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Abstract

Nowadays, a hot challenge for supermarket chains is to offer per-
sonalized services for their customers. Next basket prediction, i.e., sup-
plying the customer a shopping list for the next purchase according to
her current needs, is one of these services. Current approaches are not
capable to capture at the same time the different factors influencing the
customer’s decision process: co-occurrency, sequentuality, periodicity
and recurrency of the purchased items. To this aim, we define a pat-
tern Temporal Annotated Recurring Sequence (TARS) able to capture
simultaneously and adaptively all these factors. We define the method
to extract TARS and develop a predictor for next basket named TBP
(TARS Based Predictor) that, on top of TARS, is able to to understand
the level of the customer’s stocks and recommend the set of most nec-
essary items. By adopting the TBP the supermarket chains could crop
tailored suggestions for each individual customer which in turn could
effectively speed up their shopping sessions. A deep experimentation
shows that TARS are able to explain the customer purchase behavior,
and that TBP outperforms the state-of-the-art competitors.
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1 Introduction

Detecting the purchase habits of customers and their evolution in time is a
crucial challenge for effective marketing policies and engagement strategies.
In such context one of the most promising facilities retail markets can offer
to their customers is next basket prediction, i.e., the automated forecasting
of the next basket that a customer will purchase. Indeed, an effective basket
recommender can act as a shopping list reminder for a customer, suggesting
the items that she could probably need.

A successful realization of this application requires an in-depth knowl-
edge of an individual’s general and recent behavior [20]. In fact, purchasing
patterns of individuals evolve in time and can experience deep changes due
to both environmental reasons, like seasonality of products or retail policies,
and personal reasons, like diet changes or shift in personal status or prefer-
ences. As consequence, a satisfactory solution to next basket prediction must
be highly adaptive to the evolution of a customer’s behavior, the recurrence
of her purchase patterns and their periodic changes.

In this paper we propose the Temporal Annotated Recurring Sequences
(TARS), adaptive patterns which model the purchasing behavior of an indi-
vidual by four main characteristics. Firstly TARS consider the co-occurency:
a customer systematically purchases a set of items together. Secondly TARS
model the sequentiality of purchases, i.e., the fact that a customer system-
atically purchases a set of items after another one. Third TARS consider
periodicity: a customer can systematically make a sequential purchase only
in specific periods of the year, because of environmental factors or personal
reasons. Fourth, TARS consider the recurrency of a sequential purchase dur-
ing each period, i.e., how frequently that sequential purchase appears during
a customer’s period of the year. Modeling these four aspects — co-occurence,
sequentiality, periodicity and recurrency — is fundamental in our opinion to
detect the behavior of an individual and its evolution in time. On one hand
future needs depend on the needs already satisfied: what a customer will
purchase depends on what she already purchased last time. On the other
hand, the needs of a customer depends on her specific habits, i.e., recurring
purchases she makes over and over again. However habits are far from be-
ing static, since they are affected by both endogenous and personal factors
[5L 17]. Therefore, periodicity is a crucial characteristic of an adaptive model
for next basket prediction. We exploit the TARS and the multiple factors
they are able to capture for constructing a parameter-free TARS Based Pre-
dictor (TBP). TBP is able to solve the next basket prediction problem and
to provide a reliable list of items to be reminded in the next purchase as



basket recommendation.

We demonstrate the effectiveness of our approach by extracting the TARS
for thousands of customers in three real-world datasets, including unique
datasets covering a seven years long period. We show how TARS are eas-
ily readable and interpretable, a characteristic which allows to gain useful
insights about the purchasing patterns of products and customers. Then,
we implement a repertoire of state-of-the-art methods and compare them
with TBP. Our results show that (7) TBP outperforms the competitors, (ii)
it is able to predict up to the next 20 baskets, and (4ii) the quality of its
predictions stabilizes after about 36 weeks.

Finally, it is worth underlining that both TARS and TBP are markedly
user-centric approaches, in the sense that they use just the data of a customer
to make predictions about that customer [22] [12]. This aspect eases the
customers’ personal data management and allows for developing tailored
basket recommenders that can even run on the customers’ mobile devices
[6, 29].

In summary, our contributions are the following: (i) we introduce TARS
and a parameter-free algorithm to extract them (Section [)); (i) we develop
TBP, a predictor based on TARS able to produce a shopping list reminder
(Section [p)); (iii) we extract TARS from real-world datasets and show how
they are easily interpretable and readable (Section [6]); (iv) we characterize
TBP and compare it with state-of-the-art methods on real datasets (Sec-
tion @ The rest of the paper is organized as follows. Section [2| reviews
existing approaches and Section [3| formalizes the problem. Finally, Section
concludes the paper suggesting future research directions.

2 Related Work

Next basket prediction is mainly aimed at the construction of effective rec-
ommender systems (or recommenders). Recommenders can be categorized
into general, sequential, pattern-based and hybrid. General recommenders
are based on collaborative filtering and produce recommendations with re-
spect to general customers’ preferences [27]. Sequential recommenders are
based on Markov chains and produce recommendations exploiting sequen-
tial information and recent purchases [3]. Pattern-based recommenders base
predictions on frequent itemsets extracted from the purchase history of all
customers while discarding sequential information [I11 [I§].

The hybrid approaches combine the ideas underlying general and sequen-
tial recommenders. In [24] the authors use personalized transition graphs



over Markov chains and compute the probability that a customer will pur-
chase an item by using an optimization criteria named Bayesian Personalized
Ranking [23]. HRM [31] and DREAM [32] exploit both general customers’
preferences and sequential information by using recurrent neural networks.
A different hybrid approach is described in [30] where is developed a proba-
bility model by merging Markov chain and association patterns.

All the approaches described above suffer from several limitations. Gen-
eral recommenders and pattern-based recommenders do not take into ac-
count neither the sequential information (i.e., which item is bought after
which) nor the customers’ recency. On the other hand, sequential recom-
menders assume the independence of items in the same basket and do not
capture factors like mutual influence. Furthermore, all of them require trans-
actional data about many customers in order to make a prediction for a single
customer. For this reason, they do not follow the user-centric vision for data
protection as promoted by the World Economic Forum [12| 22], which incen-
tives personal data management for every single user of a data-based service.
Cumby et al. [4] propose a basket predictor which embraces the user-centric
vision by reformulating next basket prediction as a classification problem:
they build a distinct classifier for every customer and for every item hence
performing predictions by relying just on her personal data. However, this
approach also assumes the independence of items purchased together.

Finally, the main drawback of the existing hybrid approaches [32, [31] [30]
is that their predictive models are hardly readable and interpretable by hu-
mans. Interpretability of a predictive model, i.e., the possibility to under-
stand the mechanisms underlying the predictions [25], is highly valuable
for a retail chain manager interested in interpreting the predictive model
to improve the marketing strategies and the service offered. Moreover, in-
terpretability is also important to the customers who want to gain insights
about their personal purchasing behavior.

3 Next Basket Prediction Problem

We refer to next basket prediction as the task of predicting which items a cus-
tomer will purchase in her next transaction. Formally, let C' = {cy,...,c;}
be a set of z customers and I = {iy,...,%,} be a set of m items. Given a
customer ¢, B. = (by;, bty - - ., by, ) is the ordered purchase history of her bas-
kets (or transactions), where b, C I represents the basket composition and
t; € [t1,ty] is the transaction time. We indicate with B = {B,,, Be,, ..., B¢, }
is the set of all customers’ purchase histories.



Given the purchase history B, of customer ¢ and the time ¢, of the
next transaction, next basket prediction consists in providing the set b* of k

items that ¢ will purchase in the next transaction by, .

Our approach to next basket prediction aims at overcoming the main
limitations of existing methods illustrated in Section To this purpose,
we propose a hybrid predictor which combines ideas underlying sequential
and pattern-based recommenders. The approach consists of two main com-
ponents. The first one is the extraction of Temporal Annotated Recurring
Sequences (TARS) from the customer’s purchase history, i.e., sequential re-
curring patterns able to capture the customer’s purchasing habits. The sec-
ond one is in the TARS Based Predictor (TBP), a predictive method that
exploits the TARS of a customer to forecast her next basket.

4 Capturing Purchasing Habits

In this section we formalize TARS and describe how to extract them form
the purchase history of a customer.

4.1 Temporal Annotated Recurring Sequences

Temporal Annotated Recurring Sequences (TARS) model recurrent sequen-
tial purchases of a customer, i.e., the fact that a set of items are typically
purchased together, the fact that that a set of items is typically purchase
after another set of items, and the recurrence of the sequential purchase, i.e.,
when and how often it occurs in the purchase history of the customer. We
define a TARS as follows:

Definition 1 (Temporal Annotated Recurring Sequence) Given the pur-
chase history B of a customer, a temporally annotated recurring sequence
(TARS) is a quadruple v=(S, a, p,q), where S=(X,Y) =X — Y s the se-
quence of itemsets, a=(a, ) € ]Ri, a1 < g is the temporal annotation, p

1s the number of periods in which the sequence recurs, and q is the median of
the number of occurrences in each period. A TARS will also be represented

as follows:

y=X-5Y
X

We refer to I'c = {71,...,7m} as the set of all the TARS of a customer
c. A TARS is based on the concept of sequence, S=(X,Y)= X — Y,
which intuitively indicates that the an itemset Y is typically purchased af-
ter another itemset X. The itemsets themselves point out which items are



purchased together. For example, a sequence {a} — {b,c} indicates that
the items {b, ¢} are purchased together after the itemset {a}. The temporal
annotation o = (aq, ae) indicates the minimum intra-time a; and maximum
intra-time «q intra-time of the sequence, i.e., the range of time elapsing be-
tween the purchase of X and the purchase of Y. A sequence can appear in
several distinct periods, i.e., time intervals where the sequence occurs con-
tinuously. The number of periods p characterizes these recurrences, that is,
in how many periods the sequence S appears. Finally, ¢ indicates how many
times S typically occurs in a period.

Definition 2 (Sequence) Given the purchase history of a customer B, =
(byy o yby,), wecall S = (X,Y) = X — Y asequence if the pair of itemsets
XCby andY Chy, X, Y #0, tp <tpand 35S =X =Y’ X' C bt;I and
Y' C by such that ), € [ty ti]. X and Y are called the head and the tail
of the sequence, respectively.

We denote with Ts = (tj,,...,t;,,) the head time list of S, i.e., the
ordered list of the head’s time of all the occurrences of S in the purchase
history of the customer. The support |Ts| of a sequence S is the size of its
head time list. We call length of a sequence |S| = |X|+ |Y| the sum of sizes
of the head and of the tail. We say that a sequence S’ is a subsequence of
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Definition 3 (Intra-Time) We define ap=t;—t; as the intra-time of an
occurrence of a sequence S, i.e., the difference between the time of the head
and the time of the tail. We denote with As={a1, ..., am) the ordered intra-
time list of all the occurrences of S in B.

Definition 4 (Inter-Time) Given the head time list Ts, we define 0; =
by, — ty; with 4,4, € Ts and t;, < t;; as the inter-time of a sequence S,
1.e., the difference between the times of the heads of two consecutive occur-
rences of S. We denote with Ag=(01,...,0m) the ordered inter-time list of
S. We impose =0, by construction.

To clarify the concepts defined above, let us consider the example in
Table [I] which shows the purchase history of a customer. Based on the
example, Figure |1 shows the occurrences of sequence S = {a} — {b}. The
head time list T consists of the times of the heads of all the occurrences
of S, hence Tg = (01-05,01-09,01-13, 01-25,02-06,02-14). The intra-time
list Ag consists of the differences between the heads and the tails of all the
occurrences of S, hence Ag = (4,4, 16, 8,4,8). The inter-time list Ag consists



timestamp basket timestamp basket
01-01 a,b,g,h 01-25 a,b,c,g,h
01-05 a,c,d 02-02 b,c,d
01-09 a,b,e, f,h 02-06 a,c,d,e, f,i
01-13 a,b,c,d, h 02-10 b,e, f,h
01-17 c,d,e, f, g 02-14 a,bc,d,e, f,g,h
01-21 e, f,g 02-22 a,b,g,h,i
AT@b%e 1: Example of customer purchase history B..
s 4, 4, 16, 8, 4, 8
Ag={ 4, 4, 16 12, 8 8 I
a d ::a,\—ﬂ,::: -— *ﬂ,\— -— -)a\— - -)a,\—>
b *b Tsbh Y s b
——t—t—t—t—t—t————t—
o G, 6 9, 0 0 9, 0 O 0, @ O
‘s \%/\/‘f(/)/\/ \‘,\PQ%"\%Q/O"VY 2,
o

Figure 1: Head time list T, intra-time list Ag, inter-time list Ag and periods
Pél), Péz) of sequence S={a}—{b}.

of all differences between the head times of two consecutive sequences, hence
Ag = (4,4,16,12,8,8). Note that: (i) for each t; € T's we have that a; < 95,
i.e., the intra-time of a sequence is always lower or equal than its inter-time;
(ii) for S = X — X, we have Ag = Ag.

Definition 5 (Period) Given a mazimum inter-time 8™, a minimum
number of occurrences ¢, the head time list Ts and the inter-time list Ag
of a sequence S, we call period an ordered time list Péj) = (th,...,t;) CTg
such that ¥V t,, € P(j), Oy < OOT, Péj) is maximal, i.e., dp_1 > 0™,
0141 > 0 and |P§j)| > ¢"™". We denote with Pg = {Pb(}), .. ,Pém)} the
set of periods of S.

The period of a sequence S captures a temporal interval in which S
occurs at least ¢""" times and the time between any two occurrences is at

most §"**. The support |P§j )| of a period indicates how many times S occurs
in Péj ). In the example of Figure|l], for ™% = 14 and ¢™™" = 2 we have two
periods P{) = (01-05,01-09) and PYY = (01-25,02-06,02-14) with support
2 and 3 respectively.



Definition 6 (Recurring Sequence) Let Pg = {P(l), . .,Pém)} be a set
of periods, we define rec(S)=|Ps| as the recurrence of S, i.e., the number
of periods Pg in the purchase history. Given a minimum number of periods
p™" S is a recurring sequence if rec(S) > p™".

In the example of Figure , for p™"=2 we have rec(S)=2 meaning that
S is recurring. By specifying the maximum inter-time 6™, the minimum
number of occurrences ¢"*", and the minimum number of periods p™", we
can determine the set I'. of TARS that can be extracted from the purchase
history B, a customer c.

TARS are an evolution of both recurring patterns [I6] and temporally
annotated sequences [9]: the former models recurrency but do not model
sequentiality and periodicity, while the latter models sequentiality and peri-
odicity but do not model recurrency. TARS, besides co-occurrence, fills the
gaps by modeling all the three aspects.

4.2 TARS Extraction Procedure

To extract the TARS from a customer’s purchase history we use an extension
of the well-known FP-Growth algorithm [I0]. It builds a FP-tree which
captures the frequency at which itemsets occur in the dataset. It has been
shown in literature |2} [7, [15] that FP-Growth can be extended by attaching
additional information to a FP-tree node in order to calculate the desired
type of pattern.

In our approach we extend the FP-tree into a TARS-tree. Every node
of a TARS-tree stores a sequence S, the time list Ty, its support |Ts|, the
intra-time list Ag, the inter-time list Ag and the periods Pg derived from
T with respect to 6™ and ¢"™".

The TARS extraction procedure is described in Algorithm [I] In the first
step it extracts from the purchase history B the base sequences S, i.e., the se-
quences of length 2 (line 1). Then, a set of parameters {62'%*}, {g&"}, {pZ"}
is estimated for each base sequence S € S with respect to B (line 2). The
base sequences S are then filtered with respect to these parameters and the
base recurring sequences S* are extracted, while the other base sequences
are discarded to reduce the search space (line 3). Finally, the TARS-tree ¥
is built on the base recurring sequences S* (line 4), and the set I' of TARS
annotated with «, p, ¢ is extracted from the TARS-tree ¥ (line 5) according
to the FP-Growth procedure.



Algorithm 1: extractTars(B)

S « extractBaseSequences(B);

{omary Lqmint LpTin} « parametersEstimation(B,S);
3 8" « sequenceFiltering(B,S, {63}, {qg‘m}, {pg””}),
4 ¥« buildTars-Tree(B,S*, {63}, {¢¢""}, {pd""});

5 I' < extractTarsFromTree(V);

6 return I';

N =

4.2.1 Data-Driven Parameters Estimation

In order to make the parameters 6™, ¢™", p™" adaptive not only to
the individual customer [I4], but also to the various sequences in B, we
apply two pre-processing steps on the base sequences (lines 1-2 Algorithm.
The first pre-processing step is the data-driven estimation of the sets of
parameters {0797}, {g®n} {p?n} described in Algorithm

Let S be the set of base sequences and ds be the median of inter-times in
Ag (Algorithm [2 line 2). Given a base sequence S, we estimate parameter
0™ by the following two steps: (i) we group the base sequences with similar
inter-times dg (line 3) obtaining a set of clusters Csmae={C1, ..., Cy}; (ii) if
S € Cy, Cp € Csmaz, we set 0" as the median of the bs values in cluster
Ch, (lines 4-5).

Then, we calculate the periods T'Cs compliant only with the temporal
constraint 67'%* (lines 6-8) and we estimate {gZ'"} as follows: (i) we group
the base sequences with similar median number of occurrences per period ¢g,
producing a set of clusters Cymin = {C1,...,Cy} (line 9); and (ii) if S € Cj,
Ch € Cymin we set ¢¢"" as the median of the g5 in Cy (lines 10-11).

Similarly, we estimate {pZ""} as follows: (i) we compute the sum of the
number of occurrences of a base sequence in the periods wg and we calculate
the expected number of occurrences per period eg as wg/|Ps| (lines 12-14);
(ii) we group the base sequences with similar eg producing a set of clusters
Cpmin = {C1,...,Cq} (line 15); and (i) if S € Cp, C € Cymin, we set pn
as the median of the number of periods of the base sequences in Cj, (lines
16-17).

We group the base sequences by dividing the values into equal-sized bins
[21], whose number is estimated as the maximum between the estimated
number of bins suggested by the Sturges [26] and the Freedman-Diaconis
methods [§].



Algorithm 2: parametersEstimation(S, B)

Dgmaz <— (Z); qum — @; mem — @;
foreach S € S do Dsmes < Dgmaz U {05 = median(Ag)};
Csmaz <— groupSimilar(Dgsmaz);
for C}, € Csmaz do
L foreach S assignedTo(C},) do 63'** < median(Ch);

for S € S do
7 TCs «+ getTemporalyCompliant Periods(S, B, {63 });
D ymin <= Dgymin U {median({qs = |T0g)| s.t. TCEQJ)ETCS})};
9 Cymin < groupSimilar (D min);
11 L foreach S assignedT'o(C,) do ¢%™ + median(Cy,);
12 for S € S do
13 Pg < getPeriods(S, B, {529}, {q&n});
14| ws e Y0 |PY); es = ws/|Ps|; Dymin < Dymin U {es}

[SLEE VR M

(=]

15 Cpymin < groupSimilar(Dpymin );
17 for S assignedT'o(C},) do

18 L p&m <+ median({rec(Ps/)=|Pg|s.t.S'assignedTo(Ch)});

19 return {6’57?“93}’ {qgm'n}’ {pgnm};

4.2.2 Sequence Filtering

The second pre-processing step consists in the selection of the base recurring
sequences, i.e., the base sequences satisfying the sets of parameters {0g'**},
{q@in}, {p%™}. We apply this filtering in order to reduce the search space
so that the building of the TARS-tree and the TARS extraction (lines 4-5
Algorithm (1)) are employed only on the super-sequences of the base recurring
sequences. In other words, if S is not a base recurring sequence and 57 C S,
then we assume as heuristic that S5 is not recurring too, and we eliminate
it through the sequence filtering process. We adopt the sequence filtering
heuristic for reducing the search space because the antimonotonic property
[1] does not apply to TARS. Consider S1={c}—{c} and Sa={¢,d}—{c} in
the example of Table We have that S; C S. Given §"%7=14, ¢""=2 and
p™"=2_ we have rec(S1)=1 and rec(S2)=2. Hence, S5 is recurrent while S}
is not, and the anti-monotonic property is not satisfied.

However, it is clear from this example that a TARS with S; could be

10



Algorithm 3: getActiveT ARS (B, tp+1,1)

10« 0;Q+0; L+ 0; Y« TI;

2 for by, by, , € sort-desc(B) do

3 Q1 < tj — tj_l;

4 for X C btj71 do

5 for Y C bt do

6 if3veY|v=(0S,.p,9) Nog < a1 < g A
S=(X,Y)=X —Y then

7 if v € T’ then

8 Qy+ Qy+1; Ly« 97

9 if Q, >gthen T« T/{y}; T« T/{v};

10 if Ly —tj_1>q-(0q-a2) then T  Y/{~};

11 else

12 Lf<—f‘u{’y}; Q< 1; L, < tj_1;

13 if T = () then return I, Q;

14 return I', Q;

useful for the prediction because, despite rec(S1) = 1 in total it occurs six
times \Pg)| = 6. In real-world, {c} could be a fresh product (like milk
or salad) that is repeatedly and frequently purchased. Hence, an imposed
parameter setting could be not appropriate because (i) it could remove too
many TARS which are in fact useful for the prediction; (i) it could consider
too many valid base sequences and not prune enough the search space.

For these reasons we developed the two pre-processing steps heuristic for
parameters estimation described in this section.

5 TARS Based Predictor

On top of the set T'. of TARS extracted from the purchase history B, of
customer ¢ we build the TARS Based Predictor (TBP), an approach for next
basket prediction that is markedly personalized and user-centric [12) 22], in
the sense that just the model build on the individual purchase history B. of
customer c, i.e., her TARS T, is used to make the predictions about that
customer c.

TBP exploits TARS to simultaneously embed complex item interactions
such as the co-occurrence (which item is bought with which), sequential re-

11



lationship (which items are bought after which), periodicity (which item is
bought when) and typical times of re-purchase (after when re-purchases hap-
pen). These factors enable TBP to observe the recent purchase history of
a customer and understand which are the active patterns, i.e., the patterns
that the customer is currently following in her purchasing. In turn, by real-
izing which are the active patterns TBP can provide the set of items that she
will need at the time of the next purchase. It is worth noting that TBP is
parameter-free: all the parameters of the TARS model I'. are automatically
estimated for each customer on her personal data B., avoiding the usual
case where the same parameter setting is used indiscriminately for all the
customers [14].

Given the purchasing history B, of customer ¢, the time ¢, 11 of ¢’s next
transaction, and ¢’s TARS set I';, the TBP approach works in two steps.
First, it selects the set I'. of active TARS. Second, it computes a score Q,
for every item 7 belonging to a TARS in I'., ranks the items according to their
score ().,, and selects the top k items as the basket prediction for customer
c.

Algorithm @ shows the procedure of the TBP to select the active TARS
of a customer I'. First, it sorts the purchase history B ordering it chronolog-
ically from the most recent basket to the oldest one, then it loops on pairs of
consecutive baskets (line 2) searching for a set Y of potentially active TARS
(lines 4-7). When it finds a potentially active TARS =, it considers two
cases. If the sequence S of v is encountered for the first time, the algorithm
adds 7 to the set I" of active TARS and initializes two variables: the number
of times v has been encountered @, and its last starting time L, (line 13).
In the second case, the algorithm increments (), and updates L, (line 9).
If @y > g the algorithm removes 7 from the set of active TARS and from
the set of potentially active TARS (line 9). If too much time has passed
between the last beginning of TARS « and its next occurrence (line 11), the
algorithm does not look for that TARS ~ anymore and removes it from Y.
Algorithm [3] stops either when the set of potentially active TARS is empty
(line 14), or when the entire purchase history B has been scanned (line 15).
Finally, it returns the set I of active TARS and the number of times Q the
sequences of the active TARS have occurred in the last period.

Algorithm [4] shows the procedure of TBP to compute the items’ scores.
First, it sets to zero the score of each item €; (line 1) Then, for every active
TARS ~ containing item €Y, it increases €2; with the difference between
the typical number of occurrences ¢ of v and () indicating the number
of times that the sequence of v occurred in the recent history (lines 2—

12
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Algorithm 4: calculateItemScore(B,T', Q)

1 Q < ; foreach i € I do §; < 0;

for v = (S = (X,Y),a,p,q) €T do

3 L foreach i € Y do Q; < Q; + (¢ — Q);
aforief{i|Iy=(S=(X,Y),a,pq cl,icY}do
5 L Qi Q; + sup(i)

N

6 return (),

3). Finally, Q; is augmented with the support of item i for the items in
the tail of the active TARS (lines 4-5).

After this procedure TBP ranks the items’ scores €. in descending order
and returns the top-k items as the predicted basket.

6 Experiments on Retail Data

In this section, we report the experiments performed on three real-world
datasets in order to show the properties of the TARS and the effectiveness
of TBP in next basket prediction.

State-of-the-art methods [24], 311 [32], 4] fix the size of the predicted basket
to k=5 or k=10. However, we think that the size k of the predicted basket
should adapt to the customer’s personal behavior. Indeed, if a customer
typically purchases baskets with a few items it is useless to predict a basket
with a large number of items. On the other hand, if a customer typically
purchases baskets with a large number of items, the prediction of a small
basket will not cover most of the items purchased. In this paper we report
the evaluation of the predictions made using both a fixed length k € [2,20]
for all the customers and using a customer-specific size k& = &, where £
indicates the average basket length of customer c.

According to the literature, we adopt a leave-one-out strategy for model
validation [32, 31} 24, [4]: for each customer ¢ we use the baskets in the
purchase history B, = {by,, ..., b, } for extracting the TARS, and the basket
b, ., as test to estimate the performance.

For every customer, we evaluate the agreement of the predicted basket
b* and the real basket b by using the following metrics:

e F1-score, the harmonic mean of precision and recall [28§]:
2 - Precision(b,b*) - Recall(b, b*)
Precision(b, b*) + Recall(b, b*)

F1-score(b,b*) =

13



avg basket avg basket,
per cust. length
Coop-A 110,000 7,407,056 4,594 432.44353.4 9.4+5.8
Coop-C' (10,000 7,407,056 407 432.4+353.4 8.6+4.9
Ta-Feng| 2,319 24,304 5117 104475 1.841.1

Dataset| cust. #* baskets# items

Table 2: Statistics of the datasets used in the experiments.
Precision(b,b*) = |bNb*|/|b*| Recall(b,b*) = [bNb*|/|b]

e Hit-Ratio, the ratio of customers who received at least one correct
prediction (a hit) [13]:

Hit-Ratio(b,b*) =1 if bNb* # 0,0 otherwise.

e normalized F1-score: the Fl-score calculated only for the customers
having at least one hit.

Furthermore, for each customer we compute both learning time and pre-
diction time. The learning time is the amount of time required to extract
the model from the data. The prediction time is the amount of time the
predictor needs to predict the next basket of a customer. We perform the
experiments on Ubuntu 16.04.1 LTS 64 bit, 32 GB RAM, 3.30GHz Intel Core
i7.

6.1 Datasets

For our experiments we use three real-world transactional datasets: Coop-A,
Coop-C (both extracted from the Coop repository) and Ta-Feng. Table
shows the details of the datasets.

The Coop repository is provided by Unicoop Tz'rrenoE], a big retail su-
permarket chain in Italy. It stores 7,407,056 transactions made by 10,000
customers in 23 different shops in the province of Leghorn, over the years
2007-2014. The set of Coop items includes food, household, wellness, and
multimedia items. There are 7,690 different articles classified into 520 mar-
ket categories. From the repository we extract two datasets: Coop-A and
Coop-C. The two datasets differ in the items categorization. In Coop-A
(articles) the items of a basket are labeled with a fine-grained categorization
which distinguishes, for example, between blood orange and navel orange. In
Coop-C' (categories) the items are mapped to a more general category: in

"https://www.unicooptirreno.it/
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the example above blood orange and navel orange are considered the same
generic item (orange). All the customers in Coop-A and Coop-C have at
least one purchase per month.

Ta-FengE| dataset covers food, office supplies and furniture, with a total
of 23,812 items. It contains 817,741 transactions made by 32,266 customers
over four months. We remove the customers with less than 10 baskets and
consider the remaining 7% customers.

Since we do experiments on real retail datasets we adopt the day as time
unit, i.e., parameters and annotations are expressed in days.

6.2 Interpretability of TARS

The interpretability of TARS is one of the main characteristics of our ap-
proach. Table (4] shows some examples of TARS extracted from Coop-C. In
the table we report the median of «, p and ¢ across all the customers having
the presented TARS. We observe that TARS with a recurring base sequence
are the most supported among the customers. For example {milk}—{milk}
and {banana}—{banana} are supported by more than 90% of the customers
in Coop-C. The two TARS have similar ¢ (6.58 and 7.20 respectively) indi-
cating that they have similar recurrence degrees, i.e., they occurs a similar
number of times in the respective periods. In contrast {banana}—{banana}
has a higher maximum intra-time (a2=35) and a lower average number of
recurrences (p=14.63). This indicates that: (i) the time for a banana re-
purchase is higher than the time of a milk re-purchase; (i) the support to
have a distinct period is higher for {banana} than {milk}. We notice for
more than 25% of the customers the contemporary purchase {bread, tomato}
can indicate a future basket with {bovine} or with {banana,potato} and
that these TARS have very different annotations «,p,q. Finally, we high-
light that, even if the most common TARS among the customers are those
with base sequences, the TARS in I'. with sequence length greater than two
are on average more than the 95% for each customer.

To better understand the TARS, in Table [3] we shows some TARS made
of base recurring sequences with different peculiarities. A base recurring se-
quence capture the typical repurchasing of the same item within a certain pe-
riod for a certain number of times. Apples and bananas are fruit items avail-
able throughout they year. The associated base TARS {banana}—{banana}
and {apple}—{apple} have indeed a similar number of periods p and number
of typical occurrences in each period g. On the other hand, oranges are a sea-

2http:/ /www.bigdatalab.ac.cn/benchmark /bm/dd?data=Ta-Feng
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- Supported by more than 90% customers

(2,35)
{milk} m {milk} {banana} m {banana}

- Supported by more than 80% customers

{tomato} m {milk} {tomato} W {bovine}

- Supported by more than 25% customers

bread, [2 15] . bread, [3 27 banana,
{potato} 11.40.8.15 {bovme}{potato} 7.25.4.30 { potato }

Table 3: Examples of TARS extracted from Coop-C.
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Figure 2: Evaluation of TARS temporal validity on Coop-C.

sonal fruit item, generally available between November and February. The
associated base TARS {orange}—{orange} has a recurrence p significantly
lower than the recurrence of banana and apple TARS, while the occurrence
inside a period is similar. We observe that ice creams are similar to oranges:
the associated TARS {ice cream}—{ice cream} has a lower p and a higher
maximum intra time ag. Finally, Strawberries and Faster eggs are items
available for just a short period of the year. As reflection in the associated
TARS we have lower values of both p and ¢ than the other TARS. In par-
ticular, among the items considered strawberries’” TARS have the lowest ao
indicating short periods, while Easter eggs have the highest «; indicating
long intra-times.

6.3 Properties of TBP

In this section we present some peculiar properties of TBP: we show the
temporal validity and reliability of the TARS extracted, and the performance
improvements yield by the parameters evaluation.
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banana 1

apple

“TE ~orange
> Ice cream
strawberry
easter egqg -

ja'n feb mar aﬁ:rmﬁy jdn jﬁl aL'Jg sép oct nov dec

X — X al Qg P q
{banana}  — {banana} 2 35 14.63 7.20
{apple} — {apple} 2 35 1590 6.14
{orange} — {orange} 2 33 813 6.56
{ice cream} —  {ice cream} | 2 40 590 6.38
{strawberry} — {strawberry} | 2 32 3.55 4.69
{easter egg} — {easter egg} | 4 20 242 3.29

Table 4: TARS with different recurring base sequences from Coop-C, and
their periods shown along 7 years of observations (each year represented as
a single line).

6.3.1 TARS Temporal Validity

In real-world applications it is unpractical (or even unnecessary) to rebuild
a predictive model from scratch every time a new basket appears in a cus-
tomer’s purchase history. This leads to the following question: for how long
are TBP predictions reliable? We address this question by extracting TARS
on the 70% of the purchase history of every customer and performing the
prediction on the subsequent baskets. As shown in Figure [2| regardless the
predicted basket size k, F1-score and Hit-Ratio remain stable up to 20 pre-
dictions, which suggests a large temporal validity of TBP since the model
construction.

6.3.2 TARS Extraction Reliability

How many baskets does TBP need to perform reliable predictions? For each
customer we start from her second week of purchases and extract TARS
incrementally by extending the training set one week at a time. We then
predict the next basket of the customer and evaluate the performance of
TBP in this scenario. Figure [3| shows the median value and the “variance”
(by means of the 10th, 25th, 75th and 90th percentiles) of the F1-score (top-
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Figure 3: Evaluation of the TARS reliability by temporally augmenting the
purchase history on Coop-C.

left), the total number of different items purchased by the customer (top-
right), the number of TARS extracted (bottom-left), the number of active
TARS during the prediction (bottom-right) as the number of weeks used in
the learning phase increases. On one hand the average F1l-score does not
change significantly as the number of weeks increases, while its “variance”
reduces as more weeks are used in the learning phase. On the other hand,
the other three measures stabilize after an initial setup phase.

6.3.3 Parameter-Free vs. Parameter-Fixed Approach

TARS can be extracted by fixing the same parameters for all the customers
and items, as usually done by state-of-the-art methods [32, 31], 24, 4], or
by automatically estimating the parameters with a data driven procedure.
Here we discuss the impact of fixing the parameters on the predictive per-
formance by comparing the results of parameter-free TBP and a parameter-
fixed version of TBP where we set §™% = 14 (e.g., two weeks), ¢™" = 3
and p™"™ = 2. Figure [4/ shows the distributions of the number of TARS per
customer for the parameter-free (left) and parameter-fixed (right) scenarios.
We observe two different distributions: a skewed peaked distribution for the
parameter-free scenario and a heavy tail distribution for the parameter-fixed
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Figure 4: Number of TARS per customer distribution on Coop-C': parameter-
free (left), parameter-fixed (right).
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Figure 5: Next basket prediction performance on Coop-C': parameter-free
(left), parameter-fixed (right).

scenario. This suggests that fixing the parameters has a strong impact on
the extraction of TARS, leading to a lower average number of TARS per
customer than the parameter-free scenario (Figure E[)

Figure [ compares the predictive performances of the parameter-free and
the parameter-fixed scenarios. For both Fl-score and Hit-Ratio, TBP pro-
duces better predictions in the parameter-free scenario. In particular, when
using the average basket size of a customer k) as the size of the predicted
basket, the parameter-free approach has F1-score=0.25 while the parameter-
fixed approach has Fl-score=0.21. Our results suggest that the adoption of
a parameter-free strategy during the extraction of TARS enforces customer
behavior heterogeneity and increases prediction accuracy.

6.4 Comparison with Baseline Methods

We compare TBP with several baseline methods on the three datasets de-
scribed above. To this purpose, we implementﬂ the following user-centric

3We provide the Python 2.7.11 source code of TBP and the baseline methods along
with an anonymized sample of the Coop dataset at this link https://goo.gl/JVsJcP. The
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state-of-the-art methods:

LST [4]: the next basket predicted is just the last basket purchased by
the customer, i.e., by, , = by,;

TOP [4]: predicts the top-k most frequent items with respect to their
appearance in the customer’s purchase history B;

MC [4]: makes the prediction based on the last purchase b, and on a
Markov chain calculated on the customer’s purchase history B,;

CLF [4): for each item ¢ purchased by the customer, this method builds
a classifier on temporal features extracted from the customer’s purchase
history considering two classes: “item ¢ purchased yes/no”. The classifier
then predicts the next basket by using the temporal features extracted from
the customer’s purchase history.

We also implement four state-of-the-art methods that are not user-centric,
i.e, they require purchase data of all customers to build the predictive model
for a single customer:

NMF (Non-negative Matriz Factorization) [19]: is a collaborative fil-
tering method which applies a non-negative matrix factorization over the
customers-items matrix. The matrix is constructed from the purchase his-
tory of all customers;

FMC (Factorizing personalized Markov Chain)[24]: combines Markov
chains and matrix factorization to predict the next basket based on the
purchase history of all the customers B;

HRM (Hierarchical Representation Model) [31]: employs a two-layer
structure to construct a hybrid representation over customers and items pur-
chase history B from last transactions;

DRM (Dynamic Recurrent basket Model) |32]: it is based on recurrent
neural network and captures both sequential features from all the baskets
of a customer, and global sequential features from all the baskets of all the
customers B.

We compare TBP with the above defined baselines on Coop-A, Coop-
B and Ta-Feng. For NMF, FMC, HRM and DRM we report the results
obtained with the default parameters setting [32, 1] and a dimensionality
d=100 for Ta-Feng, Coop-A and Coop-C. Even though the methods [I1,
18], [30] employ patterns for producing recommendations we do not compare
against them because they are systems mainly designed for web-based data
services and because they are also consider the items’ ratings and not only
the implicit feedbacks provided by the presence of the items in a basket.

Figure |§| compares the average Fl-score (left) and the average Hit-Ratio

code of DRM was kindly provided by the authors of [32].
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.01

-

(right) produced by all the methods, varying k € [2,20]. We observe that
TBP outperforms the competitors on Coop-A and Coop-B, having the highest
F1l-score and a comparable Hit-Ratio. On Ta-Feng TBP has the highest F1-
score at the third highest Hit-Ratio. The performance of TBP significantly
improves, both in terms of Fl-score and Hit-Ratio, when we use k = &, as
shown in Table [l

The decrease of the Hit-Ratio of TBP in Ta-Feng can be due to its high
data sparsity. As we observe in Table [2] Ta-Feng has a much lower average
number of baskets per customer, a much lower average basket length, and
a shorter observation period than Coop-A and Coop-C. For this reason the
TARS extracted from Ta-Feng have lower quality than the TARS extracted
on the other datasets.

In Table [6] we report the duration of the learning process, i.e., the ex-
ecution time needed to build every method on the four datasets. For the
user-centric methods (TBP, MC, CLF) we report the average execution time
per customer, while we report the total execution time for not user-centric
methods (NMF, FPM, FRM, DRM). We do not report the prediction time
because it is negligible for all the approaches (i.e., less than 0.01 seconds).
We observe that TBP needs more time than existing user-centric methods
(5 minutes per customer on average) but it is much faster than the not user-
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Table 5: Performance using personalized length k = k. In bold, and bold-
italic the 1st and 2nd best performer.

Dataset| TBP MC CLF| NMF FPMHRM*DRM*
Coop-A351.86s0.04s2.385244.28s0.21h 0.84h47.53h|
Coop-C| 6.6250.01s1.083 69.98s0.11h 0.72h34.06h
Ta-Feng| 0.01s0.00s0.00s803.89s0.41h 0.34h 4.24h|

Table 6: Building time comparison. Note that: (i) the time is reported in
seconds (s) or in hours (h), (i) for individual methods we report the average
building time, for collective methods the total, (4ii) the building time for
TOP and LST is always lower than 0.01 seconds and is not reported.

centric approaches. We believe that such a learning time is acceptable for
two reasons: (i) in a real scenario the TARS can be re-computed once every
month and still produce reliable predictions; (7i) the computation can be
parallelized and personalized with respect to the customer’s behavior, thus
the TARS of all the customers can be extracted at the same time by different
devices.

It is worth noting that the value of the average F1l-score can be biased
by two extreme scenarios: (i) the Fl-score can be low because of a low Hit-
Ratio, i.e., for most of the customers no item is predicted even though for
some customers we predict most of the items; (7i) the Fl-score can be high
because for most of the customers just one item is predicted. In Figure[7] we
show the results of the experiments using the normalized F'1-score instead of
the simple F1-score. We observe that the positive gap between TBP and the
competitors increases: for the customers for which TBP correctly predicts
at least one future basket, the baskets predicted by TBP are more accurate
and cover a larger number of items than the baskets predicted by the other
methods.

We also investigate at what extent the performances can be affected by

22



30 .36 — Tap

g 27 {Coop-A - g 3 Coop-C - ToP

w24 -+ 2 28 + MC

e — s S, o .24 ul

T E— 3

. - -

2 15 / “-1-..1_____-_“ 2 .20 \//_\* s
B e S —— B e e S ——

2 4 6 8 1012 14 16 18 20 2 4 6 8 1012 14 16 18 20 — TRM

pred length k pred length k DRM

Figure 7: Normalized F1-score varying length k.

21
Coop-A - 23 Coop-C — TBP
18 -~ 24 ~ Top
.15 -+ -+ MC
12 19 CLF
09 .14 LsT
061 4 ‘,,/"‘*"_’I# - 7 09 - NMF
FPM
et a1 o
2 4 6 & 1012 14 16 18 20 2 4 6 8 10 12 14 16 18 20
. pred lengt . . pred length k DR, .
Figure 8: Performanceé comparison varying the preglcuclon length & and. using

a model built on a subset of B, having random size between 70% and 90%
of | Be|.

Fl-score
Fl-score

the leave-one-out evaluation strategy: the last basket of a customer could
depart from her typical behavior affecting the extraction of the TARS. To
cope with this issue we also perform the learning process (i.e., extract TARS)
by selecting a random subset B’ = {by,, ..., btn/} of the customers’ purchase
history B, = {bt,,...,b, }, with t,; < t,. We randomly vary the size of
the subset |B’c| among 70% and 90% of |B.|, and we apply TBP on the
subsequent basket b , ..~ Figure |8 presents the results of this experiment
for Coop-A and Coop-C' and confirms the trends observed on the previous
experiments indicating that the leave-one-out evaluation strategy does not
affect significantly the performance of the methods.

7 Conclusions

In this work we propose a data-driven and user-centric approach for next
basket prediction. Our contribution is twofold. First we define Temporal
Annotated Recurring Sequences (TARS). Then we then use TARS to build
a predictor for forecasting customers’ next baskets. Being parameter-free,
TBP leverages the specificity of individual customer’s behavior to adjust the
way TARS are extracted, thus producing more personalized patterns. We
perform experiments on real-world datasets, show that TBP outperforms
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state-of-the-art methods and, in contrast with them, it provides interpretable
patterns that can be used to gather insights on customers’ shopping behav-
iors. Our results show that at least 36 weeks of a customer’s purchase behav-
ior are needed to effectively predict her next baskets. In this scenario, TBP
can effectively predict the subsequent twenty future baskets with remarkable
accuracy.

A future research line consists in providing to the customers of a liv-
ing laboratory [29] an app running TBP and observe how and if their pur-
chase behaviors are influenced by the recommendations. Moreover, since our
method is fully user-centric, it cannot make reliable predictions for new cus-
tomers or for customers having a short purchase history. Thus, we plan to
build a version of TBP which incorporates a collaborative filtering approach,
such that it will be able to forecast baskets for newcomers and for customer
with a short purchase history. Finally, we would like to exploit TARS also
to segment the customers, and to investigate how TARS and TBP can be
applied on different analytical domains such as for mobility and for health

data analysis.

This work is partially supported by the GS501100001809 European Communi-
tys H2020 Program under the funding scheme “INFRATA-1-2014-2015: Research In-
frastructures” grant agreement, http: //www.sobigdata.eu, GS501100001809, 654024
“SoBigData: Social Mining € Big Data Ecosystem”.
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