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Abstract—Recently, graphs have been widely used to represent
many different kinds of real world data or observations such as
social networks, protein-protein networks, road networks, and
so on. In many cases, each node in a graph is associated with
a set of its attributes and it is critical to not only consider the
link structure of a graph but also use the attribute information
to achieve more meaningful results in various graph mining
tasks. Most previous works with attributed graphs take into ac-
count attribute relationships only between individually connected
nodes. However, it should be greatly valuable to find out which
sets of attributes are associated with each other and whether
they are statistically significant or not. Mining such significant
associations, we can uncover novel relationships among the sets
of attributes in the graph. We propose an algorithm that can find
those attribute associations efficiently and effectively, and show
experimental results that confirm the high applicability of the
proposed algorithm.

I. INTRODUCTION

Nowadays graphs have emerged as a powerful abstract data
type to represent and analyze complex data in a broad range
of commercial and scientific applications including social net-
works [1], [2], bioinformatics [3], world wide web [4], [5], and
so on. Mining structured patterns in graphs have been actively
studied in the literature and such patterns including cliques [6],
subgraphs [7], [8], [9], paths [10] and trees [11] help us better
understand the intrinsic characteristics of graph data. Also,
when the graph data come with auxiliary information such as
node attributes, such information can be applied to various
application areas, e.g., community detection, link prediction,
graph clustering, network modeling, and etc. Thus, attributed
graphs are more important than ever before to complex mining
tasks.

While node attributes can be successfully employed to
augment various mining tasks, the node attributes themselves
could give us interesting patterns for better understanding
graphs. Given an attributed graph where each node is asso-
ciated with its attribute values, one might be interested in
a pattern of node attribute values which co-occur between
connected nodes. Let’s call such co-occurred attribute values
between two connected nodes an attribute association. This
information can tell us directly the attribute patterns shared
by connected nodes over the entire graph. In large scale,
one might be interested in which attribute associations are
most frequently observed or which attribute vector is most

[1,0,1]

[0,0,1] [0,0,1]

[1,0,1]

[1,0,1]

[1,1,1]

[1,1,1]

[1, 0, 1] - [0, 0, 1] : 3
[1, 0, 1] - [1, 0, 1] : 2
[1, 0, 1] - [1, 1, 1] : 1
[1, 1, 1] - [1, 1, 1] : 1
[1, 1, 1] - [0, 0, 1] : 1

[1, 0, 1] - [*, 0, 1] : 5
[1, *, 1] - [*, 0, 1] : 5
[1, *, 1] - [0, *, 1] : 4

Fig. 1: Attribute associations in attributed graph

expected to be observed given another attribute vector in
attribute associations. Looking at frequent attribute associa-
tions reveals the most dominant attribute associations in the
graph by simply taking into account how many times they are
held by connected nodes. Even though the frequent attribute
associations give us which ones are dominant over the entire
graph, they do not tell us which ones are really significant.
That is because the frequency of an attribute association often
does not depart from what we expect and therefore may not
be meaningful actually if we already know the distributions
of attribute values in the graph. Rather, identifying the sta-
tistically significant attribute associations where the pattern
of the attribute association deviates from the expected, can
potentially infer undiscovered possible relationships between
nodes in the graph. The statistical significance of a pattern has
been emphasized in various data mining problems [12], [13],
[7], [14], [15] and the previous works already explored why a
statistically significant pattern is more important rather than a
frequent pattern. Thus, in this paper we define a statistically
significant attribute association and address the problem of
uncovering it in attributed graphs.

Fig. 1 shows an example that shows a list of possible
attribute associations in an attribute graph. An attribute as-
sociation is frequent if the number of pairs of nodes is
above a given threshold which is determined by freq support.
Unfortunately the frequency is not sufficient to measure the
statistical significance of an attribute association since the
frequency eventually depends on the actual distributions of
the attribute values in the graph. We will closely see the set
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difference between the two in Section V. Also when obtaining
significant associations, each attribute value does not always
have to take discrete attribute value, e.g., 0 or 1 in binary case,
as long as the association has enough statistical significance.
Accordingly, we introduce wildcard attribute notation (∗),
which matches any value of the corresponding attribute.

The statistical significance of an attribute association with
its frequency k is determined by the probability that it is
observed at least k times or more, and the probability is
called the p-value of the attribute association. By measuring
p-value, we can identify the significant ones even though they
are not frequent absolutely in the graph. Also, as shown in
Fig. 1, we are interested in even associations of partial attribute
values as long as they are statistically significant. The main
challenge of the problem is how to estimate the probability
that an attribute association occurs in a random graph. There
are as many different attribute associations as the number of
edges in a graph, and if we consider even the partial attribute
associations then the number of possible attribute associations
grows exponentially. We address the challenge by transforming
a graph G into an alternative graph AG, called association
graph, where each vertex contains a subset of nodes in G
that have the same or similar attribute values and each edge
corresponds to a certain attribute association between two set
of attribute values, each of which is represented by a cluster.
During the process of transformation, we build AG such that
the edges (i.e., associations) are statistically significant.

To experimentally evaluate our work, we use two real world
attributed graphs. One is the DBLP co-authorship network and
the other is the Yelp social network. We present the statistically
significant attribute associations extracted from the graphs
and compare them against the frequent attribute associations
qualitatively. In addition to that, we show quantitatively how
the statistically significant attribute associations can be used
for boosting the performance of the link prediction task.

We summarize the contributions of our work as follows:

• We formally define the novel problem of mining statisti-
cally significant attribute associations which aims to find
patterns of co-occurred attribute values between nodes
which deviate from the expected.

• We design and implement an algorithm that can find the
statistically significant attribute associations efficiently
and effectively.

• We conduct experiments using real world attributed
graphs and show qualitative results as well as the actual
application that can benefit from the results.

The paper is organized as follows. In Section II, we intro-
duce previous works related to our problem and discuss how
our problem differs from them. In Section III, we define the
problem of mining statistically significant attribute association
and provide basic background concepts. The novel algorithm
to solve our problem is discussed in Section IV and we present
our experimental findings in Section V. Finally, we conclude
the paper in Sections VI.

II. RELATED WORK

There are a number of previous works that have explored
the statistical significance of patterns in various data mining
and knowledge discovery tasks and have proposed efficient
methods for mining the statistically significant patterns. [14],
[7] study the statistical significance of subgraphs where the
nodes of the graph are labeled. [14] addresses the problem
of finding statistically significant connected subgraphs in a
vertex-labeled graph where the labels are discrete and contin-
uous. The statistical significance is quantified by using the chi-
square statistic, which makes the naı̈ve algorithm impractical
because of the exponential number of subgraphs. They propose
an efficient algorithm which converts the graph into a super-
graph. In [7], the authors propose a technique for computing
the statistical significance of frequent subgraphs in a graph
database. In order to solve the difficulty of estimating the
p-value of a subgraph directly in the graph space due to
the flexible structures of graphs, they tranform graphs into a
feature space with predefined set of basis elements, and then
approximate the significance of a feature vector in the feature
space by using the binomial distribution. Although these two
works explore the statistically significant patterns in graphs,
they differ from our work in that they more focus on structured
patterns, not attribute association patterns.

In addition to graphs, the statistical significance has been
studied for other types of patterns as well. [12] extends the
traditional association rule mining problem to searching sta-
tistically significant association rules such that some spurious
rules are not included in the result set while considering statis-
tical dependence. The significance of the observed frequency
of an association rule is estimated by the binomial distribution.
[15] solves the problem of mining statistically significant
substrings in a string generated from a memoryless Bernoulli
distribution and uses the chi-square statistic as a quantitative
measure of statistical significance. The statistical significance
is considered for the sequential pattern mining problem as
well in [16]. The approach developed by the authors is able to
efficiently mine unexpected patterns in sequence of itemsets
without considering overlapping occurrences or conditioning
the length of the sequence.

III. PROBLEM STATEMENT

In this section, we give basic definitions of the attribute as-
sociation, frequent association, statistically significant associa-
tion, and define the problem of mining statistically significant
attribute associations. Table I introduces the notations we use
throughout the paper.

A. Attribute Associations

Suppose we have an attributed graph G = (V,E,A) where
V = {u1, u2, . . . , u|V |} is a set of nodes, E = V ×V is a set
of edges, and A = { ~au1

, ~au2
, . . . , ~au|V |} is a set of attribute

vectors, each of which is associated with a node in V . The
attribute vector ~au of the node u that holds l different attributes
is represented by a vector of l binary values in that each
binary indicates whether the node u actually has a value for the



Notation Meaning
G = (V,E) attributed graph

V = {u1, u2, . . . , u|V |} set of nodes in G

E set of edges in G

AG = (V, E) association graph

V = {c1, c2, . . . , c|V|} set of clusters in AG
E set of attribute associations in AG
~a = (a1, a2, . . . , al) attribute vector of size l

∆ attribute association

σ freq support

λ size support

δG density of graph G

Ψc p-value of cluster c

TS(u, v) tie-strength between node u and v

Γ(·) set of neighbors

G̃c subgraph of nodes within cluster c

TABLE I: Basic notations

corresponding attribute (in case of an m multi-valued attribute,
it can be transformed into m− 1 dichotomous variables each
with binary). Then we define an attribute association between
a pair of attribute vectors ~a1 and ~a2 as follows:

Definition 1: Given two attribute vectors ~a1 =
(a1

1, a
2
1, . . . , a

l
1) and ~a2 = (a1

2, a
2
2, . . . , a

l
2), the attribute asso-

ciation between them, denoted by ∆ ~a1, ~a2 , is defined as a pair
of two sets of attribute values, {i|ai1 = 1} and {i|ai2 = 1}
where i ∈ {1, 2, . . . , l}.

Note that the attribute association is symmetric with respect
to a given pair of attribute vectors ~a1 and ~a2, that is, ∆ ~a1, ~a2 =
∆ ~a2, ~a1 . Every pair of nodes has its attribute association
and therefore there are as many attribute associations as the
number of edges in G. The attribute association information
is widely used in many different applications. For example,
the link prediction algorithms that aim to predict whether a
link will be newly formed between two unconnected nodes
in the future usually employ the link structure information
around the two nodes but it could leverage from using the
attributes of the nodes as well. Many previous researches
have shown that nodes in a graph tend to establish homophily
or heterophily relationships in terms of their attributes [17],
[18], [19]. Another example of using attribute information is
the community detection problem. Many early approaches to
detect latent communities rely on only the link structure of
a graph [20], [21], [22]. That is, they detect communities
such that nodes within the same community interact with each
other more frequently than with those outside the community.
However more recent studies use the node attributes as well
as the link structure and show that the attribute information is
helpful for community detection [23], [24], [25].

If an attribute association ∆ is repeatedly observed and
its frequency is over a given threshold σ that is referred as
freq support, then we say ∆ is a frequent attribute association.

Definition 2: Given an attribute association ∆ and a support
σ, ∆ is called a frequent attribute association if fr(∆) ≥
σ×|E| where fr(∆) is the number of pairs of nodes with ∆.

When a frequent attribute association is given, we can say
that there are many pairs of nodes having the association
but it does not necessarily mean that the attribute association
is really interesting. For example, in a social network of
Purdue University Almuni, it is not surprising to observe many
connected nodes have the attribute association of {“Purdue”,
“CS”} – {“Purdue”, “CS”}. So we are interested in sta-
tistically significant attribute associations rather than frequent
ones, which will be discussed in the following section.

B. Statistically Significance

The statistical significance of an object can be quantified
by estimating the probability of the observed or rarer objects
under the null hypothesis. Let δG denote the density of G
which is defined as the fraction of the number of edges
in G over all pairs of nodes (δG = |E|

1/2·|V |·(|V |−1) ). If
we randomly select two groups of nodes no matter which
attribute values they have, denoted by C1 and C2 respectively,
then the expected number of edges between C1 and C2 is
e(C1, C2) = |C1| · |C2| · δG by assuming the probability of
a pair of randomly selected nodes being connected to each
other follows δG. Also, assuming the edges are independent
of each other, the actual number of edges M between C1 and
C2 would follow the binomial distribution with parameters
n = |C1| · |C2| and p = δG, and thus the probability of
getting exactly k edges among n possible edges is given by
the following probability mass function:

f(k;n, p) = P [M = k] =

(
n

k

)
pk(1− p)n−k (1)

If each of C1 and C2 is a group of nodes with the same
attribute values in G which are specified by an attribute vector,
then the attribute vectors ~a1 and ~a2 can be instantiated from
C1 and C2 respectively and the attribute association between
two attribute vectors is induced from the edges across the
nodes of C1 and the nodes of C2. So we can measure the
statistical significance of a given attribute association ∆ ~a1, ~a2

based on the probability P [M ≥ k] that the observed or higher
number of edges occur between C1 and C2 in which the nodes
have ~a1 and ~a2 respectively. The association is said to be
statistically significant if the estimated probability P [M ≥ k]
is very small.

P [M ≥ k] = 1−
k−1∑
i=0

(
n

i

)
pi(1− p)n−i (2)

Definition 3: An attribute association ∆ ~a1, ~a2 between C1

and C2 is statistically significant if the probability that the
observed or more number of edges between C1 and C2 is less
than α which is called a significance level.

In order to show the assumption that the number of edges
between two groups of nodes follows the binomial distribution
is reasonable, we randomly sampled two groups of 50 nodes
from the DBLP co-authorship network (the details of the
network is described in Section V) 10,000 times and obtained
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Fig. 2: Distribution of the number of edges between two
groups of nodes

the empirical distribution of the number of edges residing
between the two groups. As shown in Fig. 2, the empirical
distribution (blue bar, mean: 8.68 / stddev: 3.29) is very closed
to the actual binomial distribution (red line, mean: 8.64 /
stddev: 2.93), which is verified by the chi-squared testing on
the two distributions.

C. Locality Preserving Significant Associations

An attribute association may reside in anywhere over the
entire graph G. However, we expect that a certain attribute
association could be observed more frequently among nodes
which are closed to each other. For example, in the DBLP
co-authorship network, some authors who have published
papers in venues of data mining area are expected to have a
certain attribute association with other authors in the same or
similar area (e.g., the association of {ICDM, KDD} - {ICDM,
NIPS, ICML}). Any pair of authors in a relationship with
the association could be seen in several locations of G, but
some of them may be located very closely in terms of the
hop distance in the graph and form a densely connected
subgraph or community. Different communties that have the
same venue pattern many times would be corresponding to
different schools in different countries. That is, some attribute
association patterns come with locality in the graph and such
a pattern can be more statistically significant locally rather
than globally. Besides, some attribute association patterns that
are statistically significant locally may form another complex
patterns (e.g., star or chain, not just pair) among them. One of
the nice features of the algorithm we propose in Section IV is
that it is able to effectively find all the statistically significant
attribute associations while preserving the locality.

IV. GRAPH TRANSFORMATION

In this section, we describe the algorithm that finds sta-
tistically significant attribute associations in a given attribute
graph G. The basic approach for finding statistically significant
attribute associations is to transform the original graph G into
a new graph AG = (V, E ,A), which is called Association
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Fig. 3: Graph transformation

Graph, where each node in V corresponds to a group of nodes
in V which have the same or similar attribute values, each edge
in E is an attribute association ∆ between two attribute vectors,
each attribute vector in A represents one shared by a group
of nodes in V . To avoid confusion, from now on we call a
node in V a cluster and call an edge in E an association. Each
association ∆ is assigned a weight, referred as its strength
w(∆), that is given by the number of edges between nodes in
the clusters forming the association. For a given association
∆ and its associated strength, defined as the number of edges
between nodes in the clusters, we can determine whether ∆
is significant or not by looking at the strength and the size of
the clusters to which ∆ is incident, which will be explained
in detail in the following sections.

The graph transformation can be done through an iteration
of two steps. We first start with a single cluster that contains
all nodes of V in G and then the cluster is partitioned
into several subclusters by applying two steps repeatedly and
iteratively. For the first step, a cluster is split such that each
subcluster contains a subset of V that have similar attribute
values. This operation is able to be easily done using any
clustering algorithms. In case of binary attributes, we just
select one of the attributes and then do two-way split with
respect to the attribute. In Section IV-A, we explain how to
select the attribute. For the second step, we try to split a cluster
such that each of the associations incident to the cluster has
higher strength in order to obtain more significant associations
between two sets of attributes. That is, the iteration of the two
different splits alternate between performing the similarity-
based split, which produces clusters with the same or similar
attribute values, and the strength-based split, which makes
associations more significant. It results in a new graph AG
where we can see groups of nodes with certain attribute values
and significant associations between them, as shown in Fig. 3.

Algorithm 1 shows the whole structure of the graph tran-
formation algorithm including the two steps of splits. and the
following subsections describe how each split should be done
in detail.

A. Similarity-based split

As mentioned already, the goal of the first step is to
maximize the similarity among attribute values in each cluster
so that each cluster can represent a certain set of attribute
values. Thus we select one of the clusters in AG and then
split it into two subclusters based on a certain attribute so that



Algorithm 1 Algorithm for graph transformation

Input: G = (V,E,A)
Output: AG = (V, E ,A)

Initialization :
1: V = ∅, E = ∅
2: c is initialized as a cluster containing all nodes in V
3: V = V ∪ c

Iterative Process
4: while there exist at least one cluster to split do
5: c = findClusterForSimilaritySplit(AG)
6: if (c exists) then
7: similaritySplit(AG, c)
8: end if
9: c = findClusterForStrengthSplit(AG)

10: if (c exists) then
11: strengthSplit(AG, c)
12: end if
13: end while
14: return AG

each subcluster contains a set of node that share the same
value on the attribute. The way to select a cluster in AG is
based on the following idea. Basically we do not only want to
maximize the similarity of attribute values in each subcluster
after the split, but also want each subcluster to be statistically
significant as much as possible in terms of the attribute values
of its nodes.

To achieve the goal, we need to figure out which cluster
should be split and which attribute should be used to split
the cluster. Let pi denote the probability that a value of 1
occurs at i-th attribute, which is the fraction of nodes with a
value of 1 for the i-th attribute in G. So, pi is considered an
expectation of having the attribute value for a random node.
First, an attribute on which a cluster should be split based
is picked such that the probability of the attribute having the
value of 1 in the cluster is least deviated from its corresponding
pi. It allows the subclusters to not only have higher similar
attribute values among the nodes in them but also have the
highest significance gain through the split. Once we decide
which attribute should be used for the split of the clusters,
we select one of the clusters to split. While assuming that
the attributes are independent of each other and the number
of times the value of 1 appears at the i-th attribute follows
the binomial distribution with the probability pi, the statistical
significance Ψc of a cluster c is defined based on the product
of p-values of the attribute values of the nodes in the cluster
as follows,

Ψc = 1−
l∏
i=1

(
1−

ki−1∑
j=0

(
|c|
j

)
pji (1− pi)

|c|−j
)

(3)

where ki is the number of nodes having the value of 1
on the i-th attribute and |c| is the number of nodes in the
cluster c. So for each cluster c we compute Ψc′ of the
subclusters c′. Remind that our goal is to split a cluster so

that its subclusters are most statistically significant. However,
since the subclusters may have different significances (one
can be highly significant but the others can be very low),
we take subclusters with the lowest significance from each
of the clusters in AG and then select a cluster that will
produce a subcluster with the highest significance among those
subclusters, i.e.,

arg max
c

(
min

c′∈sb(c)
Ψc′
)

(4)

where sb(c) is a set of subclusters that will be created after
the split. In this way, we can avoid to split a cluster that will
produce the least significant subclusters. By repeating this kind
of split, AG will have only clusters, in each of which the same
attribute values are shared by its nodes, but we need to place
one constraint while doing the split. Even though a cluster
represents a certain set of attribute values shared in it, if it
contains only a few nodes then its attribute values may not
be meaningful at all when we look at an attribute association
between clusters inAG. Thus, we use size support, denoted by
λ, to force a cluster not to split any more if all the subclusters
that will be obtained after splitting the cluster have the sizes
less than λ · |V |. Thus, during the first step, we examine only
clusters satisfying the λ threshold to determine which cluster
should be split. Also, it is obvious that a cluster in which all
its nodes have the same attribute values does not need to be
split.

We do not only want nodes in the same cluster to have
the same attribute values but also allow them to have similar
attribute values. In other words, even though every node in a
cluster does not agree on a certain attribute, if the distribution
of the values of the attribute is statistically significantly
deviated from the expectation, then those nodes are considered
to have an identical value for the attribute.

Once a cluster is split at the first step, we move on to
the second step to increase the significances of the attribute
associations between clusters.

B. Strength-based split

While the similarity-based split of the first step aims to
increase the similarity of attribute values for a cluster, we try
to maximize strengths of associations to which a cluster is
incident through the strength-based split. Given an attribute
association between two clusters, its strength is defined as the
number of edges that connect the nodes of the clusters. The
strength is not meaningful by itself because the significance
depends on the sizes of the clusters as well as the strength.
As we discussed the definition of a statistically significant
attribute association in Section III-B, the stronger strength
an attribute association has and the smaller the associated
clusters are, the higher statistically significant the association
is. Thus, in order to make an association more significant,
a cluster that is one of the end points of the association
needs to be split into subclusters such that nodes which
have many common neighbor clusters belong to the same
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Fig. 4: Two different strength-based splits

subcluster. Fig. 4 illustrates the basic idea of the strength-
based split. Suppose we want to maximize the significance of
the associations held by the cluster c1 and we consider two
different splits to do that as presented in Fig. 4a and Fig. 4b.
The nodes a and b in c1 have edges, all of which are incident
to other nodes in c2 while the nodes c and d are adjacent
to only other nodes in c3. Thus, in order for the subclusters
obtained from splitting c1 to have associations of maximized
significance, the split should produce two subclusters which
contain the two nodes a and b, and the other two nodes c and
d, respectively.

So we need to find the optimal split of a cluster so that its
associations become more significant. For a given cluster c we
try to split, we build a graph G̃ = (Ṽ , Ẽ) where Ṽ = {u|u ∈
c} and Ẽ = {(u, v)|u, v ∈ c ∧ ∃c′ s.t. (u,w1), (u,w2) ∈
E and w1, w2 ∈ c′}, some of which are connected to each
other if they have edges with some common neighbor clusters,
Γ(c). Those edges in Ẽ are weighted based on the fraction of
edges to common neighbors among all of their edges. Then,
we partition the graph G̃ based on the weights of the edges
in the graph and the subgraphs resulted from the partition
become the subclusters we obtain through the strength-based
split. For this task, we need to come up with a proper way
to assign weights to the edges. We borrow the idea of tie-
strength between individuals in social network. In the social
science community, there are many different ways to define
the tie-strength of an interpersonal relationship [26], and one
widely used measure is the Jaccard index. That is, a tie-
strength between two individuals u and v is determined by
|Γ(u) ∩ Γ(v)|/|Γ(u) ∪ Γ(v)| where Γ(·) is a set of neighbors
of a node. In our setting, two nodes u and v in the cluster c
may not have common neighbor nodes in G but some of their
neighbor nodes may belong to the same neighbor cluster c′ in

AG. Similarly, when u and v in c are connected to some of the
nodes in a common neighbor cluster c′ of c, there might not
be common nodes in c′ which are incident to both u and v.
Thus, we modify the Jaccard index slightly so as to measure
the tie-strength between u and v while capturing the common
neighbor clusters.

TS(u, v) =

∑
c′∈Γ(c) min{φ(u, c′), φ(v, c′)}∑
c′∈Γ(c) max{φ(u, c′), φ(v, c′)}

(5)

where φ(u, c′) = |w|w ∈ c ∧ (u, v) ∈ E|, that is the number
of edges in E between u and any nodes in c′. Using this
tie-strength measure, we can have nodes belong to the same
subcluster after the split if they have many common neighbor
clusters, regardless of whether they have common neighbor
nodes in G or not (of course, it depends on the weight given
by TS(·, ·)).

Once we have G̃ for the cluster c then we perform graph
partitioning on G̃ to find optimal subclusters that can make
the associations between c and c′ ∈ Γ(c) more significant.
Since all the edges Ẽ of G̃ are assigned weights and G̃ should
be partitioned based on the weights, we take an approach to
maximize the modularity of G̃ [22]. The modularity Q(G̃) is
defined as

Q(G̃) =
1

2m

∑
u,v

[
Auv −

ku, kv
2m

]
δ(cu, cv) (6)

where m = Ẽ, ku is the degree of u, cu is the group to
which u belongs, and Auv is 1 if there is an edge in Ẽ
between u and v otherwise 0. That is, the modularity is the
fraction of the edges that fall within the given groups minus
the expected such fraction if edges were distributed at random.
If we split the cluster c through the graph partitioning method
as described, a set of nodes that share many common neighbor
clusters is likely to fall within the same subcluster as much
as possible, and different nodes that share only few common
neighbors would be distributed to different subclusters. Thus,
we can increase the statistical significances of the attribute
associations.

During the second step, we enforce a couple of conditions
to prune some clusters and associations in AG and do not
perform the strength-based split on them for both achieving
computational efficiency and finding more meaningful results.
As done in the first step, we use size support, λ because
if the size of a cluster c is too small, we do not believe
that c is representative of a certain set of attribute values.
Thus, the strength-based split is run for a cluster c only when
|c| ≥ λ · |V |. In addition to that, if a cluster has an attribute
association with too weak strength, then we can safely discard
it for the rest of the algorithm. Note that the strength of
an attribute association between two clusters monotonically
decreases as the two splits are performed iteratively while
the statistically significance is not monotonic in either way.
Since we consider only attribute associations between clus-
ters satisfying the size support condition and the statistically



significance of an association depends on its strength and
the sizes of the clusters at the end points, we can prune an
attribute association from AG as long as it meets the following
condition.

Lemma 1: Given an attribute association ∆c1,c2 and its two
incident clusters c1 and c2, if the strength of ∆c1,c2 is less than
Φ−1

(
1 − α − C(p2+q2)√

npq

)√
npq + np, then ∆c1,c2 does not

have a chance to be statistically significant any more, where
n = |c1| · |c2|, p = δG, q = 1− p, Φ(·) is the error function,
and C is a constant.

Proof: Given the size support λ, both the clusters c1
and c2 should have the size of at least |V | · λ in order to
make the attribute association ∆c1,c2 considered as statistically
significant. Also, let k denote the strength of ∆c1,c2 and then
according to the (2), P [X ≥ k] ≤ α. If we approximate the
binomial distribution using the normal distribution,

P [X ≥ k] = P
[X − np
√
npq

≥ k − np
√
npq

]
= P

[
Z ≥ k − np

√
npq

]
≤ α (7)

Now we have the standard normal distribution and need to
find the lower bound of k which satisfies the inequality (7).
Using the error function Φ(x) = 1√

2π

∫ x
−∞ e

−t2

2 dt which
is essentially identical to the standard normal cumulative
distribution function [27],

k − np
√
npq

≥ Φ−1(1− α)

k ≥ Φ−1(1− α)
√
npq + np (8)

The lower bound for k is originated from approximation based
on the standard normal distribution and thus we need to
get the error bound. According to the following Berry-Essen
theorem [28],

sup
x∈R

∣∣∣P[B(p, n)− np
√
npq

− Φ(x)
]∣∣∣ ≤ C(p2 + q2)

√
npq

(9)

with C < 0.4748, we know that the error arising from the
approximation is at most C(p2+q2)√

npq . As a result, if we relax
the lower bound for k in (8) to the extent of the error, then
we obtain

k ≥ Φ−1
(

1− α− C(p2 + q2)
√
npq

)√
npq + np (10)

Since p is very small and n is large for given λ, the error
bound is small and we can still get a reasonably tight lower
bound for k. Regarding the inverse of the error function, if we
use α = 0.01 as the significance level, then Φ−1(1 − α) =
1.8212. According to Lemma 1, we drop attribute associations
if they are too weak to be able to be significant later on.
In fact, such associations are noise and do not bring us any
meanings. Rather, it prevents the strength-based split from
running optimally.

Original graph Association graph
Nodes Edges Density Nodes Edges

DBLP 4,672 37,726 0.00346 195 6,302
Yelp 4,454 44,906 0.00453 202 8,388

TABLE II: Dataset statistics

Subarea Conferences
DM/ML ICDM, NIPS, ICML
OS SOSP, OSDI
Theory FOCS, STOC, SODA
Security IEEE Symposium on Security and Privacy (S&P), ACM Con-

ference on Computer and Communications Security (CCS)

TABLE III: DBLP subareas in computer science

V. EXPERIMENTS

A. Datasets

We ran the graph transformation algorithm on real co-
authorship and social networks, and obtained the resulting
association graphs. Using the association graphs, we analyzed
qualitative differences between the statistically significant and
frequent associations. Also we showed the application of the
significant patterns to a link prediction problem, and synthetic
graphs with attributes are considered to show the algorithm’s
scalability.

DBLP. We obtained a collection of bibliographic informa-
tion from the DBLP website [29], an open bibliographic infor-
mation provider of computer science journals and conferences.
Each record of journal or conference paper has one or more
authors, and the venue, on which it is published. We first
filtered out any authors who appear in less than 3 papers. Then,
we considered only papers published to the 10 conferences of
4 different subareas of computer science, i.e., data mining and
machine learning (DM/ML), operating systems (OS), theory,
and security. More details are shown in Table III. Then we
built an attribute vector of length 10 for each node, i.e., if
an author (or a node) published a paper to a conference in
Table III, we set the corresponding vector value to 1. If not,
we set the corresponding vector value to 0. Finally, an edge
is formed if two authors (or nodes) have co-authored at least
one paper in the dataset.

Yelp. Yelp is a provider of crowd-sourced reviews about
local businesses, along with a social network. The Yelp
challenge dataset [30] contains the social network, composed
of the users (nodes) and their friend relations (edges). Also
the sets of users’ reviews are provided in the dataset. Each
review is tied to a user and a business, and each business has a
small set of business type categories. We first filtered out any
users who have less than 10 reviews. Then, we considered
only reviews for the restaurants, which has at least one of
the 10 business categories, {Chinese, Japanese, Mediterranean,
Thai, French, Greek, Vietnamese, Korean, Indian, British}.
The node attributes are compiled similarly to the DBLP
dataset. Note that we did not use some of the most popular
restaurant categories, e.g., American, Mexican, and Italian. As
the majority of users has left reviews on the restaurants of
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Fig. 5: DBLP graph statistics for different subareas

# Association
1 {SOSP, OSDI, S&P, CCS} – {SOSP, OSDI}
2 {SOSP, OSDI, S&P, CCS} – {S&P, CCS}
3 {ICML, ICDM, S&P(*)} – {ICML, ICDM}
4 {SOSP, OSDI, S&P, CCS} – {SOSP, S&P, CCS}
5 {FOCS(*), STOC(*), CCS} – {S&P, CCS}
6 {ICML, ICDM, S&P(*)} – {ICML(*), ICDM}
7 {SOSP, S&P, CCS} – {SOSP, OSDI}
8 {SOSP, S&P, CCS} – {S&P, CCS}
9 {ICML, ICDM, S&P(*)} – {ICDM, OSDI(*)}
10 {ICML, ICDM} – {ICML(*), ICDM}

TABLE IV: Significant associations minus Frequent associa-
tions for DBLP

such categories, they seem to appear in most of the attribute
associations and carry little or no information.

B. Effectiveness Analysis

To evaluate the effectiveness of our algorithm, we conducted
the set difference between the statistically significant associ-
ations and the top-15 frequent associations. As the resulting
significant associations contain wildcard attributes, it is not
easy to make direct comparisons or set differences between
the two. Thus, we took a conservative approach that as long
as all attribute values of any top-15 frequent associations have
exact or wildcard attribute match, we considered that there is
a match. This approach is certainly in favor of the frequent
associations, since it ignores that wildcard matches may lead
to some other possible set of attribute values.

Table IV, we have the set difference between statistically
significant and frequent associations for the DBLP dataset.
First consider 4 subgraphs that only contains the nodes and
their edges, whose attribute value for any conference of the
corresponding subarea is 1. Fig. 5 describes the characteristics
of each subgraph. The subgraph of DM/ML has a large number
of nodes but its graph density is small, which means that the
tie-strengths are weak. On the other hand, there are relatively

small numbers of nodes in the subgraph of OS and security
but their densities are high, which means that the tie-strengths
are strong among the nodes. We can easily identify the OS and
security-related associations, which contain {SOSP, OSDI}
and {S&P, CCS}, are appearing on top of the difference
list. Also note that many frequent associations are related
to DM/ML conferences since its subgraph contains the most
number of edges while its density is low.

From Table IV, we can infer many interesting significant as-
sociations, which do not appear in the frequent association list.
The association number 1, 2, 4, 7, and 8 clearly shows that the
nodes who have authorship in the OS-related conferences tend
to co-work with the authors in the security-related conferences.
The association number 3, 5 and 6 shows that the nodes who
have authorship in the security-related conferences frequently
co-work with the authors in DM/ML and theory-related con-
ferences. Interestingly enough, the association number 9 shows
how the authors in DM/ML, security, and OS have frequent
co-authorship relations in the graph. These results might look
obvious to some of the readers who have a good understanding
of co-authorship in computer science. However, when the
relationships of attributes are little known, the discussed results
may be intriguing.

Table V shows that the set difference between statistically
significant and frequent associations for the Yelp dataset.
Note that {Chinese, Japanese} appears very commonly in the
association results due to their prevalence in node attributes.
Thus, we will exclude them from the subsequent discussions.
Also it turned out that the first 10 significant associations
with the highest statistical significance are the same as the
associations reported in Table V. That is, none of the first
10 significant associations are reported in the top-15 frequent
association results, since the significant associations do not
occur often in terms of frequency but do occur often in the
dataset in a statistically significant manner.

Among the frequent visitors of {Mediterranean, Thai},
the association number 2 and 7 shows that the nodes with
{Greek} attribute are strongly associated with the nodes with
{Vietnamese, Korean} attributes, and the association number
4, 6 and 10 shows that the nodes with {Vietnamese, Ko-
rean, Indian} are strongly associated with the nodes with
{Vietnamese, Korean} and {Greek} attributes. Also the as-
sociation number 5 and 8 describes that the nodes with
{Mediterranean} have statistically significant associations with
the nodes with {Mediterranean, Thai, Greek}.

C. Scalability Analysis

We evaluated the computation cost of our algorithm on
synthetic attributed graphs of different sizes and densities. The
experiments were carried on a machine with an Intel Xeon
3.1GHz CPU and 32GB memory, running 64bit Ubuntu 14.04.
All algorithms are implemented in Python 2.7.

The graphs are generated based on the simplified version of
Multiplicative Attribute Graph (MAG) model [17]. MAG is
widely used in the literature to generate synthetic graphs with
node attributes, and known to model real-world networks with



# Association
1 {Chinese, Japanese, Mediterranean, Thai, Greek} – {Chinese, Mediterranean, Thai(*), Greek}
2 {Chinese, Japanese, Mediterranean, Thai, Vietnamese, Korean} – {Chinese, Japanese, Mediterranean, Thai, Greek}
3 {Chinese, Japanese, Thai, Vietnamese, Korean} – {Chinese, Japanese, Vietnamese, Korean}
4 {Chinese, Japanese, Mediterranean, Thai, Vietnamese, Korean, Indian} – {Chinese, Japanese, Mediterranean, Thai, Vietnamese, Korean}
5 {Chinese, Mediterranean, Thai(*), Greek} – {Chinese, Mediterranean}
6 {Chinese, Japanese, Mediterranean, Thai, Vietnamese, Korean, Indian} – {Chinese, Japanese, Thai}
7 {Chinese, Japanese, Mediterranean, Thai, Vietnamese, Korean} – {Chinese, Mediterranean, Thai(*), Greek}
8 {Chinese, Japanese, Mediterranean, Thai, Greek} – {Chinese, Mediterranean}
9 {Chinese, Japanese, Thai, Vietnamese, Korean} – {Chinese, Japanese, Thai}
10 {Chinese, Japanese, Mediterranean, Thai, Vietnamese, Korean, Indian} – {Chinese, Japanese, Mediterranean, Thai, Greek}

TABLE V: Significant associations minus Frequent associations for Yelp
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Fig. 6: Running time experiments on synthetic graph datasets

flexibility. We conducted two sets of experiments with l = 5
and µ’s fixed, the probability of each attribute value being 1,
i.e., each node has five binary attributes and the attributes are
drawn from the same distribution, retaining the node attribute
distribution throughout the experiments.

Time complexity. Our algorithm is divisive in nature and
it splits at least one node of Association Graph in every
iteration. First, the similarity-based split step will run O(2l)
iterations. Usually the length of attribute vector is small,
l� n, and the similarity-based split under reasonable settings
takes much less time compared to that of the strength-based
split. In the strength-based split step, it is not hard to see
that the computation of tie-strengths between each pair of
nodes, O(n2), dominates the running time of the step. And
we can notice that the algorithm will run log n iterations of
the strength-based steps on average. Accordingly the overall
average time complexity of the algorithm is O(n2 log n).

Results. Fig. 6a shows the computation time over the
number of nodes. We fixed the attribute link-affinity matrix
[17], which determines the probability of edge formation
between two sets of node attributes. Note that since we kept
all parameters of the MAG model but the number of nodes,
the graph density remained the same. We confirmed that the
algorithm is of polynomial time in the number of nodes. This
result is in line with the time complexity we discussed above.

In the second experiment, we fixed the number of nodes and
the scale factor of the attribute matrix, which merely changes
the expected number of edges. That is, we scaled the attribute
matrix such that the resulting graphs have the graph densities
as we desire, without changing any other properties of the
graphs. In Fig. 6b, we can easily observe that the algorithm’s
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Fig. 7: Link prediction performance

running time remains almost the same as we increase the
expected graph density. The aforementioned time complexity
should well explain the result.

Finally, both of the plots in Fig. 6 show that the running time
of the strength-based split step dominates that of the similarity-
based step. Also both plots describe that the running time of
the similarity-based step remain the same as we add more
edges with the number of nodes fixed, and the running time
grows as we increase the number of nodes. This supports our
intuition that the similarity-based split step is not relevant to
the number of edges or graph density.

D. Application: Link prediction

As one of the application for which the statistically sig-
nificant attribute associations are useful, the link prediction
problem is considered. Many different approaches to the link
prediction have been proposed for the past decade, but with
the objective of showing the potential merit of the statistically
significance attribute associations, we simply use the Jaccard
coefficient proposed in [31] and compare the effects of using
statistically significant attribute associations and frequent ones.
Given a pair of nodes without an edge, we compute the
prediction score by combining the Jaccard coefficient J(u, v)
and the score S(u, v) resulted from either the significance or
the normalized frequency of an attribute association between
the nodes as follows

pred(u, v) = τ · J(u, v) + (1− τ) · S(u, v) (11)

and if it is over a given threshold then we predict that u and
v will form a new link. We take two snapshots of the DBLP
co-authorship network (Mar 2015 and Mar 2016) and all the



newly created links between the two snapshots are used for the
positive samples. Similarly, a set of pairs of nodes that do not
have an edge in both the snapshots are used for the negative
samples. Since the number of negative samples far outweighs
the number of positive samples, we do negative subsampling
with the ratio of 1 : 5 (five negatives per one positive). In
Fig. 7, we report the ROC curves for two different methods,
Jaccard+Significant, and Jaccard+Frequent. As
shown in Fig. 7, the link prediction can more benefit from
employing the attribute information and the statistically sig-
nificant attribute associations can achieve higher performance
rather than the frequent ones.

VI. CONCLUSION

We defined a problem of mining statistically significant
attribute associations using Association Graph, which keeps
the locality of attribute associations and carries the significant
relationships between the sets of attribute values. And we
proposed a novel, two-step iterative algorithm that efficiently
and effectively generates an Association Graph from the
original graph. The experiments are conducted on two real
world datasets, and we ran some qualitative analysis on the
results, confirming that our algorithm effectively finds the
significant associations, which cannot be uncovered by con-
ventional frequent association mining. Also we ran extensive
scalability experiments on synthetic datasets, and confirmed
that the algorithm is of polynomial running time in the number
of nodes. Lastly, applying the results from one of the real
world datasets to the link prediction task, and we showed how
the statistically significant attribute associations can be used
in practice.

For future work, we plan to investigate how we can exploit
resulting Association Graph better, e.g., its locality preserving
property, and if we can come up with a linear time algorithm
or a distributed algorithm, which can be run on large-scale
graphs.
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