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Abstract—Identifying relationships between items is a key
task of an online recommender system, in order to help users
discover items that are functionally complementary or visually
compatible. In domains like clothing recommendation, this task
is particularly challenging since a successful system should be
capable of handling a large corpus of items, a huge amount of
relationships among them, as well as the high-dimensional and
semantically complicated features involved. Furthermore, the
human notion of “compatibility” to capture goes beyond mere
similarity: For two items to be compatible—whether jeans and
a t-shirt, or a laptop and a charger—they should be similar in
some ways, but systematically different in others.

In this paper we propose a novel method, Monomer, to
learn complicated and heterogeneous relationships between
items in product recommendation settings. Recently, scalable
methods have been developed that address this task by learning
similarity metrics on top of the content of the products involved.
Here our method relaxes the metricity assumption inherent
in previous work and models multiple localized notions of
‘relatedness,’ so as to uncover ways in which related items
should be systematically similar, and systematically different.
Quantitatively, we show that our system achieves state-of-
the-art performance on large-scale compatibility prediction
tasks, especially in cases where there is substantial hetero-
geneity between related items. Qualitatively, we demonstrate
that richer notions of compatibility can be learned that go
beyond similarity, and that our model can make effective
recommendations of heterogeneous content.

Keywords-Recommender Systems; Visual Compatibility;
Metric Learning

I. INTRODUCTION

Identifying and understanding relationships between items
is a key component of any modern recommender system.
Knowing which items are ‘similar,’ or which otherwise
may be substitutable or complementary, is key to building
systems that can understand a user’s context, recommend
alternative items from the same style [11], or generate
bundles of items that are compatible [18, 22, 34].

Typically, identifying these relationships means defining
(or otherwise learning from training data) an appropriate
distance or similarity measure between items. This is appro-
priate when the goal is to learn some notion of ‘equivalence’
between items, e.g. in order to recommend an item that may
be a natural alternative to the one currently being considered.
However, identifying such a similarity measure may be
insufficient when there is substantial heterogeneity between
the items being considered. For example, the characteristics

that make clothing items, electronic components, or even
romantic partners compatible exhibit substantial heterogene-
ity: for a pair of such items to be compatible they should
be systematically similar in some ways, but systematically
different in others.

Recently, a line of work has aimed to model such
heterogeneous relationships, e.g. to model co-purchasing
behavior between products based on their visual appearance
or textual descriptions [21, 22, 31]. In spite of the substantial
heterogeneity in the data used for training (a large dataset of
co-purchase ‘dyads’ from Amazon) and the complexity of the
models used, these works ultimately follow an established
metric-learning paradigm: (1) Collect a large dataset of
related (and unrelated) items; (2) Propose a parameterized
similarity function; and (3) Train the parameterized function
such that related items are more similar than non-related
items. Such metric-learning approaches can be incredibly
flexible and powerful, and have been used to identify similar-
ities between items ranging from music [27] to members of
the same tribe [7]. Such methods work to some extent even
in the presence of heterogeneity, since they learn to ‘ignore’
dimensions where similarity should not be preserved. But
we argue that ignoring such dimensions discards valuable
information that ought to be used for prediction and recom-
mendation.

In this paper, we propose new models and algorithms
to identify relationships between items in product recom-
mendation settings. In particular, we relax the metricity as-
sumption present in recent work, by proposing more flexible
notions of ‘relatedness’ while maintaining the same levels
of speed and scalability. Specifically, we hope to overcome
the following limitations of previous work:
• The similarity measures learned by previous approaches

ultimately project categories as clusters into a metric
space (albeit potentially via a complex embedding),
since an item is inherently more similar to those from
the same category than others (as we show later in
Figure 5). This means that cross-category recommen-
dations can only be made by exploiting an explicit
category tree (e.g. ‘find the shoes nearest to these
jeans’). Not only do such approaches require explicit
category labels, but they are also subject to any noise or
deficiencies in the category data. Our method can make
cross-category recommendations without any depen-
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Figure 1: Illustration of the high-level ideas of Monomer.
The query item (a t-shirt) is embedded into visual space 0
(the anchor space) whose position we superimpose into the
other spaces. The potential match (a shoe) is embedded to N
visual spaces and within each of them Euclidean distance be-
tween the pair is computed. Finally, the mixtures-of-experts
framework is adopted to model the relative importance of
the different components w.r.t. the given query. We show
this on a real example in Figure 2.

dence on the presence (or quality) of explicit category
information.

• Other assumptions made by metric learning approaches
are also too strict for recommendation: an item is not
necessarily compatible with itself (identity), nor are
the types of relationships we want to learn necessarily
symmetric (e.g. a spare battery is a good add-on item
for a laptop, but not vice-versa). Other assumptions
hidden in previous approaches (such as transitivity)
may also be too strict, e.g. an iPhone is dissimilar
from a Surface, though both are related to an iPad. Our
approach is flexible enough to capture such complex
and non-metric relationships.

• Previous approaches learned a single ‘global’ (albeit
complex) notion of relatedness, neglecting any ‘local’
notions that could be equally important. In contrast,
we capture multiple (and possibly competing) notions
of ‘relatedness’ simultaneously. This is also key to
generating diverse sets of recommendations. E.g. a
shirt may be compatible with (a) a similar shirt from
a different brand, (b) a similar shirt with a different
color, (c) a complementary pair of pants, or (d) a
complementary pair of shoes. By learning ‘relatedness’
as a mixture of multiple competing notions, we can
handle diverse sets of recommendations naturally.

We propose a novel method, Mixtures of Non-Metric
Embeddings for Recommendation, or Monomer for short,
that addresses the above limitations. We demonstrate our
idea in Figure 1 (we later show an example on real data
in Figure 2). Here we embed the first item x (the query)
into one space (the ‘anchor space’), and embed its potential
match y into a series of N additional spaces. Now, the
relatedness between x and y is measured in terms of multiple
notions, each captured by one of the N spaces involved.
Furthermore, the N spaces are weighted according to a

mixtures-of-experts type framework, determining to what
extent each of the N embeddings is ‘relevant’ to a particular
query.

Note in particular that the method described in Figure 1
can learn non-metric relationships since we are measuring
the distance between two different embeddings. The learned
relationships are not necessarily symmetric, nor do identity
and transitivity necessarily hold; on the other hand the model
is flexible enough such that a metric embedding could be
learned if that was what the data supported.

For clarity, our contributions are summarized as follows:
1) We propose a new scalable method, Monomer, for

heterogeneous item-to-item recommendation. The pre-
sented mixtures-of-embeddings framework allows it
to learn non-metric relationships, thereby overcoming
multiple limitations present in existing work.

2) We demonstrate quantitatively that Monomer is effec-
tive at learning notions of ‘relatedness’ from hetero-
geneous dyads of co-purchases from Amazon, and in
particular that it does so more accurately than recent
approaches based on metric/similarity learning.

3) We qualitatively show that Monomer can effectively
learn multiple, semantically complex notions of ‘relat-
edness,’ and that these can be useful to generate rich,
heterogeneous, and diverse sets of recommendations.

Code and data can be found at https://sites.google.com/a/
eng.ucsd.edu/ruining- he/.

II. RELATED WORK

The most closely related branches of work to ours are
(1) Those that deal with the item-to-item recommenda-
tion problem, e.g. systems that generate recommendations
by modeling relationships between items; and (2) Works
that deal with metric (or relationship) learning in general,
whether or not for recommendation.

Item-to-Item Recommendation. Identifying relationships
among items is a fundamental part of many real-world rec-
ommender systems, e.g. to generate recommendations of the
form ‘people who viewed x also viewed y’ on Amazon. Such
methods may be based on collaborative filtering, e.g. count-
ing the overlap between users who have clicked on / bought
both items, as in Amazon’s own solution [18]. Latent-factor
approaches aim to model user-item relationships in terms of
low-dimensional factors, such that ‘similar’ items are those
with close embeddings. See (e.g.) [1, 17] for surveys, and
[18], [11], and [34] for specific systems that make use of
Amazon, Etsy, and Ebay data.

Of more interest to us are systems that predict item-
to-item relationships based on the content (e.g. im-
ages/text/metadata) of the items themselves. Various systems
have been proposed to address specific settings, e.g. to
identify relationships between members of ‘urban tribes’
[25], tweets [28], text [2, 4], or music [27]. Several methods

https://sites.google.com/a/eng.ucsd.edu/ruining-he/
https://sites.google.com/a/eng.ucsd.edu/ruining-he/


have also been used to model visual data [3, 9, 15, 26, 32],
though typically in settings where the metric assumption is
well-founded (e.g. similar image retrieval).

Our work follows recent examples that aim to model co-
purchase and co-browsing relationships, using a recently
introduced dataset from Amazon [21, 22, 31]. While we
extend (and compare quantitatively against) such work, our
main contribution here is that we substantially relax the
model assumptions to allow for more complex relationships
than mere similarity between items.

Also of interest are a few works that model clothing
data, particularly in recommendation settings, e.g. a few
recent works that aim to capture some notion of ‘style’
include [8, 10, 13, 16, 19, 33]. However the specific tasks
considered there are quite different from the item-to-item
recommendation task in which we are interested.

Metric (and non-metric) Learning. Outside of the recom-
mendation scenarios considered here, learning the features
that describe relationships between objects is a vast topic.
Typically, one is given some collection of putative relation-
ships between items (i.e., a training set), and the goal is then
to identify a (parameterized) function that can be tuned to
fit these relationships, i.e., to assign observed relationships
a higher likelihood or score than non-relationships. State-
of-the-art methods identify hidden variables or factors that
describe relationships among items [7, 29], e.g. by factor-
izing the matrix of links between items [23]. Again, the
main contributions we hope to make over such approaches
are (1) to relax the assumption of metricity, and (2) to allow
for multiple notions of ‘relatedness’ to compete and interact.
While a few approaches have recently been proposed to learn
non-metric relationships (e.g. [5]), we are unaware of any
that allow for the scale of the data (thousands of features,
millions of items and relationships) that we consider.

III. THE MODEL

Formally, we are given a dataset D comprising a large
corpus of objects (or ‘items’) and the pairwise relation-
ships R between items from different subcategories, i.e.,
if (x, y) ∈ R then (1) item x and y are related, and
(2) x and y are not from the same subcategory (e.g. a
shirt and a matching pair of pants). We choose such cross-
category recommendations to highlight the ability of our
model to generate recommendations between heterogeneous
pairs of items. This matches the training instance selection
approach from [31]. Additionally, a high-dimensional feature
vector fx associated with each item x is also provided
(encoding e.g. its image or the text of its reviews). We seek
a scalable method to model such relationships with a set of
parameterized transform functions d(x, y) such that related
objects ((x, y) ∈ R) are assigned higher probabilities than
non-related ones ((x, y) /∈ R). Notation used throughout the
paper is summarized in Table I.

Table I: Notation

Notation Explanation

R relationships between a corpus of items
(x, y) an (ordered) item pair
P ((x, y) ∈ R) probability that x and y are related
F dimensionality of the feature vector
fx, fy feature vectors of x and y respectively (F × 1)
K rank of the Mahalanobis embedding matrix
M Mahalanobis matrix (F × F )
E low-rank Mahalanobis matrix (F ×K)
N no. of Mahalanobis embeddings (i.e., learners)
k index of the N learners (k ∈ {1, 2, ..., N})
Ek the k-th low-rank Mahalanobis matrix (F ×K)
Uk parameter vector corresponding to learner k
dk(x, y) distance from x to y predicted by learner k
P (k|(x, y)) the ‘confidence’ associated with learner k
d(x, y) distance from x to y (can be directed)
σc(z) shifted sigmoid function (1/(1 + exp(−z − c)))

A. Preliminaries

Visual Features. In this paper, we mainly consider the case
of using high-level visual features for relationship prediction.
This is particularly useful for clothing recommendation (for
example), a natural domain in which learning heterogeneous
relationships between items across categories is particularly
important.

Our visual features are extracted from a deep convolu-
tional neural network pre-trained on 1.2 million ImageNet
(ILSVRC2010) images. In particular, we used the Caffe
reference model [14], which has 5 convolutional layers
followed by 3 fully-connected layers, to extract F = 4096
dimensional visual features from the second fully-connected
layer (i.e., FC7).

Note however that our proposed method is agnostic to the
type of features used, and as we show later can handle other
types of features (e.g. text) in order to address more general
settings.

Mahalanobis Transform. In order to model subtle notions
like ‘compatibility’ upon the raw visual features, we need
expressive transformations that are capable of relating fea-
ture dimensions to explain the relationships between pairs
of items. To this end, we follow the approach from [22]:
there, a Mahalanobis Distance is used to measure the
distance (or ‘dissimilarity’) between items within the feature
space according to the knowledge of how different feature
dimensions relate to each other. Let M denote the matrix that
parameterizes the Mahalanobis Distance, then the distance
between an item pair (x, y) is defined by

dM(x, y) = (fx − fy)TM(fx − fy), (1)

where fx and fy are the features vectors of x and y
respectively. Although such an approach defines a distance
function (and therefore suffers from the issues we are hoping
to address), we use this method as a building block and
ultimately relax its limitations.



Mixtures-of-Experts. Mixtures of experts (MoEs) are a
classical machine learning method to aggregate the predic-
tions of a set of ‘weak’ learners, known as experts [12].
What is particularly elegant about this approach is that it
allows each learner to ‘focus’ on classifying instances about
which it is relevant (i.e., expert), without being penalized
for making misclassifications elsewhere.

For regression tasks such as the one we consider, each
learner (denoted by l) outputs a prediction value Pred l(X)
for the given input X . These predictions are then aggregated
to generate the final prediction by associating weighted
‘confidence’ scores with each learner. Here we are inter-
ested in probabilistically modeling such confidences to be
proportional to the expertise of the learners:

Pred(X)︸ ︷︷ ︸
final prediction

=
∑
l

confidence in l’s expertise︷ ︸︸ ︷
P (l|X) ·Pred l(X)︸ ︷︷ ︸

l’s prediction

. (2)

In our model, each ‘expert’ shall correspond to a single
notion of ‘relatedness’ between items. Thus, for a given pair
of items that are potentially related, we can determine (a)
which notions of relatedness are relevant for these items
(P (l|X)); and (b) whether or not they are related according
to that notion (Pred l(X)). These two functions are learned
jointly, such that the model automatically uncovers multiple
notions of ‘relatedness’ simultaneously.

B. Model Specifics

First we describe how Mahalanobis transforms have pre-
viously been applied to this task, and can be used as a
building block for this task, before describing our proposed
non-metric method.

1) Low-rank Mahalanobis Metric: Considering the high
dimensionality of the visual features we are modeling (fea-
ture dimension F = 4096 in our case), learning a full rank
positive semi-definite matrix M as in Eq. (1) is neither
computationally tractable for existing solvers nor practical
given the size of the dataset.

Recently it was shown in [22] that a low-rank approxi-
mation of a Mahalanobis matrix works very well on visual
datasets for the tasks considered in this paper. Specifically,
the F × F Mahalanobis matrix is approximated by M ≈
EET, where E is an F ×K matrix and K � F . Then the
distance between a pair (x, y) is calculated by

dE(x, y) = (fx− fy)TEET (fx− fy) = ||ET fx−ET fy||22.
(3)

This can be viewed as embedding the high-dimensional
feature space (F -d) into a much lower-dimensional one (K-
d) within which the Euclidean distance is measured. Note
that the low rank property reduces the number of model
parameters and increases the training efficiency significantly.

2) Multiple, Non-Metric Embeddings: There are two key
limitations from using a low-rank Mahalanobis embedding
approach like the one above. First, it can capture only
a single set of dimensions (or the ‘statistically dominant
reason’) that determines whether two given items are related
or not. However, there might be multiple reasons relevant
to the link discrimination task in question. For example,
a shirt and a pair of pants might go well together due to
complementary colors, compatible textures, or simply some
common characteristics they share (such as both having
pockets/buttons, etc.). This drives us to use a group of
embeddings, parameterized by N matrices E1, . . . ,EN each
with dimensionality F×K for the prediction task, with each
capturing a different set of factors or ‘reasons’ that items
may be related.

Another limitation of the single Mahalanobis embedding
method, or more generally any metric-based method, is that
it assumes that the closest neighbor of a given item is always
itself, which is inappropriate for our task of placing many
different categories of items close to the target. To overcome
this shortcoming, we propose to use an anchor embedding
(denoted by E0, again, with dimensionality F ×K) to learn
the feature mappings in a non-metric manner.

In our model, E0 projects item x to a reference point
ET

0 fx in the corresponding space, referred to as the anchor
space as it will be used as the basis for further comparisons.
Next, embeddings Ek (for k = 1, 2, . . . , N ) map the
potential match y and correspond to a particular notion of
relatedness, such that ET

0 fx will be close to ET
k fy (for some

k) if x and y are related.
That is, the predicted distance dk(x, y) by the k-th learner

is

dk(x, y) = ||

x’s position in the anchor space︷ ︸︸ ︷
ET

0 fx−ET
k fy︸ ︷︷ ︸

y’s position in the k-th ‘pseudo’ space

||22. (4)

For clarity, we call the N spaces defined by Ek (k > 0)
‘pseudo’ spaces as all distance calculations are still per-
formed within one actual space, i.e., the anchor space.

The above definition supports learning directed relation-
ships as the model is not required to be symmetric; but,
it is flexible enough to learn symmetric (or even metric)
embeddings if such structures are exhibited by the data.

3) Probabilistic Mixtures of Embeddings: Now we in-
troduce how we aggregate the predictions from different
embeddings. Given an item pair (x, y), we build our model
upon the MoE framework to learn a probabilistic gating
function to ‘switch’ among different embeddings. Consid-
ering our asymmetric setting where the query item x in the
pair is used as the reference point, we model the probability
that the k-th embedding is used for the given pair (x, y)



with a softmax formulation:

P (k|(x, y)︸ ︷︷ ︸
the given item pair

) =

only depends on x︷ ︸︸ ︷
P (k|x) =

exp(UT
:,kfx)∑

i exp(UT
:,ifx)

, (5)

where U is a newly-introduced F × N parameter matrix
with U:,k being its k-th column. Briefly, the idea is to
compute the probability distribution over the N learners
given the characteristics of the ‘pivot’ item x. Note that our
formulation is efficient as it only introduces a small number
of parameters given that N is usually a small number (e.g. on
the order of 4 or 5 in our experiments).

Finally, our model calculates the ‘distance’ of an item pair
(x, y) by the probabilistic expectation:

d(x, y) =

N∑
k

P (k|(x, y)) · dk(x, y). (6)

Note that our ‘distance’ definition is a non-metric method
as it only preserves the non-negativity and is relaxing the
symmetry, identity, and triangle inequality properties.

C. Learning the Model

With the ‘distance’ function defined above, we model the
probability that a pair is related by a shifted sigmoid function
(in a way similar to [22]):

P ((x, y) ∈ R) = σc(−d(x, y)) =
1

1 + exp(d(x, y)− c)
.

(7)
Next, we need to randomly select a negative set of relation-
ships R̄. To this end, we use a procedure from [24] which
randomly rewires the positive set in such a way that (1) the
degree sequence of items is preserved and (2) each negative
pair consists of items from two categories.

Then we proceed by fitting the parameters by maximizing
the log-likelihood of the training corpus:

Θ̂ = arg max
Θ
L(R, R̄|Θ) =

∑
(x,y)∈R

log(P ((x, y) ∈ R))

+
∑

(x,y)∈R̄

log(1− P ((x, y) ∈ R)) + Ω(Θ),

(8)

where Θ is the full parameter set {E0,E1, . . . ,EN ,U, c},
and Ω(Θ) is an L2-regularizer to avoid overfitting. The total
number of parameters is F × (N × K + K + N) + 1.
Since N and K are small numbers (see Section IV), the
log-likelihood as well as the derivatives can be computed
efficiently.

Monomer is learned with L-BFGS [20], a quasi-Newton
method for non-linear optimization of problems with a
large number of variables. Our log-likelihood and the full
derivative computations can be naı̈vely parallelized over
all training pairs (x, y) ∈ R ∪ R̄. This means the opti-
mization can easily benefit from multi-threading and even

Table II: Statistics of a few representative categories from
the Amazon ‘Clothing Shoes & Jewelry’ dataset (using visual
features).

Dataset #Subcategories #Items Relationship (#Edges)
also bought also viewed

Men 56 306,215 1,075,547 635,610
Women 116 659,566 1,923,952 1,691,121
Boys 41 42,156 169,503 75,689
Girls 44 56,593 191,964 97,881
Baby 6 36,588 96,253 95,784

Total 263 1,101,118 3,457,219 2,596,085

parallelization across multiple machines (e.g. [6]). Note that
Monomer and the single-embedding method share the same
time complexity when using the same amount of embedding
parameters (see Appendix for a detailed analysis).

IV. EXPERIMENTS

A. Dataset

To fully evaluate the ability of Monomer to handle real-
world tasks, we want to experiment on the largest dataset
available. To this end, we adopt the dataset from Amazon
recently introduced by [22]. We focus on five large top-
level categories under the category tree rooted with ‘Clothing
Shoes & Jewelry’, i.e., Men’s, Women’s, Boys’, Girls’, and
Baby’s Clothing & Accessories. Statistics are shown in Table
II.

For each of the above categories, we experiment with two
important types of relationships: ‘users who bought x also
bought y,’ and ‘users who viewed x also viewed y,’ denoted
by ‘also bought’ and ‘also viewed’ respectively for brevity.
Such relationships are a key source of data to learn from in
order to recommend items of potential interests to customers.
Ground-truth for these relationships is also introduced in
[22], and are originally derived from co-purchase and co-
browsing data from Amazon.

Recall that our objective is to learn heterogeneous re-
lationships so as to support cross-category recommenda-
tion. Across the entire dataset, such relationships are noisy,
sparse, and not always meaningful. To address issues of
noise and sparsity to some extent, it’s sensible to focus on
the relationships within the scope of a particular top-level
category, e.g. Women’s Clothing, Men’s Clothing etc. We
then consider relationships between ‘2nd-level’ categories,
e.g. women’s shirts, women’s shoes, etc.

In summary, our evaluation protocol is as follows:
1) A single experiment consists of a specific cate-

gory (e.g. Men’s Clothing) and a graph type (e.g.
‘also bought’).

2) For each experiment, the relationships (R) and a
random sample of non-relationships (R̄, see Section
III-C) are pairs of items connecting different subcate-
gories of the category we are experimenting on. Note



that |R|= |R̄| and they share the same distribution
over the items.

3) For each experiment, we use an 80/10/10 random split
of the dataset (R ∪ R̄) with the training set being at
most two million pairs. Our goal is then to predict the
relationships and non-relationships correctly, i.e., link
prediction.

4) For all methods, the validation set is used for tuning
the regularization hyperparameters, and finally the
learned models are evaluated on the test set in terms
of error/misclassification rate.

For example, one experiment is to predict ‘also bought’
relationships for Men’s Clothing. There are 56 subcategories
under Men’s Clothing (see Table II), so our goal is to
distinguish edges from non-edges connecting items from
among these subcategories.

All experiments were performed on a single machine with
64GB memory and 8 cores. Our largest experiment required
around 40 hours to train, though most were completed in a
few hours.

B. Comparison Methods

Weighted Nearest Neighbor (WNN): This method uses
a weighted Euclidean distance in the raw feature space to
measure similarity between items: dw(x, y) = ‖w ◦ (fx −
fy)‖22. Here ◦ is the Hadamard product and w is a weighting
vector that is learned from the data.
Category Tree (CT): This method computes a matrix
of co-occurrences between subcategories from the training
data. Then a pair (x, y) is predicted to be positive if the
subcategory of y is one of the top 50% most commonly
connected subcategories to the subcategory of x.
Low-rank Mahalanobis Transform (LMT): LMT [22] is a
state-of-the-art method for learning visual similarities among
different items (possibly between categories) on large-scale
datasets. LMT learns a single low-rank Mahalanobis em-
bedding matrix to embed all items into a low-dimensional
space. Then it predicts the links between a given pair based
on the Euclidean distance within the embedded space (i.e.,
Eq. (3)).
Mixtures of Non-metric Embeddings (Monomer): Our
method. This method learns a mixture of low-rank trans-
forms/embeddings to uncover groups of underlying reasons
that explain the relationships between items. It measures the
‘distance’ (or dissimilarity) between items in a non-metric
manner (i.e., Eq. (6)).

Ultimately, our baselines are designed to demonstrate that
(a) the raw feature space is not directly suitable for learning
the notions of relationships (WNN); (b) using category
metadata directly and not using other features (CT) results
in relatively poor performance; and that (c) our proposed
model is an improvement over the state-of-the-art method
on our task (LMT).

Table III: Test errors of the link prediction task (i.e., predict-
ing ‘also bought’ and ‘also viewed’ relationships between
items) using visual features (4096-d) for each edge type
on clothing categories of the Amazon dataset. The best
performing method in each case is boldfaced. Lower is
better.

Dataset Graph (a) (b) (c) (d) % impr.
WNN CT LMT Monomer d vs. c

Men also bought 34.95% 47.71% 9.20% 6.48% 30%
also viewed 18.98% 47.40% 6.78% 6.58% 3%

Women also bought 30.50% 49.73% 11.52% 7.87% 32%
also viewed 20.50% 49.48% 7.90% 7.34% 7%

Boys also bought 31.16% 46.02% 8.80% 5.71% 35%
also viewed 21.52% 46.22% 6.72% 5.35% 20%

Girls also bought 31.10% 47.63% 8.33% 5.78% 31%
also viewed 22.36% 46.43% 6.46% 5.62% 13%

Baby also bought 37.26% 48.01% 12.48% 7.94% 36%
also viewed 30.89% 47.72% 11.88% 9.25% 22%

Avg. 27.92% 47.64% 9.00% 6.79% 22.9%

C. Performance & Quantitative Analysis

Error rates on the test set for all experiments are reported
in Table III. To perform a fair comparison between LMT and
Monomer, the following setting is used for all experiments
in this paper:

1) It has been shown by [22] that LMT can achieve better
accuracy when using a reasonably large number of
embedding dimensions (K). Therefore in all cases we
choose K large enough such that LMT obtains the
best possible (validation) performance.

2) In all cases we try to compare LMT and Monomer
under the same total number of model parameters. For
example, if we set the number of dimensions K to
100 for LMT, then a fair setting for Monomer would
be K = 20 and N = 4. This way both of them
are using 100F embedding parameters. Recall that N
is the number of embeddings (excluding the anchor
embedding).

For experiments on ‘also bought’ relationships, LMT uses
K = 100 dimensions and Monomer uses K = 20 and N =
4. While for experiments on ‘also viewed’ relationships, K
is set to 50 for LMT and K = 10 and N = 4 for Monomer.
Note that ‘also viewed’ relationships are almost twice as
sparse as ‘also bought’ relationships (and thus a model with
fewer parameters performed better at validation time), as
shown in Table II. We make a few observations to explain
and understand our findings as follows:

1) WNN is particularly inaccurate for our task. We
also observed relatively high training errors with this
method for most experiments. This confirms our con-
jecture that raw similarity is inappropriate for our
task, and that in order to learn the relationships across
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Figure 2: Visualization of Monomer trained on Women’s Clothing for ‘also bought’ prediction. Each visual space is
demonstrated by a 2-d t-SNE grid view [30] (each cell randomly selects one image in overlapping cases). According
to our ‘distance’ function (i.e., Eq. (6)), Monomer recommends the nearest neighbors of the query within each visual space,
based on the associated ‘reasons’ learned from data. Note that each visual space exhibits different category ‘clusters’ at the
query image’s location, allowing us to recommend diverse sets of items from the most closely-related categories.

(sub)categories, some sort of expressive transforms are
needed for manipulating the raw features.

2) The counting method (CT) performs considerably
worse than other methods. This reveals that the predic-
tive information used by the other models goes beyond
the categories of the products, i.e., that the image-
based models are learning relationships between finer-
grained attributes.

3) Note that all models perform better at predicting
‘also viewed’ than ‘also bought’ relationships. This
is reasonable since intuitively items that are “also
viewed” indeed tend to share more common char-
acteristics compared to the “also bought” scenario.
The greater heterogeneity between training pairs in the
latter task makes it comparatively harder to address.

4) Monomer outperforms LMT significantly for all ex-
periments, especially for the harder task of predicting
co-purchase dyads.

D. Visualization of the Embeddings

Next, we proceed by demonstrating the embeddings
learned from our largest dataset, Women’s Clothing, by
Monomer. We take the same model trained on co-purchase
relationships from the previous subsection and visualize it
in Figure 2. In this figure, we show each of the 5 visual
spaces by a 2-d visualization with t-SNE [30]. Images are a
random sample of size 50,000 from the Women’s Clothing

dataset and projected (using the learned embedding matrices)
to each visual space to demonstrate the underlying structure.

As analyzed in Section III, each embedding (i.e., learner)
is capturing a specific notion of relatedness that explains the
relationships of pairs of items in the corpus. In other words,
it means that the nearest neighbors in each of the N ‘pseudo’
spaces should be related to the query according to the
specific notion captured. Therefore those neighbors should
be recommended as potential matches to the query item, as
shown by the example in Figure 2. For the query image (a
t-shirt) in this example, Monomer recommends bundles of
similar t-shirts, pants, shoes, and accessories (watches etc.)
that resemble the query in terms of patterns (e.g. space 1),
colors (e.g. space 2), and more generally ‘styles’ (e.g. space
3 and 4).1 Such matching between a query image and
nearby items in alternate spaces directly facilitates the task
of recommending visually consistent outfits, where modeling
and understanding the visual compatibility across categories
is essential.

E. Visualization of the Visual Dimensions

Next we demonstrate the visual dimensions learned by
Monomer, i.e., what kind of characteristics the model is
capturing to explain the relationships among items. A simple
way to visualize these dimensions is to show items that

1The second patch actually contains a few men’s clothing items due to
data deficiency—an intrinsic problem suffered by Amazon.



Figure 3: Demonstration of the 10 visual dimensions of one
(randomly selected) visual space learned by Monomer on
Men’s Clothing for co-purchase prediction (K = 10, N =
4). Each row shows the top ranked items for a particular
dimension i, i.e., arg maxx E

T
:,ifx where E:,i is the i-th

column of the corresponding embedding matrix E.

exhibit maximal values for each dimension. In other words,
we select items according to

arg max
x

ET
:,ifx,

where E:,i is the i-th column of the embedding matrix E,
corresponding to a visual dimension i. Intuitively, this in-
forms us of items that are most representative of a particular
visual aspect discovered by the model.

We trained Monomer on Men’s Clothing (K = 10, N =
4), predicting co-purchase relationships. Due to limited
space, we randomly select one embedding and demonstrate
its 10 visual dimensions in Figure 3. From the figure we can
see that (1) Monomer seems to uncover meaningful visual
dimensions, each of which highlights certain fine-grained
item types (e.g. plaid tees and jeans in row 1 and 5); (2) hu-
man notions seem to have been captured, e.g. casual versus
formal in rows 2 and 9; and (3) subtle differences between
different characteristics can be distinguished (e.g. tees in
rows 2 and 6). Monomer’s ability to discover and model
the correlations among visual characteristics explains its
success.

Figure 4: Comparison between the state-of-the-art metric-
based method, LMT, and our non-metric method Monomer.
On the left are a few query images, for each of which
we show its nearest neighbors retrieved by LMT (above
the horizontal line) and Monomer (below the horizontal
line) respectively. Both models were trained on Women’s
Clothing for ‘also bought’ prediction (using the same setting
as in Table III). All query images and all neighbors are from
Women’s Clothing.

F. Visual Recommendation & Analysis

Beyond achieving high prediction accuracy, we want to
test the ability of Monomer to generate useful recommen-
dations. Again, we mainly compare to the state-of-the-art
metric-based method, LMT. Both methods are able to learn
relationships from the data, so one common setting is to
retrieve ‘similar’ items (i.e., maximum probability of being
related) to a given query.

First we train LMT and Monomer on Women’s Clothing
to predict ‘also bought’ relationships, under the same set-
ting as in Table III. This way the two models will learn
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Figure 5: Demonstration of the distribution of different
subcategories in the 100-d space learned by LMT. For
visualization, we use t-SNE [30] to further embed this space
into 2-d. In each subgraph, a color represents a specific
subcategory within the corresponding dataset. The main
finding is that LMT tends to project subcategories to be
‘clusters’ in the embedded space, which may cause a ‘limited
coverage’ problem for the recommendation task.

their own similarity (or distance) functions from the data.
Next, from Women’s Clothing we randomly select a few
query items, for each of which LMT and Monomer will
retrieve its highest-probability links according to their own
similarity functions. Figure 4 demonstrates such queries and
the retrieved connections (in all cases ranked in decreasing
order in terms of the probability of the link) by the two
models.

As shown in Figure 4, the metric-based method (LMT)
tends to recommend items that are very similar to the
query, even though for this task it is trained to predict
complementary relationships (i.e., ‘also bought’). Indeed it
is very difficult for a metric-based method to project items
from different subcategories to be nearer than items from
the same category; presumably such methods are limited by
their underlying assumption that the most similar item to
a given query is always itself. In [22] this was addressed
to some extent by making explicit use of the category
information at test time (e.g. ‘find the shirt closest to this
pair of shoes’), though our model is able to make diverse sets
of recommendations without such a dependence on explicit
category information.

Recall that LMT learns an embedding within which
the Euclidean distance is used to distinguish relationships
from non-relationships. Visualizing such spaces can help
understand the behavior of LMT. Again we uniformly
sample 10,000 items from the dataset and use t-SNE [30]
to visualize their positions in the embedded space. We
are particularly interested in the distribution of different
subcategories of items over the space. Therefore we assign
a unique color to each subcategory in the dataset. Figure 5
shows results on two representative datasets, Men’s and
Women’s Clothing.

Table IV: Statistics of a variety of top-level categories from
Amazon.

Dataset #Subcategories #Items Relationship (#Edges)
also bought also viewed

Elect 306 412,082 1,654,552 718,361
Auto 178 312,642 959,353 1,298,774
Games 16 49,801 314,124 54,559
Movies 2 199,737 648,256 49,924
Office 245 127,054 448,720 370,630
Home 81 393,781 560,574 960,925
Phones 28 317,965 867,418 225,785

Total 856 1,813,062 5,452,997 3,678,958

From Figure 5 we find that subcategories of items tend
to become ‘clusters’ in the embedded space. This can
be problematic especially for recommending related items
across subcategories:

1) From a recommendation perspective, there will be a
‘limited coverage’ issue because given a query LMT
tends to recommend only those items on the bound-
aries of the clusters. There is no way that items located
near the center of a cluster will ever be recommended,
since the closest item outside the query’s own category
cluster will be on the fringe of a different category
cluster.

2) Recommendations will suffer from ‘mislabeling’ is-
sues. Note that LMT relies heavily on the taxonomy
metadata at test time to filter out items from the
same subcategory as the query. However, even a tiny
number of mislabeled items in the dataset can poison
recommendations, and certainly some such examples
exist in the Amazon dataset [31]. Unexpected items
may appear on the recommendation list when there
are mislabeled items that actually come from the same
subcategory as the query.

Note that Monomer doesn’t suffer from either of above
issues since it has already successfully ‘blended’ different
subcategories, as shown by the nearest neighbors in Figure 4.

G. Learning Compatibility from Textual Features

In previous sections, we have shown that Monomer not
only performs very well on link prediction tasks but also that
it recommends highly diverse sets of items. However, above
we only considered scenarios in which relationships like co-
purchasing can be predicted from visual features. Following
this, a natural question would be “Is Monomer able to learn
relationships from non-visual features and achieve similarly
competitive performance?”

To answer the above question, we perform further ex-
periments on Bag-of-Words (BoW) features extracted from
the text of product reviews, which are also available in the
Amazon dataset. In particular, we experiment with a variety
of top-level Amazon categories, i.e, Electronics, Automotive,
Video Games, Movies & TV, Office Products, Home &



Kitchen, and Cell Phones & Accessories (denoted by ‘Elect’,
‘Auto’, ‘Games’, ‘Movies’, ‘Office’, ‘Home’, and ‘Phones’
resp.). Statistics of these datasets are shown in Table IV.

For each category (e.g. Electronics) we use the following
procedure to generate BoW features for all its items: (1)
Remove stop-words and construct a dictionary. Our dictio-
nary consists of 5000 nouns or adjectives or adjective-noun
bigrams that appear most frequently in the review corpus
being considered. (2) For each item i, a document di is
generated by bagging all the reviews it has received. (3) The
5000-d BoW feature vector fi of each item i is computed by
normalizing the raw word counts of document di to sum to 1.
(4) Items without any reviews attached are seen as invalid
items and are dropped from the dataset. In the following
experiments, we use the same evaluation protocol as in the
previous visual feature experiments.

Latent Dirichlet Allocation + WNN (LDA): Here we add
another baseline for further comparison. This method first
obtains 100 topics with LDA with a vocabulary of size
5000,2 and then uses WNN to distinguish relationships from
non-relationships within the 100-d topic space.

Results and Analysis. Table V summarizes the error rates
on the test sets for all experiments. We observe that (1) basic
methods like WNN and LDA are not particularly accurate
for the task; (2) Monomer outperforms LMT considerably
especially on the harder tasks, which demonstrates its ability
to handle textual features; and (3) the comparative hardness
of ‘also bought’ over ‘also viewed’ prediction now seems to
be dependent on the dataset in question, presumably due to
different semantics of the two link types, or different patterns
of customer behavior, among different categories.

V. CONCLUSION

In this paper, we presented Monomer, a method to model
heterogeneous relationships for item-to-item recommenda-
tion tasks. We noted that existing methods for item-to-item
recommendation suffer from a few limitations when dealing
with heterogeneous data, due mainly to their reliance on
metricity or ‘nearest-neighbor’ type assumptions. To over-
come these limitations, our method made use of ‘mixtures’
of non-metric embeddings, which allows us to relax the
identity and symmetry assumptions of existing metric-based
methods. The proposed scalable approach generates diverse
and cross-category recommendations effectively that capture
more complex relationships than mere visual similarity. We
showed quantitatively that Monomer is accurate at link
prediction tasks using co-purchase and co-browsing dyads
from Amazon, and qualitatively that it is able to generate
diverse recommendations that are consistent with a particular
visual style.

2We adopted the implementation in Gensim (default parameters kept):
https://radimrehurek.com/gensim/

Table V: Test errors of the link prediction task using BoW
features (5000-d) on a variety of top-level categories of the
Amazon dataset. For LMT, K = 100, while for Monomer,
K = 20 and N = 4. Lower is better.

Dataset Graph (a) (b) (c) (d) % impr.
WNN LDA LMT Monomer d vs. c

Elect also bought 37.58% 36.67% 13.73% 10.09% 26%
also viewed 39.37% 26.60% 16.41% 9.44% 42%

Auto also bought 42.63% 38.57% 17.94% 14.09% 21%
also viewed 42.44% 34.37% 21.15% 14.74% 30%

Games also bought 44.31% 42.55% 14.43% 12.03% 17%
also viewed 40.08% 33.22% 16.18% 11.29% 30%

Movies also bought 40.00% 23.51% 11.36% 9.47% 17%
also viewed 42.01% 26.63% 15.12% 14.98% 1%

Office also bought 41.35% 39.05% 18.53% 14.30% 23%
also viewed 37.33% 28.13% 13.52% 9.72% 28%

Home also bought 39.74% 31.91% 13.96% 12.40% 11%
also viewed 36.49% 23.09% 13.97% 9.95% 29%

Phones also bought 43.35% 42.73% 29.44% 22.68% 23%
also viewed 43.70% 34.30% 24.65% 16.04% 35%

Avg. 40.74% 32.95% 17.19% 12.94% 23.8%

APPENDIX

Complexity Analysis: In Monomer, each embedding matrix
has F ×K parameters, which means there are in total F ×
K×(N+1) embedding parameters. Since Monomer doesn’t
need to use more embedding parameters to outperform LMT
(see Section IV), we focus on comparing Monomer and
LMT under the same total number of embedding parameters,
in terms of the amount of multiplications involved.

For complete clarity, we denote the embedding dimen-
sion of LMT and Monomer by K ′ and K respectively
(F × K ′ = F × K × (N + 1)). For each training pair
(x, y), LMT takes O(F × K ′) to compute the distance
between them and the corresponding derivatives. While
for Monomer, it takes O(F × K ′) to project x and y
to the multiple spaces. Afterwards the ‘distance’ will be
calculated in O(N × K) + O(N × F ), where the former
is for computing N distance components and the latter
is spent on the probabilistic weights. In total, it takes
O(F × K ′) + O(N × K) + O(N × F ) = O(F × K ′)
for Monomer to finish ‘distance’ computation. Likewise, it’s
easy to verify that the corresponding derivatives can also be
computed in O(F×K ′) time. To sum up, training Monomer
and LMT will have the same time complexity when using
the same amount of embedding parameters.
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