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Abstract—With the rapid development of mobile apps, the
availability of a large number of mobile apps in application stores
brings challenge to locate appropriate apps for users. Providing
accurate mobile app recommendation for users becomes an im-
perative task. Conventional approaches mainly focus on learning
users’ preferences and app features to predict the user-app
ratings. However, most of them did not consider the interactions
among the context information of apps. To address this issue,
we propose a broad learning approach for Context-Aware app
recommendation with Tensor Analysis (CATA). Specifically, we
utilize a tensor-based framework to effectively integrate user’s
preference, app category information and multi-view features
to facilitate the performance of app rating prediction. The
multidimensional structure is employed to capture the hidden
relationships between multiple app categories with multi-view
features. We develop an efficient factorization method which
applies Tucker decomposition to learn the full-order interactions
within multiple categories and features. Furthermore, we employ
a group `1−norm regularization to learn the group-wise feature
importance of each view with respect to each app category.
Experiments on two real-world mobile app datasets demonstrate
the effectiveness of the proposed method.

I. INTRODUCTION

The rapid adoption of mobile devices accelerates the pro-
liferation of mobile apps. The number of available apps in
the Google Play1 reached 2.8 million in Mar. 2017, and there
have been 2.2 million mobile apps available in the Apple App
Store2 in Jan. 2017. The surge of mobile apps with diverse
functions brings not only great convenience to users but also
challenges for discovering appropriate apps. As a consequence,
it becomes critical to develop effective approaches of rating
prediction for recommending apps for users with accuracy.

There are some recent studies about the mobile apps recom-
mendation, most of which leverage features of apps or users
[1] [2] [3]. Karatzoglou et al. [1] proposed a collaborative
filtering method for app recommendation by incorporating
some contextual features like location, time of day, etc. Liu
et al. [2] proposed to incorporate both app functionality and
user privacy preference as features and capture the trade-
off between them for app recommendation. Most of the
previous works only tried one kind of feature or a simple

1Google Play: https://play.google.com/store/apps
2Apple App Store: https://itunes.apple.com/us/genre/ios/id36?mt=8

combination of multiple features and did not consider the
complex interactions between those features. Currently there
exist many works exploiting multiple views of features in
the tasks like recommendation, clustering, etc [4], [5], [6],
[7]. In the scenario of app recommendation, the interactions
between different views of features are quite important as
different views can provide complementary information. For
example, assume we have obtained the latent representations
for each app from three aspects, i.e., categories, permissions
and description text, as shown in Fig. 1. BackCountry Nav-
igator is an app categorized as Maps&Navigation and it is
mainly used for outdoor navigation which can be inferred
from the description text. The permission of getting users’
precise location is acceptable (i.e., a positive value), while the
permission of reading SMS is abnormal (i.e., a negtive value).
It can be found that only the third-order interaction provides a
negative result reflecting the unreasonable permission for app
function. The category of Instagram merely shows its function
for social interaction (i.e., a positive value) and neglects the
function of sharing photos (i.e., a negtive value). Through
the interactions between multiple views, complementary in-
formation is provided to show a more sufficient understanding
about the app. Obviously, the comprehensive consideration of
the features from multiple views would be more insightful on
understanding app information and user preference.

To figure out the latent correlations among the context
information of apps, we conduct an empirical analysis on
the dataset collected from Google Play and discover some
important characteristics of mobile apps. For apps in different
categories, users’ download behaviors are different. Within
some categories like Maps & Navigation and Weather, users
might only download one or two app for a long time use.
However, for some categories like Entertainment, users are
more likely to download many apps in the same category.
Generally, the different download behaviors happen because
users will consider different reasons (e.g, functions, interface,
permissions) to decide whether to download apps for dif-
ferent categories. It can be inferred that users would focus
on multiple views of features with different importance for
apps in different categories. The analysis of the feature-
level correlation between categories shows the similarities
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Fig. 1. An example of feature interactions with different orders. The values in the column #1, #2, and #3 represent the summation of first-order, the
second-order, and the third-order interactions. #1 = C + P +D, #2 = C × P + C ×D + P ×D, #3 = C × P ×D.

between different categories are lower, which implies that the
significances of features within a specific view are different
for different categories. The category diversities of apps rated
by different users are distinct. Some users prefer to download
apps from various categories even though the amount of
the downloaded apps is small. Based on the analysis, we
consider to fuse the user preference, the category information,
the features of multiple views, and the complex interactions
among them to generate a context-aware category specific app
rating prediction model.

In this paper, we propose a broad learning approach for
Context-Aware app recommendation with Tensor Analysis
(CATA). Specifically, we integrate the interactions among the
multiple categories and multiple views of features into a tensor
structure through the tensor product of the corresponding
feature spaces. The interactions with different orders can fully
reflect the complementary relationships, and we use them
to predict the user ratings on apps. To effectively learn the
full-order interactions 3 without physically building a tensor,
we further develop an efficient factorization method which
employs Tucker decomposition. The Tucker decomposition is
applied to factorize the interaction parameters for each order,
which can make accurate parameter estimation under sparsity
and avoid overfitting. Moreover, we introduce the group `1-
norm regularization for the global-specific weight matrix to
further improve the proposed model.

The main contributions of this paper are as follows:

• We propose a context-aware recommendation approach
for mobile apps called CATA that models the interactions
with different orders among the multiple categories and
multiple views of features as a tensor structure.

• To effectively learn the hidden relationships among the
different views of the context information of apps, Tucker
decomposition is adopted to factorize the interaction
parameters such that the principal components of the
latent representations can be retained.

• Empirical studies based on two real world datasets
demonstrate the effectiveness of the proposed context-
aware recommendation approach.

3Full-order interactions range from the first-order interactions (i.e., single-
view features in each category) to the highest-order interactions (i.e., all
combinations of features from multiple views and from different categories).

TABLE I
STATISTICS OF THE DATASETS

Dataset #App #User #Feature #Category #Rating

Google Play 5460 7165
Text (2574)

45 67504Permissions (84)

Apple App Store 2643 4010 Text (1592) 2 74764

II. DATA ANALYSIS

In this section, we first describe the datasets used for
the analysis and experiments. We then provide the statistical
characteristics of the employed datasets.

A. Data Description

• Google Play: We crawled app’s meta data (e.g., name,
category, permissions, description) and user review
ratings from its description page in Google Play. We
filter users and apps with less than 5 ratings. Each rating
record in this dataset is represented in three views, i.e.,
users, permissions and text. The user view consists of
binary feature vectors for user ids which means there
is only one non-zero feature in the user view for each
rating record. The TF-IDF vector representations of the
app permissions and description texts are used as the
permission and text view, respectively.

• Apple’s App Store: The dataset is offered by [8][9] and
consists of the apps in the “Top Free 300” and “Top Paid
300” leaderboards from Feb. 2010 to Sep. 2012, and the
related user ratings and review information. As the dataset
lacks of the classification information, we use Free and
Paid as two categories, and we remove users and apps
with less than 10 ratings. Each rating record in this dataset
has two views, i.e., users and text. The user view are
constructed using the same way as in the Google Play
dataset. The TF-IDF vector representations of the review
texts of apps are used as the text view.

Table I shows the basic statistics of the two employed
datasets.

B. Characteristics of Google Play dataset

As the Google Play dataset has richer category and feature
information, we focus on the analysis for it.
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Fig. 2. Characteristics of Google Play dataset. The blue curve and green curve in (c) represent category diversity and app number, respectively.

We calculate the proportions of the users who downloaded
more than 2 apps for each category. Due to the space limi-
tation, Fig. 2(a) reports the results of 20 randomly selected
app categories. The lower proportion for a category is, the
more users only download one or two apps in that category.
Generally, apps in the categories with a low proportion can
be used for a long time. Taking category Maps & Navigation
in which only about 1.07% users downloaded more than 2
apps as an example, users usually only download one or two
apps (e.g., Google Map, Baidu Map ) in this category as these
apps are sufficient to use. The other categories having the
low proportions in Fig 2(a) are Weather, Travel& Local, etc.
The categories with high proportions are more general and
the apps in them are with more varieties, like Tools, Puzzle,
Arcade, etc. For apps in these categories, users might consider
different reasons to decide whether to download the apps. For
example, users mainly consider if the functions of the apps
in category Tools will meet their demands. But for apps in
category Maps & Navigation, compared to the functions, users
pay more attention to the features like interface or permissions
as they have clearly known the functions. We can learn that
users would focus on multiple views of features with different
significances for apps in different categories.

After the investigation of relationship between multiple
views and categories, we explore the features within a spe-
cific view. To investigate the feature-level correlation between
categories with respect to a certain view, we calculate the
feature-based similarities between each pair of apps from any
two categories. Figure 2(b) shows the similarities generated
based on app permission feature between any two categories.
The category indexes are sorted by the order in Fig. 2(a)
(i.e., #1 is Shopping). It can be observed that the similarities
between two different categories are generally lower than those
between the same categories. That is, for apps of different
categories, the significance of features within a specific view
are distinguishing.

To investigate the relationship between users and categories,
we apply the diversity metric widely used for the evalua-
tion of recommender systems [10] to evaluate the category
diversity. The category diversity is calculated by Div(u) =

1−
∑

i,j∈A(u),i 6=j s(i,j)
1
2 |A(u)|(|A(u)|−1) , where A(u) is the set of apps rated by

user u. s(i, j) = 1 if app i and j belong to the same category,
otherwise, s(i, j) = 0. Figure 2(c) shows the category diversity
and the number of apps for each user. The green curve presents
the number of apps rated by users, and the blue curve is the
category diversity of the apps rated by users. The user indexes
on the x-axis are sorted by the values of category diversity in
an ascending order. The left y-axis shows the value of category
diversity and the right y-axis represents the number of apps.
It can be found that some users have interactions with many
types of apps even though the numbers of apps rated by them
are very small while some users rate many apps with few
categories. Different users have interactions with categories
with different diversities. As discussed above, the importance
of features from multiple views and features within a specific
view is distinct for different categories. Therefore, for each
user, it is critical to model his preference on an app considering
the category information and the corresponding relationships
with features of multiple views.

Based on the analysis of the relationships among app
category, app feature, and user, it requires a recommendation
model which can integrate the interactions among the multiple
categories, multiple views of features, and users.

III. PRELIMINARIES

In this work, we intend to predict ratings for mobile appli-
cations by a tensor-based approach. Before that, we introduce
some related concepts and notation in tensor algebra that will
be used throughout the paper, and then provide the problem
formulation of app rating prediction.

A. Tensor Concepts and Notation

A tensor is a multi-dimensional array which generalizes
matrix representation. Each dimension in tensor is called mode
or way. Following prevailing convention, tensors are repre-
sented by calligraphic letters, matrices by boldface uppercase
letters, vectors by boldfaced lowercase letters, and scalars by
lowercase letters. An element of a vector x, a matrix X, or a
tensor X is represented by xi, xi,j , xi,j,k, etc., depending on
the number of modes. All vectors are column vectors unless
otherwise specified. For an arbitrary matrix X ∈ RI×J , its
i-th row and j-th column vector are represented by xi and xj ,
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Fig. 3. Tucker decomposition of a third-order weight tensor.

respectively. The outer product of N vectors x(n) ∈ RIn for all
n ∈ [1 : N ] is an N -th-order tensor and defined elementwise
as
(
x(1) ◦ · · · ◦ x(N)

)
i1,...,iN

= x
(1)
i1
· · ·x(N)

iN
for in ∈ [1 : In].

The inner product of two tensors X ,Y ∈ RI1×···×IN is
defined as

〈
X ,Y

〉
=
∑I1
i1=1 · · ·

∑IN
iN=1 xi1,...,iN yi1,...,iN . In

particular, for X = x(1) ◦ · · · ◦x(N) and Y = y(1) ◦ · · · ◦y(N),
it holds that

〈
X ,Y

〉
=

N∏
n=1

〈
x(n),y(n)

〉
=

N∏
n=1

x(n)T y(n). (1)

Definitions of Kronecker product, Khatri−Rao product,
mode-n product, and Tucker decomposition are given below,
which will be applied to build the proposed model.

Definition 3.1 (Kronecker Product): The Kronecker product
of matrices X ∈ RI×J and Y ∈ RK×L is denoted by X⊗Y.
The result is a matrix of size (IK)× (JL) and defined by

X⊗Y =

x1,1Y x1,2Y · · · x1,JY
...

...
. . .

...
xI,1Y xI,2Y · · · xI,JY


=
[
x1 ⊗ y1 x1 ⊗ y2 · · · xJ ⊗ yL−1 xJ ⊗ yL

]
.

(2)

Definition 3.2 (Khatri−Rao Product): The Khatri−Rao
product of matrices X ∈ RI×K and Y ∈ RJ×K is denoted by
X�Y. The result is a matrix of size (IJ)×K and defined
by

X�Y =
[
x1 ⊗ y1 x2 ⊗ y2 · · · xK ⊗ yK

]
. (3)

The Khatri−Rao product is the “matching columnwise”
Kronecker product.

Definition 3.3 (n-mode Product): The n-mode product of a
tensor X ∈ RI1×···×IN with a matrix U ∈ RJ×In denoted by
X ×n U is defined as

(X ×n U)i1,...,in−1,j,in+1,...,iN =

In∑
in=1

xi1,...,iNuj,in . (4)

Figure 3 visualizes the Tucker decomposition of a third-
order tensor and table II summarizes the main notations for
easy referencing.

TABLE II
LIST OF BASIC SYMBOLS.

Symbol Definition and description

x each lowercase letter represents a scale
x each boldface lowercase letter represents a vector
X each boldface capital letter represents a matrix
X each calligraphic letter represents a tensor, set or space
[1 : N ] a set of integers in the range of 1 to N inclusively.
〈·, ·〉 denotes inner product
◦ denotes outer product
⊗ denotes Kronecker product
� denotes Khatri−Rao product
×n denotes n-mode product
‖·‖F denotes Frobenius norm of vector, matrix or tensor

Definition 3.4 (Tucker Decomposition): For a general tensor
X ∈ RI1×···×IN , its Tucker decomposition is defined as

X ≈ G ×1 U(1) ×2 · · · ×N U(N)

=

R1∑
r1=1

· · ·
RN∑
rN=1

gr1,...,rN u(1)
r1 ◦ · · · ◦ u(N)

rN

= JG; U(1), · · · ,U(N)K,

(5)

where U(n) ∈ RIn×Rn are the factor matrices and can be
thought of as the principal components in each mode. G ∈
RR1×···×RN is called the core tensor. J·K is used for short-
hand notation.

B. Problem Formulation

Suppose that the scenario of app rating prediction includes
a user set U and mobile app set A. The numbers of app
categories and feature views are C and V . Let Nc be the
number of the rating records in the category c ∈ [1 : C],
then the total number of rating records is N =

∑
cNc. Let

Iv be the dimensionality of the feature view v ∈ [1 : V ] and
I =

∑
v Iv .

In this paper, we construct a multi-dimensional tensor
to discover the latent interactions among the category in-
formation and multi-view features. Each rating record in
category c can be represented in V different views, i.e.,
xTc = (x

(1)T

c , . . . ,x
(V )T

c ), where x
(v)
c ∈ RIv and xc ∈ RI .

Generally, a rating record involves a user, an app, and different
types of characteristics of the app. Given a training set of
rating records D = {(X(1)

c , . . . ,X
(V )
c ,yc)|c ∈ [1 : C]}, where

X
(v)
c ∈ RIv×Nt is the feature matrix in the c-th category for v-

th view and yc is the vector of the rating values of those apps
in the c-th category. Our goal is to find a predictive function
fc : Xc → Yc for each category that can minimize the expected
loss and provide accurate predicted ratings. The regularized
objective function to be minimized can be formulated as:

H({fc}Cc=1) =

C∑
c=1

(
Lc
(
fc({X(v)

c }),yc
))

+ λΩ, (6)

where Lc is the empirical loss in the c-category. Ω is the
regularization term and λ > 0 is the regularization parameter.



Lc can be rewritten as the average square error of each
instance.

Lc
(
fc({X(v)

c }),yc
)

=
1

Nc

Nc∑
n=1

`
(
fc({x(v)

c,n}),yc,n
)

=
1

Nc

Nc∑
n=1

(
fc({x(v)

c,n})− yc,n
)2
.

(7)

IV. PROPOSED METHOD

In this section, we first introduce the context-aware recom-
mendation approach based on tensor analysis (CATA). Then
we discuss how to employ Tucker decomposition to learn the
proposed model without physically building the tensor.

A. Model for App Rating Prediction

We derive the proposed model from the basic framework of
linear analysis. Given a vector of an app rating record x ∈ RI ,
the basic linear model for the c-th category is written as

fc(x) =

I∑
i=1

wc,ixi + wc,0 = xTwc + wc,0, (8)

where wc ∈ RI is the weight vector for the c-th category, and
wc,0 is the bias factor for adjusting the threshold of the c-th
category label assignment.

Let z = [1; x] ∈ R1+I and wc = [wc,0; wc] ∈ R(1+I), then
the bias factor wc,0 can be absorbed to wc (see [11]). Eq. (8)
can thus be rewritten as follows:

fc(x) = zTwc. (9)

Let W ∈ R(1+I)×C denote the weight matrix to be learned,
whose columns are the vector wc. In order to jointly learn mul-
tiple linear models for C categories, we introduce a category
indicator vector denoted by ec ∈ RC to model the second-
order interactions between input features and categories. The
indicator vector ec is defined as

ec = [0, · · · , 0︸ ︷︷ ︸
c−1

, 1, 0, · · · , 0]T.

Then Eq. (9) can be rewritten as

fc(x) = zTwc = zTWec = 〈W, z ◦ ec〉 . (10)

Note that the outer product is used to compute intersections
between input features and categories, which consists in the
product of all combinations of the variables that define each
domain. This data fusion technique provides a good framework
to introduce multiple features. When each object is associated
with multi-view features, by means of the outer product we
can easily extend the above Eq. (10) to the multi-view case
and provide a consensus formulation.

Suppose that the given rating records are composed by
features of V views (denoted as {x(v)}, v ∈ [1 : V ]), we can
extend Eq. (10) to model the full-order interactions between
multi-view features and categories as:

fc({x(v)}) =
〈
W, z(1) ◦ · · · ◦ z(V ) ◦ ec

〉
, (11)

category-view2 interaction 

category-view1 interaction 

global bias

Category-view1-view2
interaction

1

1

Category

View 1

View 2

App

User

Outer
product

user indicator

app feature

Fig. 4. The context information of each rating record are represented by
multiple vectors and combined by the outer product to generate the full-order
interactions. The full-order interactions between multiple views and categories
are modeled in a tensor structure.

or element-wise as

fc({x(v)}) =

C∑
s=1

I1∑
i1=0

· · ·
IV∑
iV =0

wi1,...,iV ,s
(
ec,s

V∏
v=1

z
(v)
iv

)
. (12)

Where z(v) = [1; x(v)] ∈ R(1+Iv) is the input data vector,
and W = {wi1,...,iV ,s} ∈ R(1+I1)×···×(1+IV )×C is the weight
tensor to be learned, wherein w0,...,0 is the global bias, and
wi1,...,iV ,s with some indexes satisfying iv = 0 encodes lower-
order interactions between views whose iv′ > 0.

In such a manner, the full-order interactions between mul-
tiple views and categories are embedded within the tensor
structure, as shown in Fig. 4. However, one drawback might
be generated from the model is that not all the categories
are fit to the constructed feature tensor and those interactions
will be redundant information. Thus, we consider to build a
rating predictive function based on both the full-order feature
interaction space and the original feature spaces.

Let Zc = z(1) ◦ · · · ◦ z(v) ◦ ec ∈ R(1+I1)×···×(1+IV )×C be
the full-order tensor, and x = [x(1); . . . ; x(V )] ∈ RI be the
feature vector concatenated by multiple views. We formulate
our CATA model as follows:

fc({x(v)}) = 〈W,Zc〉+ xTdc, (13)

where dc ∈ RI is the category-specific weight vector. For
convenience in the following discussion, we denote D =
[d1, · · · ,dC ] ∈ RI×C .

B. Model Inference

The number of parameters to be estimated in Eq. (13) is
C(
∏V
v=1(1 + Iv) + I), which makes it infeasible to directly

learning the model. Therefore, we assume that the weight
tensor W can be factorized by Tucker decomposition as

W = JG; Φ,Θ(1), ...,Θ(V )K, (14)

where G ∈ RR0×R1×...×RV is called the core tensor and its
entries show the level of interaction between the different
components, Θ(v) ∈ R(1+Iv)×Rv is the shared structure matrix
for the v-th view, and Φ ∈ RC×R0 is the category specific
weight matrix.



Then we can transform Eq. (12) into

〈W,Zc〉 =
C∑
s=1

I1∑
i1=0

· · ·
IV∑
iV =0

wi1,...,iV ,s
(
ec,s

V∏
v=1

z
(v)
iv

)
=

C∑
s=1

I1∑
i1=0

· · ·
IV∑
iV =0

( R0∑
r0=1

· · ·
RV∑
rV =1

gr0,...,rV φs,r0

V∏
v=1

θ
(v)
iv,rv

)(
ec,s

V∏
v=1

z
(v)
iv

)
=

R0∑
r0=1

· · ·
RV∑
rV =1

gr0,...,rV
( C∑
s=1

φs,r0ec,s
) I1∑
i1=0

· · ·
IV∑
iV =0

( V∏
v=1

θ
(v)
iv,rv

z
(v)
iv

)
=

R0∑
r0=1

· · ·
RV∑
rV =1

gr0,...,rV
〈
θ
(1)
r1 ◦ · · · ◦ θ

(V )
rV ◦ φr0 , z

(1) ◦ · · · ◦ z(V ) ◦ ec
〉

(15)

Because ec,s = 1 only when c = s and according to Eq.
(1), we can further rewrite the equation above into

〈W,Zc〉 =

R0∑
r0=1

· · ·
RV∑
rV =1

gr0,...,rV φc,r0
(
z(1)T θ(1)

r1

)
· · ·
(
z(V )T θ(V )

rV

)
= G ×0 φ

c ×1

(
z(1)T Θ(1))×2 · · · ×V

(
z(V )T Θ(V )), (16)

where ×v is the v-mode product and ×0 means multiplying
the core tensor by the category specific vector φc. It is worth
noting that the first row θ(v),0 within Θ(v) is associated
with the constant value z

(v)
0 = 1 and represents the bias

factors of the v-th view. The bias factors make the lower-order
interactions active in the rating predictive function.

Using Eq. (16) to replace the first term in Eq. (13), the
rating predictive function can be represented by

fc(x
(v)) = G×0φ

c×1

(
z(1)

T

Θ(1)
)
×2· · ·×V

(
z(V )T Θ(V )

)
+xTdc.
(17)

The whole framework of the proposed CATA method is
illustrated in Fig. 5.

C. Model Estimation
We propose to learn the app rating prediction model CATA

by minimizing the following regularized empirical risk:

minH
(
Φ, {Θ(v)},G,D

)
=

C∑
c=1

Lc
(
fc
(
{X(v)

c }
)
,yc
)
+

αΩα
(
Φ, {Θ(v)},G

)
+ βΩβ

(
D
)
.

(18)

The regularization term Ωα and Ωβ can be set as Frobenius
norm, `2,1 norm, or other structural regularization. In this
paper, we adopt the alternating block coordinate descent
approach for the optimization of the given objective function.
The whole learning procedure is summarized in Algorithm 1.

With all other parameters fixed, the minimization over Θ(v)

consists of learning the parameters Θ(v) by a regularization
method, and the partial derivative of H w.r.t. Θ(v) is given by

∂H
∂Θ(v)

=

C∑
c=1

∂Lc
∂fc

∂fc
∂Θ(v)

+ α
∂Ωα

(
Θ(v)

)
∂Θ(v)

(19)

where ∂Lc

∂fc
= 1

Nc

[
∂`c,1
∂fc

, · · · , ∂`c,Nc

∂fc

]T
∈ RNc and ∂`c,n

∂fc
=

2(fc − yc,n) for n ∈ [1 : Nc].

For convenience, we let π ∈ R1×(R1···RV ) denote
the Kronecker product in a reverse order from V to 1∏1
v=V ⊗

(
z(v)

T

Θ(v)
)

and π(−v) ∈ R1×(R1···Rv−1Rv+1···RV )

denote
∏1
v′=V,v′ 6=v ⊗

(
z(v
′)T Θ(v′)

)
. Let Π = [π1, · · · ,πN ]T

and Π(−v) = [π
(−v)
1 , · · · ,π(−v)

N ]T . Then we have that

∂Lc
∂fc

∂fc
∂Θ(v)

=
1

Nc

Nc∑
n=1

∂`c,n
∂fc,n

∂fc,n
∂Θ(v)

=

Nc∑
n=1

z(v)c,n
( 1

Nc

∂`c,n
∂fc,n

)(
π(−v) ⊗ φc

)
GT

(v)

= Z(v)
c

((
Π(−v)
c

)T � (∂Lc
∂fc

φc
)T )T

GT
(v),

(20)

where G(n) the n-mode matricization of tensor G.
With all other parameters fixed, the minimization over Φ

consists of learning each parameter component φc indepen-
dently. The partial derivative of H w.r.t. Φ is given by

∂H
∂Φ

=

[
∂L1

∂f1

∂f1
∂φ1

; · · · ;
∂LC
∂fC

∂fC
∂φC

]
+ α

∂Ωα(Φ)

∂Φ
. (21)

Following the derivation in Eq.(20), we have that

∂Lc
∂fc

∂fc
∂φc

=
(∂Lc
∂fc

)T
ΠcG

T
(0) (22)

By keeping all other parameters fixed, we can get the partial
derivative of H w.r.t. the core tensor G as follows,

∂H
∂G

=

C∑
c=1

∂Lc
∂fc

∂fc
∂G

+ α
∂Ωα(G)

∂G
(23)

Following the derivation in Eq.(20), we have that

(∂Lc
∂fc

∂fc
∂G
)
(1×(R0···RV ))

=

Nc∑
n=1

( 1

Nc

∂`c,n
∂fc,n

)(
π ⊗ φc

)
=
(∂Lc
∂fc

)T (
Πc ⊗ φc

) (24)

By keeping all other parameters fixed, we can get the partial
derivative of H w.r.t. the core tensor D as follows,

∂H
∂D

=

[
X1

∂L1

∂f1
; · · · ; XC

∂LC
∂fC

]
+ β

∂Ωβ(D)

∂D
, (25)

where Xc = [X
(1)
c ; · · · ; X

(V )
c ] ∈ RI×Nc is the concatenated

feature matrix for the c-th category.

D. Group `1-Norm

As mentioned in section IV-C, the regularization terms
can be Frobenius norm, `2,1 norm, or other structural regu-
larization, here we present a proper regularization term for
parameter D to further improve the performance of rating
prediction .

For the original feature spaces, i.e., the second term in Eq.
(13), the feature of a specific view might be more or less
discriminative for different app categories. For instance, the
description information is more useful for the distinguishing
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Algorithm 1: Learning CATA Model
Input: Training data D, number of factors R,

regularization parameter α, β, and learning rate η
Output: Model parameters {Θ(v)}, Φ, G, D

1 Initialize{Θ(v)}, Φ, G, D ∼ N (0, σ).
2 repeat
3 Fixing {Θ(v)}, G, and D, update Φ
4 for v = 1 : V do
5 Fixing {Θ(v′)}v′ 6=v , Φ, G, and D, update Θ(v)

6 Fixing {Θ(v)}, Φ, and D, update G
7 Fixing {Θ(v)}, Φ, and G, update D
8 until convergence;

of apps in the Lifestyle category than that of apps in Map
& Navigation category. It is mainly because Lifestyle is a
broad cluster and the functionality which could be extracted
from the description text of each app in it are very different
from each other. Consider this, we introduce group `1-norm
(G1-norm, for short) for regularization, which is defined as
||D||G1 =

∑C
c=1

∑V
v=1 ||d

(v)
c ||2 [12]. The G1-norm applies

`2-norm within each view and `1-norm between views, so it
can enforce the sparsity between different views. It means that
if a specific view of features are not significant for the apps in
a certain category, the weights with very small values will be
assigned to them for the corresponding category. The G1-norm
can further improve the performance of app rating prediction
as it captures the global relationships between views. The
right part of Fig. 5 simply shows the category-specific weight
matrix as an illustration. The elements with gray color have
large values. It can be found that the G1-norm effectively
emphasizes the view-wise weight learning corresponding to
each category.

V. EXPERIMENTS

In this section, we will verify the effectiveness of the pro-
posed method by conducting a series experiments compared
to five well known baselines.

A. Experimental Setup

After the filtering for the Google Play dataset, we first
select the top 20 categories with the most apps and then filter
users and apps with less than 5 ratings. We obtain 3065 apps
and 3895 users with 36791 rating records. The numbers of
permissions and text tokens are 83 and 1762, respectively.

We randomly select K% (K = 60, 70, 80), 10%, and
10% of the rating records in each categories as training set,
validation set, and testing set. The parameters of all the
baselines are set to the optimal values. For the proposed
methods, all the dimensions of the core tensor are set as 5,
and the learning rate is set η = 0.1. The maximum numbers of
iterations are set as 400. Grid searching is employed to select
the optimal regularization parameters for all the comparison
methods. Each experiment is repeated for 5 times, and the
mean and standard deviation of each metric in both dataset
are reported in the next subsection.

We use the Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) [13] to evaluate the performance of the
proposed approach and the other compared methods. A smaller
MAE or RMSE means the better performance.

B. Compared Methods

In order to demonstrate the effectiveness of the proposed
CATA approach, we compare the following methods.
• PMF. It is the Probabilistic Matrix Factorization proposed

by Salakhutdinov and Minh [14], and the method is
widely used for rating prediction tasks.

• MTFL. It is the Multi-Task Feature Learning algorithm
[12] which is a multivariate regression model with group
`1-norm.



TABLE III
PERFORMANCE COMPARISON ON THE GOOGLE PLAY DATASET. THE BEST RESULTS ARE LISTED IN BOLD.

Training Metrics PMF MTFL FM MVM MFM CATA CATA-G

60%
MAE 0.9597±0.0157 0.9272±0.0247 0.8964±0.0131 0.8735±0.0299 0.8761±0.0177 0.7650±0.0571 0.7679±0.0152

RMSE 1.3015±0.0234 1.4616±0.0305 1.2133±0.0206 1.2122±0.0353 1.2021±0.0171 1.1720±0.0402 1.1586±0.0209

70%
MAE 0.9463±0.0083 0.8889±0.0053 0.8786±0.0065 0.8496±0.0070 0.8660±0.0350 0.7911±0.0442 0.7864±0.0141

RMSE 1.2834±0.0090 1.4257±0.0117 1.1981±0.0096 1.1836±0.0089 1.1959±0.0122 1.1656±0.0151 1.1626±0.0115

80%
MAE 0.9369±0.0108 0.8575±0.0201 0.8568±0.0112 0.8384±0.0134 0.8439±0.0266 0.7826±0.0274 0.7765±0.0206

RMSE 1.2745±0.0157 1.3904±0.0260 1.1785±0.0131 1.1741±0.0113 1.1815±0.0147 1.1502±0.0211 1.1419±0.0154

TABLE IV
PERFORMANCE COMPARISON ON THE APPLE APP STORE DATASET. THE BEST RESULTS ARE LISTED IN BOLD.

Training Metrics PMF MTFL FM MVM MFM CATA CATA-G

60%
MAE 1.0609±0.0062 0.9856±0.0221 0.9426±0.0038 0.9463±0.0098 0.9311±0.0113 0.9342±0.0087 0.9271±0.0052

RMSE 1.3180±0.0064 1.3064±0.0231 1.2890±0.0069 1.2717±0.0191 1.2422±0.0070 1.2396±0.0059 1.2377±0.0060

70%
MAE 1.0551±0.0056 0.9856±0.0188 0.9345±0.0091 0.9409±0.0135 0.9198±0.0164 0.9246±0.0081 0.9247±0.0077

RMSE 1.3046±0.0091 1.3062±0.0219 1.2745±0.0123 1.2526±0.0157 1.2312±0.0135 1.2257±0.0126 1.2262±0.0112

80%
MAE 1.0541±0.0052 0.9842±0.0130 0.9404±0.0057 0.9427±0.0080 0.9526±0.0206 0.9325±0.0019 0.9288±0.0057

RMSE 1.3065±0.0033 1.2955±0.0153 1.2800±0.0090 1.2493±0.0141 1.2372±0.0083 1.2317±0.0066 1.2286±0.0079

• FM. It is the Factorization Machine [15] that explores
pairwise interactions between all features without view
segmentation. We implement the FM by concatenating
the category indicator vector and all the feature vectors
as the input feature vector.

• MVM. It is the Multi-view Machine [16] that models
the features from multiple views as a tensor structure to
explore the full-order interactions between them.

• MFM. It is the Multilinear Factorization Machines [17]
that learns task-specific feature map and the task-view
shared multilinear structures from full-order interactions
by applying a joint factorization.

• CATA. It is the proposed rating prediction model in
this paper that effectively integrates user’s preference,
app category and features of multiple views and applies
Tucker decomposition to learn the full-order interactions.

• CATA-G. It is the variation of the proposed CATA
that uses group `1-norm for the category-specific weight
matrix D.

C. Performance Comparison

In this subsection, we present the performance comparisons
between the proposed CATA methods and the baselines with
respect to two metrics, i.e., MAE and RMSE.

Table III and Table IV show the performance of all the
prediction methods on the Google Play and Apple App Store
datasets. We can find that the proposed approach consistently
outperforms the other baselines on both datasets in almost all
cases. It demonstrates the superiority of the context-aware pre-
diction approach which utilizes higher-order decomposition to
learn the full-order interactions. It can be observed that CATA-
G method performs better than CATA overall, which indicates
that the employed group `1-norm can effectively improve the
rating prediction accuracy by enforcing the sparsity between
different views of features.

It is not surprising that PMF has poor performance in
both datasets since it doesn’t employ any other features of

apps. MTFL also performs badly mainly because it ignores
the segmentation of feature views and the interactions be-
tween the multiple views of features. Compared to MTFL,
the improvement achieved by FM illustrates the necessity
of feature interactions. Both MVM and MFM outperform
FM, especially for the Google Play dataset, and the results
generated by them are competitive with each other. It is mainly
because that MVM and MFM consider full-order interactions
including the higher-order feature interactions and global bias.
However, it is crucial for predicting app ratings to distinguish
different categories. The propose CATA methods achieve the
best performance because of the consideration of category-
specific multi-view feature interactions. The application of
Tucker decomposition effectively facilitates the performance
as it permits the interactions within each modality [18] while
the CP decomposition used in MFM does not.

Comparing the two datasets, it can be found that the
superiority of the proposed approach is more significant for
Google Play dataset. It is mainly caused by the fewer cate-
gories and feature views in the dataset of Apple’s App Store.
The fewer categories might not sufficiently discriminate the
important features in the specific category, while the fewer
views of features would lead to the lack of some interaction
information between features from different views. Moreover,
the two categories in Apple App Store, i.e., “Free” and “Paid”,
do not have their own unique characteristics and are not
easy to differentiate from each other. Nonetheless, even with
very limited context information, the CATA methods still
outperform the baselines in almost all cases.

D. Impact of Feature Views

In order to explore the impact of the feature views for the
proposed CATA-G method, we conduct experiments based
on different numbers of views. As each rating record in
Apple App Store dataset only has two views, i.e., user and
review text, we use Google Play dataset for the experiments.
Figure 6 shows the prediction performance of the CATA-G
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Fig. 6. Performance of the CATA-G method with different feature views on
Google Play dataset.

method with two and three feature views. Note that U, D, and
P respectively denote user, description text, and permission.
It can be observed that the CATA-G method consistently
performs best when incorporating three views of features,
which benefits from the complementary information generated
by the interactions among the various views of features. It
indicates that the incorporation of multiple views of features
can effectively improve the accuracy of rating prediction for
apps. Consider the results produced by two views, we can find
that the adoption of permission brings better results than that
of description text. This is probably because the features ex-
tracted from description text are more sophisticated and higher
dimensional, which may provide redundant information.

E. Category-Specific Performance

In this section, we further analyze the performance of the
proposed method for each category based on Google Play
dataset. Figure 7 shows the MAE and RMSE values of the
proposed method and the top 2 baseline methods in each
category. The category indexes on the x-axis is sorted by the
numbers of rating records within the categories in an ascending
order. We can find that MFM performs better than MVM in the
categories with few training instances. It indicates that when
few instances are available, the method incorporating the cat-
egory information can improve the performance as it explores
the information from other complementary information. The
performance of the proposed CATA-G method is the worst
with few instances, as CATA-G has more model parameters
to learn and requires more instances. For the categories with
more instances, CATA-G makes significant improvements and
outperforms the other two methods. Compared with MFM, the
superiority of CATA-G is the application of Tucker decompo-
sition which can effectively retain the principal components
of the weight tensor. Another intereting observation in Fig. 7
is that CATA-G makes the top 5 improvements for category
Simulation, Action, Casual, Arcade, and Puzzle (i.e., #11, #12,
#15, #16, and #19). The apps in the five cateogries are game
apps, and it means the features of them are more complicated
as each game app has its specific theme setting. Therefore,
the proposed method has a greater ability to discriminate the
importance of each feature in a complicated feature sets.
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Fig. 7. Category-specific performance of MVM, MFM, and CATA-G on
Google Play dataset. The category indexes on the x-axis is sorted by the
numbers of rating records within the categories in an ascending order.

F. Sensitivity Analysis

There are two hyper-parameters (i.e., α and β) in the pro-
posed CATA approach. They are used to control the trade-off
between the empirical loss and the prior knowledge encoded
by the regularizations. To learn the impacts of the two hyper-
parameters on the performance of app rating prediction, we run
the proposed approach with different values for α and β on the
two datasets. From Fig. 8, we can observe that the performance
is stable for most pairs of the two hyper-parameters. For each
dataset, the effects of the two hyper-parameters on MAE and
RMSE are different. For the Google Play dataset, Figs. 8(a)
and (b) show that the unstable and worse MAE and RMSE are
produced when given a larger α (i.e., α = 1) or a smaller β
(i.e., in the range from 10−2 to 10). And the best performance
is achieved by the relatively large value of β (i.e., in the range
from 102 to 105) with α = 0.1. Figure 8 (c) and (d) report the
results of the Apple App Store dataset, from which we can
find that the performance is more stable than that of Google
Play. Similarly, when the value of α is larger or the value of β
is smaller, the MAE and RMSE are relatively higher. The best
performance of the MAE is achieved by α = 10−3 while the
RMSE is much lower when the value of α is set 10−2. The
value of β is in the range from 100 to 105. For both datasets,
the best performance is generated by a larger β and the larger
β means the model hyper-parameters for the category-specific
weight matrix D can be small. It indicates that the part of
full-order interactions among multiple categories and multiple
views of features is much more important.

VI. RELATED WORK

To the best of our knowledge, this is the first work to
consider mining the full-order interactions among app con-
text information with tensor analysis to facilitate mobile app
recommendation. From the conceptual perspective, two topics
can be seen as closely related to this work: mobile app
recommendation, tensor factorization and its applications. We
give a short overview of these areas and distinguish from other
existing methods.

Mobile App Recommendation has drawn an increaasing
number of attentions as an effective way to alleviate informa-
tion overload in app market. Most of the existing works are
trying to leverage one or more kinds of features to improve
the recommendation performance. Yan et al. [19] developed
the AppJoy system that recommends mobile apps by based
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Fig. 8. Sensitivity analysis of hyper-parameters.

on the analysis of users’ usage records. In [20], Yin et al.
applies users’ view/download sequences to mine the actual
value and tempting value of apps, which are used to build
a recommendation model considering the contest between
apps. Features from the other sources are incorporated in
some works. For instance, to address the cold-start problem,
Lin et al. [21] proposed to apply app followers’ features
collected from Twitter to model the app and estimate which
users may like the app. Zhu et al. [3] presented a method to
evaluate the security risks of apps and proposed a flexible app
recommendation approach combining both apps’ popularity
and users’ security preferences through the modern portfolio
theory. A recommendation model which can capture the trade-
off between app functionality and user privacy preference was
proposed in [2]. However, most of these works did not consider
the complex interactions among the features of different views.
In this work, we propose to model the interactions as a tensor
structure and leverage tensor factorization to learn the latent
relationships.

Tensor Factorization and Applications Tensor factoriza-
tion is a method to divide a tensor in multidimensionality
into many smaller parts. A comprehensive survey on tensor
factorization can be found in [22]. Two well-known methods
in this area are CANDECOMP/PARAFAC (CP) factorization
and Tucker factorization. Both of them can be considered
as higher-order generalization of Singular value decomposi-
tion (SVD) and Principle Component Analysis (PCA). These
methods are used to decompose tensor data into simpler form,
containing better features and intrinsic multi-way structures.
CP factorization has been frequently investigated in the multi-
view learning literature because of its simplicity. Specifically,

[23] first introduced to use the outer product operator to fuse
multi-view features in the tensor structure and proposed a
CP factorization based multi-view feature selection method.
Later, [16] extended this approach to consider the full-order
interactions between features, and proposed a CP factorization
based multi-view machine (MVM) for multi-view prediction
problems. Recently, [17] extended the MVM method to deal
with multi-task multi-view prediction problems and proposed
a CP factorization based multilinear factorization machine.
However, to the best of our knowledge, none of the studies
explored Tucker decomposition in the scenario of multi-view
learning. Tucker decomposition is more general than the CP
decomposition, and permits the interactions within each mode
while the CP decomposition does not [18]. This paper gives an
application of Tucker decomposition into multi-view learning
task.

VII. CONCLUSIONS

In this paper, we propose a context-aware recommendation
approach based on tensor analysis (CATA) for mobile apps.
The proposed CATA approach models the interactions among
the multiple categories and multiple views of features of apps
as a tensor structure. CATA applies the Tucker decomposition
to collectively learn the category-specific features and the
latent relationships integrated in the full-order interactions
without physically building the tensor. To further improve the
performance of app recommendation, we present a group `1
norm regularization for the global category-specific weight
matrix. Extensive experiments based on two real-world app
datasets demonstrate the effectiveness of the proposed CATA
approach.
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