-gram
will show similar properties so that the concept vectors will
support clinically meaningful vector additions. A straitfoward
representation of a patient p will be as simple as convert-
ing all medical concepts in his medical history to medical
concept vectors, then summing all those vectors to obtain a
single representation vector. However, this representation will
loss the temporal information. Instead, we utilize a temporal
representation: the records of each patient p is represented as a
matrix X with dimension d×Np, where d is the fix embedding
dimension and Np is the total number of visit patient p has. A
single representation vector of one visit is obtained by umming
all the medical vectors in that visit. Usually, Np varies from
patient to patient. Given two patients pa and pb, calculating the
similarity between the record Xa and Xb is not that intuitive.
We propose the method in the following sections.

C. Unsupervised Patient Similarity
In order to calculate the similarity score based on the patient

temporal representation, we provide two alternatives. The first
one is to utilize RV coefficient [] and dCov efficient to estimate
the similarity over the pair of temporal patient representation.
In particularly, given two matrix representations X ∈ Rn×k

and Y ∈ Rm×k, the RV coefficient is defined as:

RV(X,Y) =
tr(XX‘YY‘)√

tr(XX‘)2tr(YY‘)2
(2)



Figure 1: The overall framework of supervised patient similarity matching. To train the sigular neural network, embedding
matrices of pairs of patients Ea,Eb passed through convolutional filters are mapped into feature maps. We build the deep
embedding patients representations Pa,Pb for patients by pooling patients feature maps into the intermediate vectors. With the
rich feature vectors we learn a symmetrical similarity matirx M for measuring the distance between patient a and b.

For the dCov efficient, let’s first define the empirical dis-
tance covariance:

dCov2n(X,Y) =
1

n2

n∑
i,j=1

(dXij−dXi.−dX.j+dX.. )(d
Y
ij−dYi.−dY.j+dY.. )

(3)
where dij() is the Euclidean distance between sample i and
j of random vector xi, di. = 1

n

∑n
j=1 dij , d.j = 1

m

∑n
i=1 dij ,

d.. =
1
n

∑m,n
i,j=1 dij . The empirical distance correlation (dCov

efficient) is defined:

dCor2n(X,Y) =
dCov2n(X,Y)√

dCov2n(X,X)dCov2n(Y,Y)
(4)

D. Measure Similarities with Supervision
In order to add some supervision to this procedure, we

proposed a deep learning model. The idea is derived from
semantic matching problem in NLP, which aims to determine
a matching score for two given texts. Deep learning approach
has been applied to this area and most of the models con-
ducts the matching through creating a hierarchical matching
structure built on convoluational neural nets (ConvNets). The
architecture of our model for measure patient pairs is presented
in Figure 1. The models based on ConvNets learn to map input
patient representation to vectors, which can then be used to
compute their similarity. These are then used to compute a
patient similarity score, which together with the representation
vectors are joined in a single representation.

In the following we describe how the intermediate repre-
sentations produced by the ConvNets model can be used to
compute patient similarity scores and give a brief explanation
of the remaining layers, e.g. hidden and softmax, used in our
network.

Single Convolution feature maps: The aim of the convolu-
tional layer is to extract effective patterns, i.e., discriminative

medical concept sequences found within the input record that
are common throughout the training instances. In general, let
xi ∈ Rd be the d-dimensional event vector corresponding to
the i-th time items. A one-side convolution operation involves
a filter w ∈ Rd×h, which is applied to a window of h event
features to produce a new feature. For example, a feature ci
is generated from a window of events xi:i+h−1 is defined by:

ci = f(w � xi:i+h−1 + b) (5)

where b ∈ R is a bias term and f is a non-linear function (we
use rectification (ReLU)).

Pooling: The output from the convolutional layer (passed
through the activation function) are then passed to the
pooling layer, whose goal is to aggregate the informa-
tion and reduce the representation. This filter is applied
to each possible window of features in the event matrix
{x1:h, x2:h+1, ..., xn−h+1:n} to produce a feature map c =
[c1, c2, ..., cn−h+1], where c ∈ Rn−h+1. We then apply a
max pooling over the feature map and take the average value
ĉ = max{c}. The idea is to capture the most important feature
one with the highest value for each feature map.

Matching Matrix: Given the output of our basic for pro-
cessing patient records, their resulting vector representations
xa and xb, can be used to compute a record-record similarity
score. We follow the approach of [23] that defines the simi-
larity between xa and xb vectors as follows:

sim(xa,xb) = xT
a MxT

b (6)

where M ∈ Rm×m is a similarity matrix. The similarity
matrix M is a symmetrical parameter of the network and is
optimized during the training.

Softmax: The output of the penultimate convolutional and
pooling layers is flattened to a dense vector x, which is passed



to a fully connected softmax layer. It computes the probability
distribution over the labels.

E. Optimization

For different tasks, we need to utilize different loss functions
to train our model. Taking regression as an example, we can
use square loss for optimization:

L(S1, S2, y) = (y −M(S1, S2))
2 (7)

where y ∈ R is the real-valued ground-truth label to indicate
the matching degree between S1 and S2.

All parameters of the model, including the parameters of
word embedding, neural tensor network, spatial RNN are
jointly trained by back-propagation and Stochastic Gradient
Descent. Specifically, we use AdaGrad [24] on all parameters
in the training process.

Regularization For regularization we employ dropout on
the penultimate layer. Dropout prevents co-adaptation of hid-
den units by randomly dropping outi.e., setting to zeroa pro-
portion p of the hidden units during foward-back-propagation.

IV. EXPERIMENTS AND EVALUATION

In this section, we evaluate our framework on a real
clinical EHR dataset. We carry out the cohort studies by
selecting several chronic diseases associated with a range of
comorbidities. There are some reasons for our cohort selection.
First, they are frequently occurred diseases being extensively
analyzed in healthcare applications. Second, these diseases
are highly associated with each other, and their combination
presents many diagnostic challenges. More importantly, due
to the long period progression path of those disease, there are
a great deal of temporal information embedded in the medical
events. Many of medical research based on machine learning
ignored the temporality while our model effectively extract
those features and enrich the patients representations. Based on
patients clinical similarities derived from these representations,
we group patients into clusters by some classical clustering
algorithms. As we focus on matching similar patients, the
clustering evaluations verify the effectiveness of our model.

As testing our model on the real world EHRs, we demon-
strate that our method can effectively represent patients with-
out sacrificing temporal information. With the distributional
continuous representations, we apply deep neural networks to
derive measure of similarities amongst patients in the datasets.
We then make use of the similarity matrix to group patients.
For the evaluations shown in the results, we are convinced
that the deep medical event embedding achieves a significant
improvement in patients representations.

Further more, we demonstrate the robustness of our model
in the cohort studies. As mentioned in [25], the primary
disadvantage of medical cohort study is the limited control
the investigator has over data collection. The existing data
may be incomplete, inaccurate, or inconsistently measured
between subjects [26]. As a result, we process patients EHR
for constructing two kinds of data sets. One covers the whole
complete patient events for global features analyzing. On

another data set, we remove particular events labeled as cohort
identifers from patients EHR to provide more natural setting
in clinical cases. We systematically analyze the performance
of our model in the above two settings, and draw some
conclusions through our result discussions.

A. Datasets

Our model is trained on a real world longitudinal EHR
database of 218,680 patients for the course of over four years.
According to the reasons presented at the beginning of this
section, we select four patient cohorts from the EHR data,
namely, Chronic Obstructive Pulmonary Disease (COPD),
Diabetes, Heart Failure, and Obesity.

Table I provides a summary of the patient cohorts used in
our experiment. Each cohort consists of a set of case patients
who are confirmed with one of the four diseases according to
their medical diagnosis, and each patient comes with a set of
medical events including diagnosis and medications. In each
patient encounter, we use the International Classification of
Disease-Version 9 (ICD-9) codes to denote the diagnosis of
diseases that a patient suffers from. All the clinical events
about medications are pre-processed to normalize the descrip-
tions based on brand names and clinical dosages.

Cohorts # Patients # Events

COPD 2,000 247,043
Diabetes 2,000 259,074
Obesity 2,000 211,496
Heart Failure 1,135 165,254

Total 7,135 882,867

Table I: Summary of EHR datasets for patients clustering.

We construct datasets with medical events collected from
patients who were confirmed of having the disease by medical
experts. We develop the criteria that any patients presented
in the datasets has at least forty events. The requirement
is set to ensure that each test case has minimum events of
clinical history that could be used in reasonable analytics
tasks in healthcare. Also, to enable distinctly cluster without
overlapping among cohorts, we remove patients who suffers
from more than one disease in the cohort list. Finally, there
are 8,000 remaining patients and 6,064 distinct clinical events.
Medical event appearing in more than 90% of patients or
present in fewer than five patients are removed from the
datasets to avoid biases and noise in the learning process.

In the following experiments, we create two datasets:
DATASET-I uses the complete patients events while
DATASET-II reserves historical events except those labeled
as cohort identifiers. On DATASET-I, we split the dataset into
training and test sets with same number of patients, and other
patients left for validation. As for DATASET-II, we construct
the data sets in accordance with DATASET-I. A few of patients
are filtered out because of the limited number of their medical
events. Table II summaries the two datasets.



Data # Patients # Events

DATASET-I
TRAIN 3,211 396,072
TEST 3,210 399,804
DEV 714 86,991

DATASET-II
TRAIN 3,083 373,145
TEST 3,080 377,287
DEV 685 81,392

Table II: Summary of modeling datasets.

B. Medical concept embeddings

We use word embeddings to represent each medical event
as a vector. We run word2vec on the datasets containing
218,680 patients with around 16.9 million medical event
records. To learn the embeddings, we choose the Bag of Words
model with window size setting to 20 and events filtering with
frequency less than 5. The dimensionality of our embedding
vectors d is set to 20, 30, 50, 200, 500, respectively, for the
comparison purpose, and after a serial practices we select 50
as medical event dimension according to the best performance.
Finally, the resulting event matrix covers around 8,000 events
which are presented using 50-dimensional vectors, and the
event matrix contains all of medical features of patient. Next,
we shall discuss how to use them for representing individuals
and measuring their distances.

C. Experimental Settings

The parameters of our deep learning were as follow: the
width of the convolution filters w is set to 5, 10, 15, 20,
25, and the number of convolutional feature maps m takes
on 50, 100, 150, 200. We use stochastic gradient descent
to optimize the model’s parameters. We train the model
with 50 examples of shuffled mini-batches. We adopt non-
linear rectification (ReLU) activation function and a simple
max-pooling to achieve the intermediate representations. With
regards to overfitting issue we add dropout regularization with
dropout rate setting to 0.5.

To optimize our deep features embedding, we conduct
experiments using several different parameters sets θ =
{d,w,m}, which vary in size of word2vec embedding
dimension, convolution filters width, and the number of convo-
lutional feature maps. In oder to find optimal set of parameters,
we compare the performance of clustering with only one
variable of d,w,m varies.

We implement the clustering base on following represen-
tations: (1) One-hot representation. Patient is represented as
an event matrix. The matrices are composed of medical event
columns, the dimension of which is set to 8,000, or the number
of distinct medical events. The event matrix is naturally
sparse, but it simplifies patients descriptions. (2) “Shallow”
embeddings. As described in section IV-B, we make progress
in patients representations with medical event embedding by
word2vec. Similar to One-hot representation, we represent
patients as matrices, but denser and lower dimensional. The

dimension of matrix columns has been reduced, with setting
from 50 to 800. (3) Deep embeddings. To achieve a deep
representation, we combine CNN with distributional medical
events embeddings from word2vec. Based on above event
matrix representations, patients features are filtered through
the convolutional layer of neural network. Feature maps that
represent patients clinical characteristics are then used to
measure patients distances.

With generated representations of each patient, we firstly
calculate the similarity amongst all the test patients. Then, we
group patients cohorts by matching pairs of patients according
to their similarity. Kmeans and Active PCKMeans [27] are
adopted for grouping patients based on the first two repre-
sentations. Also, we compare our model with another metric
learning algorithm that have shown state-of-the-art results in
clustering. Besides deep neural networks we have applied to
learn patients features, we present other two unsupervised
methods for calculating patients distances as complementary.
Specifically, we use RV and dCov coefficient to calculate
correlations of patient feature matrices what derived form
word2vec embedding.

We verify the cohort discover studies by evaluating the
clustering using three popular criteria: Rand index , Purity
and normalized mutual information(NMI ).
Rand index is frequently used in data clustering, it is

computed as following in [28]:

RI = (TP + TN) /

(
n

2

)
where TP counts the number of right decision we have made
on grouping pairs of patients who are in the same cohort into
one cluster, TN is the number of pairs of patients who came
from different cohorts are grouped into dissimilar categories.
In general, bad clustering have RI values close to 0, a perfect
clustering has a RI of 1.
Purity is one of very primary validation measure to eval-

uate the cluster quality. We compute Purity as defined in
[29]:

Purity (Cluster, Cohort) =
1

N

∑
I

max
j
|pi ∩ qj |

where Cluster = {p1, p2, ..., pI} is the set of clusters,
Cohort = {q1, q2, ...qJ} is the group of classes, or cohorts in
our case. The cohort is identified by the categories of dominant
patients in cluster. Similar to Rand index, the Purity has
upper bound of 1 corresponding to the perfect match between
the partitions and lower bound of 0 that indicates the opposite.
NMI measures the information shared by the two clus-

ters,thus can be adopted as a clustering similarity measure.
We follow the form defined in [30] to calculate NMI value.

NMI (Cluster, Cohort) =
I (Cluster, Cohort)

[H (Cluster) +H (Cohort)] /2

where,

I (X,Y ) =
∑
x∈X

∑
y∈Y

p (x, y) log
p (x, y)

p (x) p (y)



is the mutual information between the random variables X
and Y ,

H (X) = −
∑
x∈X

p (x) log p (x)

is the information entropy of a discrete random variableX .
p (x) , p (x, y) are the probabilities of a object being in cluster
X and in the the intersection of X and Y . The NMI has
a fixed lower bound of 0 and upper bound of 1. In our
case, NMI (Cluster, Cohort) takes its maximum value of 1
when grouping clusters are identical to the real cohorts, if the
partition found is totally independent of the real cohorts, then
NMI (Cluster, Cohort) = 0.

There are other popular measures for cluster evaluation,
such as Precision [31], Recall, and their harmonic mean,
F − measure [32]. We also present our results by these
evaluation.

D. Results and discussion

1) Performance Comparison: Table III summaries the re-
sults of clustering. As we can see, the deep model with feature
embedding is clearly superior to others. On DATASET-I, the
deep embedding model achieves an average Rand index of
0.9887, comparing with the second best one with 0.6796.
Measured by Purity and NMI , it can achieve the per-
formances of 0.9882 and 0.9516, separately, which also
outperforms others with a margin. The superiority of the
model is illustrated in DATASET-II as well, which is a
more difficult task. Measured by Purity and NMI , KMeans1

and Active PCKMeans1 achieve 0.3367, 0.0351 and 0.4410,
0.0682 separately. KMeans2 and Active PCKMeans2 can only
improve 11% and 25% on Purity respectively. On the other
hand, our CNN model achieves about more than 50% improve-
ment over them.

As a reasonal explanation, we view that the deep features
learning can be viewed as a two-stage model. During the first
stage, the clinical features of each patients are summarized
in the shallow word2vec embedding, making progress with
nearly 10% improvement. Next, global features are learned
base on local context features came from word2vec. The
deep learning representation makes continuous improvement,
which leads to a ultimate expression of patients. Figure 2
shows how expressive representations of patients contribute to
match patients cohorts. With a significant 48% improvement
produced in our experiments, we demonstrate the effectiveness
of our deep embedding model in expressively representing
patients.

2) Parameters Optimization: Figure 3 illustrates the opti-
mizations of hyper-parameters in our model. The line charts
in one row assess what effects the variation has on grouping
patients. As results summarized in Figure 3a, Figure 3b,
Figure 3c, the dimension of medical event embedding have
little effect on DATASET-I. That because our deep learning
model have successfully obtained the primary features in
the patients representations, achieving nearly perfect 1 of
RI , Purity, and NMI . We make determinations based on
DATASET-II. According to the performance lines shown in the
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Figure 2: Performance of different representations.

figures, three clustering evaluations we choose—RI , Purity
and NMI achieves the best performance at the same time,
with 50 dimensionality embedding, 100 feature maps, and
5 convolution filter width. The consistent performances of
different measures assessed in our experiments convince us
that the optimizations of parameters are correct and free of
bias.

3) Discussions: Table III provides the comparisons of
clustering results on DATASET-I and DATASET-II. The re-



100 200 300 400 500
Dimension of Word Embedding 

0.5

0.6

0.7

0.8

0.9

1.0
Ra

nd
 In

de
x

DATASET-Ⅰ
DATASET-Ⅱ

(a)

100 200 300 400 500
Dimension of Word Embeddings

0.5

0.6

0.7

0.8

0.9

1.0

Pu
ri 

y

DATASET-Ⅰ
DATASET-Ⅱ

(b)

100 200 300 400 500
Dimension of Word Embedding 

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz
ed

 M
ut
ua

l I
nf
or
m
at
io
n

DATASET-Ⅰ
DATASET-Ⅱ

(c)

50 100 150 200
Number of Convolution Feature Ma s

0.5

0.6

0.7

0.8

0.9

1.0

Ra
nd
 In
de
x

DATASET-Ⅰ
DATASET-Ⅱ

(d)

50 100 150 200
Number of Convolution Featu e Maps

0.5

0.6

0.7

0.8

0.9

1.0

Pu
 it

y

DATASET-Ⅰ
DATASET-Ⅱ

(e)

50 100 150 200
Number of Convolution Feature Map 

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz
ed

 M
ut
ua

l I
nf
or
m
at
io
n

DATASET-Ⅰ
DATASET-Ⅱ

(f)

2 4 6 8 10 12 14
Width of Convolution Filter 

0.5

0.6

0.7

0.8

0.9

1.0

Ra
nd

 In
de

x

DATASET-Ⅰ
DATASET-Ⅱ

(g)

2 4 6 8 10 12 14
Width of Convolu ion Fil ers

0.5

0.6

0.7

0.8

0.9

1.0

Pu
ri 

y

DATASET-Ⅰ
DATASET-Ⅱ

(h)

2 4 6 8 10 12 14
Width of Convolu ion Fil ers

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 M

u 
ua

l I
nf

or
m

a 
io

n

DATASET-Ⅰ
DATASET-Ⅱ

(i)
Figure 3: Results on the hyper-parameters optimizations. (a), (b), (c) together varify the effect of word embedding dimension
on clustering performance. (d), (e), (f) measures the efficacy of variation on convolution feature maps. (g), (h), (i) make
determinations of convolution feature filters width.

DATASET-I DATASET-II
Method RI Purity NMI RI Purity NMI

KMeans1 0.5919 0.3538 0.0481 0.5834 0.3367 0.0351
Active PCKMeans1 0.6506 0.4801 0.0976 0.6451 0.4410 0.0682
KMeans2 0.6627 0.4192 0.1336 0.6547 0.4129 0.1106
Active PCKMeans2 0.6796 0.5610 0.1682 0.6794 0.5487 0.1622
Matric Learning 0.6732 0.5103 0.1049 0.6475 0.4013 0.1055

Our model(RV ) 0.6679 0.4457 0.2301 0.6285 0.3858 0.1037
Our model(dCov) 0.6708 0.4475 0.2361 0.6268 0.3858 0.1048
Our model(CNN) 0.9887 0.9882 0.9516 0.7491 0.6894 0.4624

Table III: Evaluations of cohort discovering on DATASET-I, DATASET-II. KMeans1, Active PCKMeans1 groups patients with
One-hot representations, where KMeans2, Active PCKMeans2 adopt the Shallow embeddings to match similar patients pairs.
We contrast the performance of our model at DATASET-I, DATASET-II with the same parameters. Values of RI ,Purity,NMI
presented in the table are average of a group of results.



Figure 4: An Example of sankey-pathway on the COPD dataset. Each color represents different features and only top frequent
feature names are listed.

sults of deep embedding on DATASET-II exhibit a steady
outperformance over other methods. On DATASET-II, the
deep embedding model is trained with fewer medical events
than DATASET-I. As expected, the evaluations of identifying
patient cohorts is slight affected by the data we deal with.
Compared to the sterling performances on DATASET-I, the RI
resulted in DATASET-II drops to 0.75 with loss of 0.23. One
simple but reasonable explanation is that the events removing
from dataset cause a loss of many a medical features. Even
though, our deep model extract remain features effectively
offering promising performance. To sum up, we verify that
our deep learning method works effectively in representing
patients and learning specific features that are not present or
missing.

Table III also reports the comparisons on effectiveness of
our supervised and unsupervised measurement of patient sim-
ilarity. On average, the unsupervise measurements—RV and
dCov, respectively gets RI of 0.67 and NMI of 0.23, which
are 31% and 72% lower than the deep learning model(0.97).
Although, it’s worthwhile to mention that our unsupervise
models achieve at least 12% improvement over the baseline.
Comparing to the semi-supervise method Active PCKMeans

proposed in [27], our model achieves the same performance
but do not need training examples. These comparisons suggest
that our models consistently and significantly surpass other
patient representations.

4) Visual Analysis: As we have achieved a definitely ac-
curate measure of patient similarity, we make a study on
medical events sequence mining for representation. In order to
discovery the medical pattern hidden behind the EHR about
COPD, we select top-100 similar patients from the COPD
cohort , whom are grouped into true cluster by our method.
We extract the common events occurred in the EMR of many
patients.The SanKey diagram presents the progression path of
the medical events collected from patients EHR. As shown in
the Figure, the green,purple and red bar are related closely,
which respectively represent Chronic Airways Obstruction,
Essential Hypertension, Other Disorder of Bone and Cartilage.
The interactions of those diseases presented in the diagram has
been validated by lots of medical research in the real world,
that convinces us of the applicability of our model.

In summary, the results of experiments clearly demonstrate
the effectiveness of the deep model with medical feature
embedding on real EHR data. Theoretically, our model benefits
from the large number of convolutional filters and lower event
embedding dimensionality. It is notable that our model has
several important hyper-parameters like word2vec window
size, dimensionality of clinical event vector, the number of
convolutional filters. Selecting a set of optimal parameters
settings can also bring the benefit of the performance. To be
more realistic, we narrow down the scopes of variations and
select the best performance values.



V. CONCLUSIONS

Patient similarity assessment is the enabling technique for
various healthcare applications, such as disease sub-typing and
evidence based medicine. However, due to the complexity
of medical data, extracting effective patient representations
confronts distinct challenges. Though useful, most existing
models proposed to discover hidden patterns in EHRs overlook
the temporal information of medical events. In this paper, we
propose a deep learning framework to learn patient representa-
tions for similarity measuring, in which the temporal properties
of EHRs are preserved. The experimental results show that
our model achieves significantly better representations over
the baselines, which enables more accurate patient cohort
discovery. Our next plans include solving the data irregularity
issue by adding the time interval information and applying
this techniques in other domain, such as health visualization.
Besides, it can be observed in the experiments that our unsu-
pervised scheme also succeeded in matching similar patients.
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