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Abstract—Large datasets often have unreliable labels—such
as those obtained from Amazon’s Mechanical Turk or social
media platforms—and classifiers trained on mislabeled datasets
often exhibit poor performance. We present a simple, effective
technique for accounting for label noise when training deep
neural networks. We augment a standard deep network with
a softmax layer that models the label noise statistics. Then,
we train the deep network and noise model jointly via end-
to-end stochastic gradient descent on the (perhaps mislabeled)
dataset. The augmented model is overdetermined, so in order
to encourage the learning of a non-trivial noise model, we
apply dropout regularization to the weights of the noise model
during training. Numerical experiments on noisy versions of the
CIFAR-10 and MNIST datasets show that the proposed dropout
technique outperforms state-of-the-art methods.

Index Terms—Supervised Learning; Deep Learning; Convo-
lutional Neural Networks; Label Noise; Dropout Regularization

The previous decade has witnessed swift advances in the
performance of deep neural networks for supervised image
classification and recognition. State-of-the-art performance re-
quires large datasets, such as the 10,000,000 hand-labeled im-
ages comprising the ImageNet dataset [1], [2]. Large datasets
suffer from noise, not only in the images themselves, but
also in their associated labels. Researchers often resort to
non-expert sources such as Amazon’s Mechanical Turk or
tags from social networking sites to label massive datasets,
resulting in unreliable labels. Furthermore, the distinction
between class labels is not always precise, and even experts
may disagree on the correct label of an image. Regardless
its source, the resulting noise can drastically degrade learning
performance [3], [4].

Learning with noisy labels has been studied previously, but
not extensively. Techniques for training support vector ma-
chines, K-nearest neighbor classifiers, and logistic regression
models with label noise are presented in [5], [6]. Further,
[6] gives sample complexity bounds in the presence of label
noise. Only a few papers consider deep learning with noisy
labels. An early work is [7], which studied symmetric label
noise in neural networks. Binary classification with label
noise was studied in [8]. In [9], techniques for multi-class
learning and general label noise models are presented. This
approach adds an extra linear layer, intended to model the label
noise, to the conventional convolutional neural network (CNN)
architecture. In a similar vein, the work of [10] uses self-

learning techniques to “bootstrap” the simultaneous learning
of a deep network and a label noise model.

In this paper, we present a simple, effective approach to
learning deep neural networks from datasets corrupted by
label flips. We augment an arbitrary deep architecture with
a softmax layer that characterizes the pairwise label flip
probabilities. We learn jointly the parameters of the deep
network and the noise model simultaneously using standard
stochastic gradient descent. To ensure that the network learns
an accurate noise model—instead of fitting the deep network to
the noisy labels erroneously—we apply an aggressive dropout
regularization to the added softmax layer. This encourages the
network to learn a “pessimistic” noise model that denoises the
corrupted labels during learning. After training, we disconnect
the noise model and use the resulting deep network to classify
test images. Our approach is computationally fast, completely
parallelizable, and easily implemented with existing machine
learning libraries [11], [12], [2].

In Section III we demonstrate state-of-the-art performance
of the dropout-regularized noise model on noisy versions of
the CIFAR-10 and MNIST datasets. In nearly all cases, the
proposed method outperforms existing approaches for learning
label noise models, and even for high rates of label noise.
In many cases, dropout even often outperforms a genie-aided
model in which the noise statistics are known a priori. We
investigate the properties of the learned noise model, finding
that the dropout-regularized model overestimates the label
flip probabilities. We hypothesize that a pessimistic model
improves performance by encouraging the deep network to
cluster images naturally when confronted with conflicting
image labels.

I. PROBLEM STATEMENT

In the usual supervised learning setting, we have access
to a set of n labeled training images. Denote each image
by xi ∈ Rd, and denote the class label for image xi by
yi ∈ {1, . . . , C}. Denote this ideal training set by

D = {(x1, y1), (x2, y2), ..., (xn, yn)}.

As discussed in the introduction, accurate labels are difficult
to obtain for large datasets, so we suppose that we have access
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only to noisy labels, denoted by y′i. Denote the noisy training
set by

D′ = {(x1, y′1), (x2, y
′
2), ..., (xn, y

′
n)}.

We assume a probabilistic model of label noise in which
each noisy label y′ depends only on the true label y and not
on the image x. We further suppose that the noisy labels are
i.i.d. conditioned on the true labels. That is, y′i and y′j are
independent of each other given the true labels yi and yj , and
p(y′i|yi) = p(y′j |yj) for image pairs xi and xj . We represent
the conditional noise model by the column-stochastic matrix
Ψ ∈ RC×C :

p(y′ = i|y = j) = Ψij , (1)

where Ψij is the (i, j)th element of Ψ.
In our simulations, we synthesize the noisy labels. From

the standard datasets CIFAR-10 and MNIST, we fix a noise
distribution Ψ and create noisy labels by drawing i.i.d. from
the distribution specified by (1) for the training samples. We
do not perturb the labels for the test samples.

While the proposed method works for any Ψ, we use two
parametric noise models in the sequel. First, we choose a noise
level p, and we set

Ψ = (1− p)I +
p

C
11T , (2)

where I is the identity matrix and 1 is the all-ones column
vector. That is, the noisy label is the true label with probability
1−p and is drawn uniformly from {1, . . . , C} with probability
p. We call this the uniform noise model.

Second, we again choose a noise level p, and we set

Ψ = (1− p)I + p∆, (3)

where the columns of ∆ are drawn uniformly from the unit
simplex, i.e. the set of vectors with nonnegative elements that
sum to one. The matrix ∆ is constant over a single instantiation
of the noisy training set D′. We call this the non-uniform noise
model.

A. Learning Deep Networks with Noise Models

Our objective is to learn a deep network from the noisy
training set D′ that accurately classifies cleanly-labeled im-
ages. Our approach is to take a standard deep network—
which we call the base model—and augment it with a noise
model that accounts for label noise. Then, the base and noise
models are learned jointly via stochastic gradient descent. The
noise model has a role only during training—as the noise
model is learned, it effectively denoises the labels during
backpropagation, making it possible to learn a more accurate
base model. After training, the noise model is disconnected,
and test images are classified using the base model output.

We use two standard deep networks for the base model. The
first is the deep convolutional network. It has three processing
layers, with rectified linear units (ReLus) and max- and
average-pool operations between layers. The hyperparameters
are similar to those used in the popular “AlexNet” architecture,
described in [2]. The second model is a standard deep neural
network, with three rectified linear processing layers (RELUs).

We lump the base model parameters—processing layer
weights and biases, etc.—into a single parameter vector θ.
Further, let h be the output vector of the final layer of the
base model. Define the usual softmax function

σ(x)i =
exp(xi)∑
j exp(xj)

. (4)

Then, for test image x, the base model estimate of the
distribution of the class label is

p(ŷ|x; θ) = σ(h). (5)

One approach to noisy labels is to use the base model
without modification and treat y′i as the true label for xi.
Taking the standard cross-entropy loss, one can minimize the
empirical risk

Lbase(θ;D′) = − 1

n

n∑
i=1

log(p(ŷ = y′i|xi; θ)) (6)

= − 1

n

n∑
i=1

log(σ(h)y′
i
), (7)

As shown in Section III, the base model alone offers satis-
factory performance when the label noise is not too severe;
otherwise the incorrect labels overwhelm the model, and it
fails.

To motivate our approach, we describe first the method
presented in [9]. Suppose momentarily that the true noise
distribution, characterized by Ψ, is known. One can augment
the base model with a linear noise model, with weight matrix
equal to Ψ, as depicted in Figure 1a. For this architecture, we
can express the estimate of the distribution of the noisy class
label as

p(ŷ′|x; θ,Ψ) =

C∑
c=1

p(ŷ′|ŷ = c)p(ŷ = c) (8)

= Ψ · σ(h), (9)

where · is standard matrix-vector multiplication. We can then
minimize the empirical cross-entropy of the noisy labels
directly:

Ltrue(θ;D′,Ψ) = − 1

n

n∑
i=1

log(p(ŷ′ = y′i|xi; θ)) (10)

= − 1

n

n∑
i=1

log([Ψ · σ(h)]y′
i
), (11)

where [·]i returns the ith element of a vector. Then, each test
sample x is classified according to the output of the base
model, i.e. σ(h). Because the noise model is known perfectly,
one might expect that this approach gives the best possible
performance. While it does provide excellent performance, in
Section III we show that even better performance is possible
in most cases.

The noise model, however, is usually unknown. Further-
more, we do not know which labels are corrupted and we
cannot estimate a noise model directly. The authors of [9]
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(a) A deep network augmented with a linear noise model.
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(b) A deep network augmented with a softmax/dropout noise model.

Fig. 1

suggested that one can estimate the noise probabilities Ψ while
simultaneously learning the base model parameters θ. The
challenge here is that convolutional networks are sufficiently
expressive models that base model may fit to the noisy labels
directly and learn a trivial noise model. To prevent this, the
authors of [9] add a regularization term that penalizes the trace
of the estimate of Ψ. This encourages a diffuse noise model
estimate and permits the base model to learn from denoised
labels. The associated loss function is

Ltrace(θ, Ψ̂;D′) = − 1

n

n∑
i=1

log(p(ŷ′ = y′i|xi; θ)) + λtr(Ψ)

(12)

= − 1

n

n∑
i=1

log([Ψ̂ · σ(h)]y′
i
) + λtr(Ψ), (13)

where tr(·) is the matrix trace, and λ is a regularization pa-
rameter chosen via cross-validation. When minimizing Ltrace,
one must take care to project the estimate Ψ̂ onto the space
of stochastic matrices at every iteration, else it will not
correspond to a meaningful model of label noise.

II. DROPOUT REGULARIZATION

We propose to augment the base model with a different
noise architecture. As depicted in Figure 1b, we add a softmax
layer with square weight matrix W ∈ RC×C , unconstrained.
We interpret the output of this softmax layer, denoted g =
σ(Wh), as the probability distribution over the noisy label y′.
This results in the effective conditional probability distribution
of the noisy label y′ conditioned on y:

p(y′ = i|y = j) = [σ(Wej)]i, (14)

where ej is the jth elementary vector. We use this architecture
without loss of generality. Because the softmax function is
invertible, there is a one-to-one relationship between noise
distributions induced by Ψ and (1) and those induced by W

and (14). For any W and base model parameters θ, the estimate
of the distribution of the noisy class label is

p(ŷ′|ŷ) =

C∑
c=1

p(ŷ′|ŷ = c)p(ŷ = c) (15)

= σ(W · σ(h)). (16)

This architecture offers two major advantages. First, the
matrix W is unconstrained during optimization. Because the
softmax layer implicitly normalizes the resulting conditional
probabilities, there is no need to normalize W or force its
entries to be nonnegative. This simplifies the optimization
process by eliminating the normalization step described above.

Second, it is congruent with dropout regularization, which
we apply to the output of base model σ(h) to prevent the base
model from learning the noisy labels directly. Dropout is a
well-established technique for preventing overfitting in deep
learning [13]. It regularizes learning by introducing binary
multiplicative noise during training. At each gradient step, the
base model outputs are multiplied by random variables drawn
i.i.d from the Bernoulli distribution Bern(q). This “thins” out
the network, effectively sampling from a different network for
each gradient step.

Applying dropout to σ(h) entails forming the effective
weight matrix

a ∼ Bern(q) (17)

σ̂(h) = a� σ(h) (18)

where a has entries drawn i.i.d. from the Bernoulli distribu-
tion Bern(q) and � represents the Hadamard (element-wise)
product. We choose a different vector a for each mini-batch,
i.e. each SGD step, in the training set. Again using the cross-
entropy loss, the resulting loss function is



Ldropout(θ,W ;D′) = − 1

n

n∑
i=1

log(p(ŷ′ = y′i|xi; θ)) (19)

= − 1

n

n∑
i=1

log([σ(W · (a� σ(h))]y′
i
)

(20)

Observing the conditional distribution in (14), each instanti-
ation of the multiplicative noise a zeros out a fraction of the el-
ements Wij , forcing the associated probabilities to a baseline,
uniform value. [ISHAN: Is this right?] This forces the learning
“action” on the remaining probabilities, which encourages a
non-trivial noise model. The Bernoulli parameter q determines
the sparsity of each instantiation. In our simulations, we find
that q = 0.1—which corresponds to an aggressively sparse
model—works best.

The usual dropout procedure involves “averaging” together
the different models when classifying samples by reducing
the learned weights. In our setting, this is unnecessary. The
noise model serves only as an intermediate step for denoising
the noisy labels to train a more accurate base model. The
noise model is disconnected at test time, and averaging is not
performed.

III. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of the
proposed method. We state results on two datasets (CIFAR-10
and MNIST), two noise models (uniform and non-uniform),
and two base models (CNN and DNN). For training the CNN,
we use the model architecture from the publicly-available
MATLAB toolbox MathConvNet [14]. [ISHAN: What are
the hyperparameters of this model?] Other than changing the
size of the input units, we keep the model hyperparameters
constant. For training the DNN, we use the architecture used
in [10], which has 784 − 500 − 300 − 10 ReLUs per layer.
In each case, we present results for label noise probabilities
p ∈ {0.3, 0.5, 0.7}, i.e. label noise that corrupts 30%, 50%,
and 70% of the training samples. As mentioned earlier, we
use a dropout rate of q = 0.1 in all simulations. We train the
CNN and DNN end-to-end using stochastic gradient descent
with batch size 100. When training on the MNIST dataset,
we perform early stopping, ceasing iterations when the loss
function begins to increase. We emphasize that the loss func-
tion does not depend on the true labels, so choosing when to
stop does not require knowledge of the uncorrupted dataset.
MATLAB code for these simulations is available at [15].

A. CIFAR Images

The CIFAR-10 dataset [16] is a subset of the Tiny Images
dataset [17]. CIFAR-10 consists of 50,000 training images and
10,000 test images, each of which belongs to one of ten object
categories, which are equally represented in the training and
test sets. Each image has dimension 32 × 32 × 3, where the
latter dimension reflects the three color channels of the images.

First, we state results for the uniform noise model using
CNN. For p ∈ {0.3, 0.5, 0.7}, we choose Ψ = (1 −

p)I + p/C11T as indicated in (2). We corrupt the labels
in the CIFAR-10 training according to Ψ, and we leave the
test labels uncorrupted. For reference, CNN achieves 20.49%
classification error when trained on the noise-free dataset.

We state the classification accuracy over the test set in Table
I. As a baseline, we present results for the base model, in
which the noisy labels are treated as true labels and the model
parameters are chosen to minimize the standard loss function
in (6). We also present results for the true noise model, in
which Ψ is known, a linear noise layer with weights Ψ is
appended to the base model, and the model parameters are
chosen to minimize the loss function in (6). Next, we present
results for the proposed softmax architecture, first without
regularization (referred to as “Softmax” in Table I) and then
with the proposed dropout regularization (“Dropout”).

Finally, we compare to the results presented in [9] (“Trace”),
in which a linear layer is added, but the label noise model Ψ
is learned jointly with the base model parameters according to
the trace-penalized loss function of (12). We emphasize that
these results come with significant caveats. While the noise
level and network architecture used here is the same as that of
[9], the authors of [9] used a non-uniform noise model which
we do not replicate in this paper. Therefore, these results are
from a roughly comparable, but not strictly identical, noise
scenario.

In most cases, the proposed dropout method gives the best
performance—even better than the true noise model, which
supposes that Ψ is known a priori. Only in the case of 50%
noise does the true noise model outperform dropout. Note
that even without dropout regularization, the proposed soft-
max noise model gives satisfactory performance, consistently
outperforming the base model.

Because there is a one-to-one relationship between the
softmax and linear noise models, one might expect their
performance to be similar. To understand further why this is
not so, in Figure 2 we plot the true noise model Ψ along-
side the equivalent noise matrices learned via the proposed
dropout scheme. The learned models are of the correct form—
approximately uniform and diagonally dominant—but they
also are more pessimistic, underestimating the probability of
a correct noise label by a few percent. Indeed, the average
diagonal value of the learned noise matrices are 0.279, 0.345,
and 0.447 for 30%, 50%, and 70% noise, respectively. This
suggests that a CNN may learn from noisy labels better if
the denoising model is pessimistic. This notion is a topic for
future investigation.

Next, we state results for the non-uniform noise model using
a CNN. For p ∈ {0.3, 0.5, 0.7}, we corrupt the labels in the
CIFAR-10 training set according to Ψ = (1 − p)I + p∆
as indicated in (3). We again compare the proposed dropout
scheme to the base model, the true noise model, and the trace-
regularized scheme of [9]. We emphasize again that these error
rates, taken directly from [9], are for a similar but not identical
noise model. We omit results for the unregularized softmax
scheme.

Table II states the classification error for the different



TABLE I: Classification accuracy on the CIFAR-10 dataset with uniform label noise and the CNN architecture.

Noise level True noise Base model Softmax Dropout Trace ([9])
30% 25.76 29.78 26.04 24.43 26
50% 29.63 38.76 33.40 32.64 35
70% 36.24 48.34 37.10 33.00 63

(a) 30% True Noise (b) 50% True Noise (c) 70% True Noise

(d) 30% Learned Noise (e) 50% Learned Noise (f) 70% Learned Noise

Fig. 2: True and learned uniform noise distributions. The first row shows the elements of the true noise matrix Ψ for the
uniform noise model with 30%, 50% and 70% noise levels. The second row shows the noise model learned via the proposed
dropout method.

schemes over the CIFAR-10 test set. Again dropout performs
well, outperforming the base model and performing better or
on par with the trace-regularized scheme. In this case, however,
dropout does not outperform the true noise model. Indeed,
overall dropout performs worse under non-uniform noise. To
investigate this further, we plot the values of Ψ used for
simulations and the noise model learned via dropout in Figure
3. Similar to before, dropout learns a more pessimistic noise
model, with average diagonal entries equal to 0.256, 0.326,
and 0.4125 for 30%, 50%, and 70% noise levels, respectively.
Further, the learned noise models are close to uniform, even
though the true model is non-uniform. We hypothesize that the
failure of dropout to learn a non-uniform noise model explains
the performance gap. We emphasize, though, the state-of-the-
art performance of the model learned by dropout.

TABLE II: Classification error rates on the CIFAR-10 dataset
with non-uniform label noise and the CNN architecture.

Noise level True noise Base model Dropout Trace ([9])
30% 24.95 30.49 25.4 26
50% 29.9 39.47 31.28 35
70% 63.91 65.6 63.04 63

B. MNIST Images

MNIST is a set of images of handwritten digits [18].
It has 60,000 training images and 10,000 test images. We
use the version of the dataset included in MatConvNet, in
which the original black-and-white images are normalized to
grayscale and fit to a dimension of 28×28. For reference, the
CNN achieves 0.89% classification error when trained on the
uncorrupted training set.

First, we present results for learning the CNN model param-
eters on the MNIST training set corrupted by uniform noise.
As usual we take Ψ as defined in (2) for p ∈ {0.3, 0.5, 0.7}.
We compare the proposed dropout method to the base and true
noise models. For this scenario, there is no prior work against
which to compare.

TABLE III: Classification error rates for the CNN architecture
trained on the MNIST dataset corrupted by uniform noise.

Noise level True noise Base model Dropout
30% 1.3 8.3 1.2
50% 2.06 25.44 1.92
70% 3.31 44.42 3.12

We state the results in Table III. Dropout outperforms the



(a) 30% True Noise (b) 50% True Noise (c) 70% True Noise

(d) 30% Learned Noise (e) 50% Learned Noise (f) 70% Learned Noise

Fig. 3: True and learned non-uniform noise distributions. The first row shows the elements of the true noise matrix Ψ for
the non-uniform noise model with 30%, 50% and 70% noise levels. The second row shows the noise model learned via the
proposed dropout method.

true noise model for 30% and 50% noise, and performs only
slightly worse at 70% noise. Still, dropout proves quite robust
to label noise, outperforming the base model substantially.

In Table IV we state the results of the same experiment,
this time with Ψ drawn according to the non-uniform noise
model of (3). Similar to the CIFAR-10 case, the relative
performance of dropout is worse. It slightly under-performs
relative to the true noise model for 30% and 50%, and it
performs substantially worse for 70%. This is due to two
factors: first, the dropout scheme learns non-uniform noise
models poorly, as seen above, and the MNIST dataset does
not cluster as naturally as the CIFAR-10 dataset.

TABLE IV: Classification error rates for the CNN architecture
trained on the MNIST dataset corrupted by non-uniform noise.

Noise Level True Noise
Model Base model Dropout

30% 1.72 4.5 1.83
50% 2.29 34.5 2.83
70% 3.58 48.80 24.6

To compare the dropout performance on MNIST with
previous work, we also state results for a three-layer DNN
as described in [10]. As mentioned above, this network has
784−500−300−10 rectified linear units per layer. The DNN is
less sophisticated than the CNN, so it has worse performance
overall. When trained on the uncorrupted MNIST training set,
it achieves 1.84% classification error.

We first state results for uniform noise, shown in Table

V. As before, we corrupt the MNIST training set labels
with noise drawn according to (2). In addition to the true
noise and base models, we compare the proposed dropout
scheme to that presented in [10], where a “bootstrapping”
scheme is used to denoise the corrupted labels during training.
Similar to before, the proposed dropout scheme outperforms
every scheme, including the true noise model, except for the
70% noise level. However, dropout significantly outperforms
bootstrapping in all regimes; at 70% noise, dropout performs
even better than bootstrap does at 50% noise.

Similar results obtain for non-uniform noise, as shown in
Table VI. Again, dropout has worse relative performance due
to its difficulty in learning a non-uniform noise model, and
this gap is significant at the 70% noise level. We plot the true
and learned noise model for the 70% noise level in Figure
4. Similar to before, the learned model is more pessimistic
and closer to a uniform distribution than the true model. We
hypothesize that this has a more drastic effect because the
MNIST digits do not cluster as naturally as the CIFAR images.

While preparing this manuscript, we became aware of a
recently-published approach [19]. It uses the “AlexNet” con-
volutional neural network, pretrained on a noise-free version of
the ILSVRC2012 dataset. Then, for a different, noisy training
set, it fine-tunes the last CNN layer using an auxiliary image
regularization function, optimized via alternating direction
method of multipliers (ADMM). The regularization encour-
ages the model to identify and discard incorrectly-labeled
images. This approach has a somewhat different setting—



TABLE V: Classification error rates for the DNN architecture trained on the MNIST dataset corrupted by uniform noise.

Noise level True noise Base model Dropout Bootstrapping ([10])
30% 2.46 3.42 2.41 2
50% 3.72 23.4 3.63 45
70% 7.59 45.33 8.77 N/A

TABLE VI: Classification error rates for the DNN architecture trained on the MNIST dataset corrupted by non-uniform noise.

Noise level True noise Base model Dropout Bootstrapping ([10])
30% 3.71 6.03 2.45 2
50% 5.24 36.35 4.58 45
70% 6.76 53.55 43.03 N/A

(a) True noise

(b) Learned noise

Fig. 4: True and learned noise model for the CNN architecture
over the MNIST digits with 70% label noise.

in particular, they rely on a pretrained CNN, whereas the
results reported herein suppose that the end-to-end network
must be trained via noisy labels—so we cannot give a direct
comparison of our method to theirs. However, [19] reports a
classification error rate of 7.83% for 50% noise on the MNIST

set, whereas dropout achieves 2.83%. This suggests that at
least in some regimes dropout provides superior performance.

IV. CONCLUSION AND FUTURE WORK

We have proposed a simple and effective method for
learning a deep network from training data whose labels are
corrupted by noise. We augmented a standard deep network
with a softmax layer that models the label noise. To learn
the classifier and the noise model jointly, we applied dropout
regularization to the weights of the final softmax layer. On
the CIFAR-10 and MNIST datasets, this approach achieves
state-of-the-art performance, and in some cases it outperforms
models in which the label noise statistics are known a priori.

A consistent feature of this approach is that it learns a
noise model that overestimates the probability of a label flip.
One way to interpret this result is that the deep network is
encouraged to learn to cluster the data—rather than to classify
it—to a greater extent than one would expect from the noise
statistics. In other words, it is better to let deep networks
cluster ambiguously-labeled data than to risk learning noisy
labels. The details of this phenomenon—including which noise
model is “ideal” for training an accurate network—is a topic
for future research.
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