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Abstract—HDBSCAN*, a state-of-the-art density-based hier-
archical clustering method, produces a hierarchical organization
of clusters in a dataset w.r.t. a parameter mpts. While the
performance of HDBSCAN* is robust w.r.t. mpts in the sense
that a small change in mpts typically leads to only a small or no
change in the clustering structure, choosing a “good” mpts value
can be challenging: depending on the data distribution, a high
or low value for mpts may be more appropriate, and certain
data clusters may reveal themselves at different values of mpts.
To explore results for a range of mpts values, however, one has
to run HDBSCAN* for each value in the range independently,
which is computationally inefficient. In this paper, we propose
an efficient approach to compute all HDBSCAN* hierarchies
for a range of mpts values by replacing the graph used by
HDBSCAN* with a much smaller graph that is guaranteed
to contain the required information. An extensive experimental
evaluation shows that with our approach one can obtain over
one hundred hierarchies for the computational cost equivalent
to running HDBSCAN* about 2 times.

I. INTRODUCTION

The discovery of groups within datasets plays an important
role in the exploration and analysis of data. For scenarios
where there is little to no prior knowledge about the data, clus-
tering techniques are widely used. Density-based clustering, in
particular, is a popular clustering paradigm that defines clusters
as high-density regions in the data space, separated by low-
density regions. Algorithms in this class, such as DBSCAN
[10], DENCLUE [14], OPTICS [2] and HDBSCAN* [6], stand
out for their ability to find clusters of arbitrary shapes and to
differentiate between cluster points and noise.

HDBSCAN*, the current state-of-the-art, computes a hi-
erarchy of nested clusters, representing clusters at different
density levels. It generalizes and improves several aspects of
previous algorithms, and allows for a comprehensive frame-
work for cluster analysis, visualization, and unsupervised
outlier detection [6]. It requires a single parameter mpts, a
smoothing factor that can implicitly influence which clusters
are detectable in the cluster hierarchy. Choosing a “correct”
value for mpts is typically not trivial. For instance, consider
the examples in Figure 1, which shows the results of HDB-
SCAN* (with automatic cluster extraction) for two datasets
A and B and two sample mpts values, mpts = 5 and 25,
selected after running HDBSCAN* multiple times to both
datasets w.r.t. mpts ∈ {2, 3, ..., 100}. The main points here
is that (1) there is no single value of mpts that would result
in the extraction of the clusters in both cases, and (2) a

user would not know for a general dataset which value for
mpts is suitable. Dataset A is completely labeled as noise for
mpts > 24, while the two structures in dataset B only start to
be detected as separate clusters for mpts > 24. It may even
be the case that different values of mpts are needed to reveal
clusters in different areas of the data space of a single dataset.

To analyze clustering structures in practice, users typically
run HDBSCAN* (like other algorithms with a parameter)
multiple times with several different mpts values, and explore
the resulting hierarchies. Ideally, one would want to analyze
cluster structures w.r.t. a large range of mpts values, to fully
explore a dataset in a given application. A larger range of
HDBSCAN* solutions for a multiple values of mpts values
offers greater insight into a dataset, also providing additional
opportunities for exploratory data analysis. For instance, using
internal cluster validation measures such as DBCV [21], one
can identify promising density levels from different hier-
archies, produced from different tunings of the algorithm’s
density estimates (based on mpts).

However, one is typically constrained by the required run-
time for running HDBSCAN* once for each desired value of
mpts, resulting from the fact that HDBSCAN* is based on
computing a Minimum Spanning Tree (MST) for a complete
graph, for a given value of mpts. Even though this complete
graph does not need to be explicitly stored, it has O(n2) edges
(for n data points) whose weights depend on mpts. For each
desired value of mpts, these weights have to be re-computed
and an MST has to be constructed for the corresponding
complete graph. We note that the computational cost for the
MST construction depends on the number of edges in the input
graph, O(n2) in this case.

As the main contribution in this paper we provide the-
oretical and practical results that lead us to a method for
computing multiple hierarchies w.r.t a range of mpts val-
ues (k1, . . . , kmax), which is much more efficient than re-
running HDBSCAN* for each mpts in this range. This gives
access to a large range of HDBSCAN* solutions for a low
computational cost, in fact equivalent to the cost of running
HDBSCAN* for only 1 or 2 values of mpts. To achieve that,
we show the following:

1) The smallest known neighborhood graph that contains
the Euclidean Minimum Spanning Tree (EMST) is the
relative neighborhood graph (RNG) — as a first step
towards finding a small, single spanning subgraph that
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(a) A, mpts = 5 (b) A, mpts = 25 (c) B, mpts = 5 (d) B, mpts = 25

Fig. 1: Clusters from datasets A and B for mpts = 5 and 25. Noise points are colored in red in all plots.

can replace the complete graph in HDBSCAN*, while
maintaining HDBSCAN*’s correctness.

2) The proximity measure used in HDBSCAN*, which
depends on mpts, can be used to define RNGs that
can replace the complete graph in HDBSCAN* with a
corresponding RNG, one for each value of mpts.

3) For a range of mpts values, RNGs w.r.t. smaller values
are contained in RNGs w.r.t. larger values of mpts, so
that a single RNG is sufficient to compute the hierarchies
for the whole range of mpts values.

4) Information (related to “core-distances”) that is needed
in HDBSCAN* and that can be computed in a pre-
processing step, allows us to formulate a highly efficient
strategy for computing the single RNG, suitable for a
whole range of mpts values.

These results allow us to replace the (virtual) complete graph
of the data, on which HDBSCAN* is based, with a single, pre-
computed RNG that contains all the edges needed to compute
the hierarchies for every value of mpts ∈ [1, kmax]. Moreover,
this RNG has typically much fewer edges than the complete
graph so its initial construction cost is more than outweighed
by the reduction in edge weight computations.

The remainder of this paper is organized as follows. Section
II discusses related work. Section III covers basic concepts and
techniques used in this paper. Section IV presents our proposal
and proves its correctness. Section V shows and discusses the
results of our experimental evaluation. Section VI addresses
the conclusions and some directions for future work.

II. RELATED WORK

To the best of our knowledge, there is no previous study
of computing multiple clustering hierarchies efficiently. There
has been work on automatic parameter selection strategies
for density-based clustering, e.g., [8], [17], [22], which are
loosely related to the issue illustrated in Figure 1. However,
those proposals are unsuitable to be used with HDBSCAN*,
since they were developed for non-hierarchical clustering
algorithms. In addition, they rely on assumptions that are often
not satisfied in practice and there is not enough evidence to
support their claims about parameter optimality.

If we denote the HDBSCAN*’s (virtual) complete graph for
a given mpts by Gmpts, a line of work related to our goal
of reducing the cost for computing an MST for each Gmpts,

are the works regarding (1) dynamically updating graphs,
specifically MSTs, and (2) neighborhood graphs that could
potentially replace HDBSCAN*’s (virtual) complete graph.

For instance, the works of [7], [13], [15], studied the
problem of maintaining dynamic MSTs. However, these ap-
proaches more suitable when the changes in the underlying
graph take place sequentially, that is, considering each opera-
tion (e.g., edge updates) individually. When it comes to major
changes taking place globally and simultaneously across the
entire graph, as opposed to a few localized changes, a sequence
of applications of these techniques tends to be computationally
very costly, possibly even more costly than the construction
of the entire MST from scratch. This is the case for Gmpts,
which is a complete graph whose majority of edges will likely
change as a result of a change in the mpts value.

The works on neighborhood graphs that are most related
to our proposal aim at speeding up the secial case of com-
puting a Euclidean Minimum Spanning Tree (EMST), by first
computing a spanning subgraph that is guaranteed to contain
all the EMST edges. One of these strategies uses a Delaunay
Triangulation [9] of the complete Euclidean graph G, since it
has been shown that the EMST is contained in the Delaunay
Triangulation of G [23]. Other spanning subgraphs of the
complete graph G that contain the EMST are the Gabriel
Graph [11], [20] and the Relative Neighborhood Graph (RNG)
[23]. Unfortunately, these results are not simply applicable to
our problem because Gmpts lies in a transformed space of
the data that depends on mpts (Gmpts 6= G), and it is one
of the main contributions of this paper to formally show how
to adapt an RNG so that it can be use by HDBSCAN* as a
suitable replacement for Gmpts for different mpts.

III. BACKGROUND

A. HDBSCAN*

HDBSCAN* is a hierarchical, density-based clustering al-
gorithm that improves on previous density-based algorithms
[5]. Its main output is a cluster hierarchy that describes the
nested structure of density-based clusters in a dataset with
respect to a single parameter, mpts, which can be seen as a
smoothing factor that can affect how and if certain clusters are
represented in the hierarchy. A specific level at some “height”
ε in this hierarchy represents a density level, specified by ε and
mpts, in terms of density-based clusters and noise, defined as



follows: i) a point is either a core point w.r.t. ε and mpts iff it
has at least mpts many points in its ε-neighborhood, or a noise
point otherwise; ii) two core points are (directly) ε-reachable
w.r.t. mpts if they are within each other’s ε-neighborhood;
iii) two core points are density-connected w.r.t. ε and mpts if
they are directly or transitively ε-reachable w.r.t. mpts; and iv)
a cluster w.r.t. ε and mpts is a (non-empty) maximal subset
of density connected points w.r.t. ε and mpts. To determine
the nested structure of density-based clusters in a dataset X,
w.r.t. mpts, one needs to know (i) for each point p ∈ X: the
smallest value of ε such that p is a core point w.r.t. ε and mpts,
called p’s “core-distance” w.r.t. mpts; and (ii) for each value
of ε: the clusters and the noise w.r.t. ε and mpts. The latter
information can be derived conceptually from a complete,
edge-weighted graph where nodes represent the points in X,
and the edge weight of an edge between two points p and
q — called the “mutual reachability distance” (w.r.t. mpts)
between p and q — is the smallest value of ε such that p and
q are (directly) ε-reachable w.r.t. mpts. This graph is called
the “Mutual Reachability Graph”, Gmpts, which forms the
conceptual basis of HDBSCAN*, and which we will discuss in
more technical detail in the following subsection. For a specific
density level (ε and mpts), removing all edges from Gmpts

with weights greater than ε reveals the maximal, connected
components, i.e., clusters, of that density level. The density-
based clustering hierarchy can thus be compactly represented
by (and more easily be extracted from) a Minimum Spanning
Tree (MST) of Gmpts.

The HDBSCAN* hierarchy w.r.t. mpts for a dataset X is
computed in the following way: First, the core distances of all
points in X w.r.t. mpts are computed. Then, an MST of Gmpts

is dynamically computed (without materializing Gmpts). From
this MST, the complete density-based cluster hierarchy w.r.t.
mpts is then extracted, by removing edges from the MST
in descending order of edge weight, and (re-)labeling the
connected components and noise at the resulting “next” level.

B. Mutual Reachability Graphs

The Gmpts is a complete, edge-weighted graph that rep-
resents the mutual reachability relationship between any two
points in a dataset X. Each point in X corresponds to a vertex,
and between each pair of points p and q, there is an edge
whose weight is defined as the Mutual Reachability Distance
between p and q w.r.t. mpts, mrdmpts [19]:

mrdmpts(p, q) = max{cmpts(p), cmpts(q), d(p, q)} (1)

where d(·, ·) represents the underlying distance function (typ-
ically Euclidean distance), and cmpts(p) represents the core
distance of p, which is formally the distance from p to its
mpts nearest neighbor, mpts -NN(p):

cmpts(p) = d(p,mpts -NN(p)) (2)

In this work, we assume that the underlying distance d(·, ·)
satisfies Symmetry and Triangle Inequality, and, without loss
of generality, we use Euclidean Distance in our examples.

Intuitively, an edge weight in Gmpts corresponds to the
minimum radius ε at which the corresponding endpoints are
directly ε-reachable w.r.t. mpts, i.e., the smallest distance at
which both points are in each other’s ε-neighborhood, and both
ε-neighborhoods contain at least mpts points.

The Mutual Reachability Graph has the following important
characteristics related to mrdmpts and to how these edge
weights change when changing the value of mpts: 1) Increas-
ing the value of mpts leads, in general, to higher values of
cmpts, since cmpts is the mpts-th nearest neighbor distance;
2) When increasing the value of cmpts, more edges will have
the same edge weight, since a point p with a high cmpts

determines the weight of all edges between p and its mpts-
nearest neighbors that have a smaller cmpts than p (given that
mrdmpts is defined by a max function); 3) When decreasing
the value of mpts, edge weights can either decrease or remain
the same, but never increase.

The authors of HDBSCAN* [5], [6] deem Gmpts a con-
ceptual graph as it does not need to be explicitly stored; edge
weights can be computed on demand, when needed.

IV. APPROACH

At the core of HDBSCAN* is the computation of an MST
from the Gmpts of a dataset. The time needed to compute
an MST depends on the number of edges of the input graph,
which in case of Gmpts is a complete graph. Even if Gmpts

is not materialized, O(n2) edge weights have to be processed
for a dataset with n points.

When HDBSCAN* has to be run for a range, k1, . . . , kmax,
of mpts values, many MSTs have to be computed for different
Gmpts graphs, one for each value of mpts ∈ {k1, . . . , kmax}.
Conceptually, we can think of each Gmpts being obtained by
taking the complete, unweighted graph G of the dataset, and
then incorporate into it appropriate edge weights, which means
that edge weights of Gmpts have to be re-computed for each
mpts ∈ {k1, . . . , kmax} before an MST is constructed.

One way to speed up the execution time of HDBSCAN*
over all values of mpts ∈ {k1, . . . , kmax}, even with a
naive approach of re-running HDBSCAN* for each mpts
value, is to execute k-Nearest-Neigbor (k-NN) queries for
each point only once, using the largest value kmax in the
range. When computing the core distance of a point p w.r.t.
mpts = kmax using a kmax-NN query, the information
about all smaller core distances of p (i.e., w.r.t. mpts = kj ,
where j ≤ max), is readily available as part of the kmax-
NN query computation. Hence, the core distances for all
values of mpts ∈ {k1, . . . , kmax} can be pre-computed and
stored so that the re-computation of edge weights (reachability
distances) for the different Gmpts graphs does not require
additional k-NN-queries. However, even with pre-computed
core distances, a major factor determining the total runtime
of HDBSCAN*, over all values of mpts ∈ {k1, . . . , kmax},
is the large number of edges that have to be processed in the
MST constructions for each value of mpts.

To reduce the number of edges that have to be processed,
we can ask the questions: is it possible to construct a single



graph that is significantly smaller than a complete graph, and
that contains all the edges needed to compute the MST of
Gmpts for all mpts ∈ {k1, . . . , kmax}? If the answer is
yes, we can use this graph instead of the complete graph
in HDBSCAN*, without changing the correctness of the
result: we can just re-compute its edge weights instead of
the edge weights of the complete graph, for each value of
mpts ∈ {k1, . . . , kmax}, and compute the MST of this edge-
weighted graph. In the following, we will formally prove that
one of the known graphs can be adapted so that it can be used
in our approach to running HDBSCAN* for each value of
mpts ∈ {k1, . . . , kmax}. How much speed-up can be achieved
in this manner depends, however, not only on the reduction
in number of edges from the complete graph, but also on the
added computational cost for constructing this graph.

A. Results from Computational Geometry

Consider first the special case of mpts = 1, where all core
distances are equal to zero, and thus the mutual reachability
distance mrdmpts reduces to the underlying distance function.
With Euclidean distance, what HDBSCAN* has to compute
then is the Euclidean Minimum Spanning Tree (EMST) of a
dataset X, i.e., the MST of a complete graph of X (containing
an edge between every pair of points/vertexes) with Euclidean
distance between points as edge weights.

For the EMST, there are known results from computational
geometry that relate the EMST to some of the so-called
proximity graphs, in which two points are connected by an
edge whenever a certain spatial constraint is satisfied. The
most popular ones are the Delaunay Triangulation (DT), the
Gabriel Graph (GG) and the Relative Neighborhood Graph
(RNG), for which it has been shown that [23]:

EMST ⊆ RNG ⊆ GG ⊆ DT (3)

The RNG and GG are special cases of a family of graphs
called β-skeletons [18], which can range from the complete
graph to the empty graph, when β goes from 0 to ∞. A value
of β = 1 results in the GG and β = 2 results in the RNG.

Given this result, the RNG, or possibly a β-skeleton with
even fewer edges, may be a good replacement for a complete
graph, if we can answer the following questions positively:

1) Can we determine the smallest β-skeleton, in terms of
number of edges, that contains the EMST as a subgraph?

2) Can the results we have for Euclidean distance be gen-
eralized to other reachability distances w.r.t. mpts > 1?

3) Is there a single β-skeleton that contains all the edges
needed to compute an MST of Gmpts for each value of
mpts in a range of values k1, . . . , kmax?

4) Does the reduction in the number of edges justify
the additional computational cost for constructing and
materializing a β-skeleton for our task?

We will answer these questions in the following subsections.

B. The Smallest β-Skeleton Containing the EMST

The family of β-skeletons for a set of d-dimensional points
is defined in the following way. For a given β, an edge exists

a b

c

(a) β = 2

a b

c

(b) β > 2

Fig. 2: β-skeletons

between two points a and b if the intersection of the two balls
centered at (β/2)a + (1 − β/2)b and (1 − β/2)a + (β/2)b,
both with radius βd(a, b)/2, is empty. For instance, when
β = 2 (the case of an RNG), the centers of the two balls
coincide with the points a and b, and their radius is equal
to d(a, b), as illustrated in Figure 2a. The highlighted region,
called lune(a, b), must be empty for a and b to be connected
via an edge. For β = 2, one can equivalently say that an edge
exists between a and b if

d(a, b) ≤ max{d(a, c), d(b, c)},∀c 6= a, b (4)

The RNG is guaranteed to contain the EMST, which has
been shown in [23]. The essence of the proof can be demon-
strated considering a configuration of three points a, b, c, such
that lune(a, b) contains c, as shown in Figure 3a. The edges
(a, b), (a, c) and (b, c) cannot all be part of an EMST, as
they form a cycle. Since (a, b) is the largest of these edges,
(a, b) cannot be part of the EMST. Thus, a necessary (yet not
sufficient) condition for an edge (a, b) to be in an EMST is that
all other points must lie outside lune(a, b). In other words, we
can remove all edges (a, b) ∈ E from the complete graph G
whose points a and b have a non-empty lune, and be sure that
the resulting graph (V,E \ {(a, b) : lune(a, b) 6= ∅}) = RNG
contains the EMST. Here, we prove by counter example that
the RNG is actually the smallest β-skeleton graph (i.e., there
is no β > 2) with that property. Consider a dataset with three
points a, b and c, located at equal distance from each other, as
illustrated in Figure 2: When β = 2 (Figure 2a), according to
Inequality (4), there is an edge between every pair of points
in the 2-skeleton of this dataset. For any β > 2 (Figure
2b), however, the radius of the balls that define lune(a, b)
is increased by a factor of (β − 2)/2, and the centers of the
balls are “pulled apart” accordingly, so that c (equidistant from
a and b) must now be inside lune(a, b). Thus, a and b are
(by definition of β-skeleton) no longer connected by an edge.
Analogously, there is no edge between the other pairs of points
for β > 2, resulting in an empty β-skeleton that obviously
cannot contain the EMST (i.e., EMST * β-skeleton ∀β > 2).
From this result and from the known result in Expression (3),
the RNG (β = 2) is thus the smallest β-skeleton graph that
contains the EMST and, for this reason, we choose it as the
basis for further analysis.



C. The RNG w.r.t. Mutual Reachability Distance

In this section, we prove that the results for RNGs in
Euclidean space can be extended to the space of mutual
reachability distances.

Notation: (1) Let G = (V,E) denote the undirected,
unweighted complete graph corresponding to a dataset, i.e.,
the set of vertexes V represents the data points, and the set
of edges E ⊂ V × V represents all pairs of vertexes/points.
(2) Let Gi = (V,E,mrdi) be the mutual reachability graph
Gmpts for mpts = i, i.e., the weighted, complete graph for
the dataset with edge weights equal to mrdi, the mutual
reachability distance w.r.t. mpts = i.

We can define a relative neighborhood graph w.r.t. the
mutual reachability distance mrdi, RNGi, as follows:

Definition 1: RNGi = (V,E′) where E′ ⊆ E and there is
an edge (a, b) ∈ E′ if and only if:

mrdi(a, b) ≤ max{mrdi(a, c),mrdi(b, c)},∀c 6= a, b;

and when there is an edge (a, b) ∈ E′, we say that a and
b are relative neighbors w.r.t mrdi. The unweighted graph
RNGi can be extended with edge weights defined by a
distance function mrdj , which results in the edge weighed
graph RNGi

j , where the weight of an edge connecting two
points p and q is equal to mrdj(p, q).

We can prove that the RNGi
i contains the MST of Gi,

and thus we can replace Gi with RNGi
i when running

HDBSCAN* for mpts = i.
Theorem 1: MST (Gi) ⊆ RNGi

i

Proof 1: The argument for why EMST ⊆ RNG, which
has been shown in [23], relies in essence only on the fact that
the Euclidean Distance is symmetric and satisfies the triangle
inequality; it is, in fact valid for any distance function with
these properties, which are needed to guarantee that (a, b) is
in fact the largest edge in configurations like the one shown
in Figure 3a. Consequently, we only need to show that mrdi
satisfies symmetry and triangle inequality.

For symmetry, we can easily see from the definition of
mrdmpts in Equation (1) that mrdi(a, b) = mrdi(b, a) (given
that the underlying distance d is symmetric by assumption).

For the triangle inequality, we have to show that for all
a, b, c in a dataset X:

mrdi(a, c) ≤ mrdi(a, b) +mrdi(b, c) (5)

By assumption (Section III), the underling distance d in the
definition of mrdi satisfies the triangle inequality, i.e.:

d(a, c) ≤ d(a, b) + d(b, c) (6)

There are three cases according to the definition of
mrdi(a, c), in all of which the triangle inequality must hold:

1) mrdi(a, c) = ci(a). The max function in the definition
of mrdi implies ci(a) ≤ mrdi(a, b). Hence, it follows that
mrdi(a, c) = ci(a) ≤ mrdi(a, b) ≤ mrdi(a, b) +mrdi(b, c).

2) mrdi(a, c) = ci(c). Analogous to case 1).
3) mrdi(a, c) = d(a, c). Since for any x, y it holds that

x ≤ max(x, y), we can replace the terms on the right side

a b

c

(a)

a b

c

(b)

Fig. 3: Illustration for proofs of Theorem 1 and 2

of Inequality (6) with max functions to obtain, d(a, c) ≤
max{d(a, b), ci(a), ci(b)} + max{d(b, c), ci(b), ci(c)} =
mrdi(a, b) + mrdi(b, c), and hence, also in this case:
mrdi(a, c) = d(a, c) ≤ mrdi(a, b) +mrdi(b, c).

Since mrdi satisfies symmetry and triangle inequality, it
follows from [23] that RNGi

i contains the MST of Gi.

D. One RNG To Rule Them All

We have established that we can use RNGi
i as a substitute

for Gi in HDBSCAN*. We will now show that all MSTs for
HDBSCAN* hierarchies w.r.t. mpts ∈ {k1, . . . , kmax} can be
obtained from the single graph RNGkmax . For this we only
need to show that RNGi ⊆ RNGkmax , for all i < kmax. If
this property holds, we can use the single graph RNGkmax

to compute the MST of any Gi by first equipping RNGkmax

with edge weights mrdi, and then computing the MST of
this edge-weighted graph RNGkmax

i . Compared to the naive
approach that uses the complete graph G in this manner, we
should be able to speed up the MST computations by using a
graph that has typically much fewer edges.

Theorem 2: RNGi ⊆ RNGkmax , ∀i < kmax.
Proof 2: To prove this by contradiction, assume that there

is a j < kmax for which this property does not hold, i.e.,
RNGj 6⊆ RNGkmax . Then, there must be at least one
edge (a, b) that belongs to RNGj but does not belong to
RNGkmax . According to the condition that defines relative
neighborhood graphs, this means that there is a point c, such
that for distance mrdkmax , c ∈ lune(a, b), and for distance
mrdj , c /∈ lune(a, b), as illustrated in Figure 3.

For RNGkmax (Figure 3a) this means that the following
inequalities must both be satisfied so that c ∈ lune(a, b).

mrdkmax
(a, b) > mrdkmax

(a, c) (7)
mrdkmax

(a, b) > mrdkmax
(b, c) (8)

For RNGj (Figure 3b) this means that at least one of the
following inequalities must be satisfied so that c /∈ lune(a, b).

mrdj(a, b) ≤ mrdj(a, c) (9)
mrdj(a, b) ≤ mrdj(b, c) (10)

Using the definition of mrdkmax
, we can rewrite Inequalities

(7) and (8) as follows:

max{ckmax
(a), ckmax

(b), d(a, b)}
>

max{ckmax
(a), ckmax

(c), d(a, c)}
(11)



max{ckmax
(a), ckmax

(b), d(a, b)}
>

max{ckmax
(b), ckmax

(c), d(b, c)}
(12)

There are theoretically three cases, ckmax(a), ckmax(b), and
d(a, b), that the max function on the left-hand side of the
Inequalities (11) and (12) can evaluate to. However, for both
inequalities to be true simultaneously, only d(a, b) is possible:

1) Case max{ckmax(a), ckmax(b), d(a, b)} = ckmax(a).
In this case, we get from Inequality (11) the following:

ckmax(a) > max{ckmax(a), ckmax(c), d(a, c)}

But since max(ckmax
(a), . . .) ≥ ckmax

(a), it follows that
ckmax(a) > ckmax(a), a contradiction!

2) Case max{ckmax
(a), ckmax

(b), d(a, b)} = ckmax
(b).

In this case, analogously to the previous case, if follows from
Inequality (12) that ckmax

(b) > ckmax
(b), a contradiction!

3) Case max{ckmax(a), ckmax(b), d(a, b)} = d(a, b).
In this case there is no contradiction and, therefore, it is the
only option to satisfy both (11) and (12) simultaneously.

Having established that the left-hand side of Inequalities
(11) and (12) must be equal to d(a, b), we can infer that all
the following inequalities must hold.

d(a, b) > ckmax(a) (13)
d(a, b) > ckmax(b) (14)
d(a, b) > ckmax(c) (15)
d(a, b) > d(a, c) (16)
d(a, b) > d(b, c) (17)

Let us now turn to the Inequalities (9) and (10) of which
at least one must also hold, under our assumption that c /∈
lune(a, b) for distance mrdj . We can rewrite (9), using the
definition of mrdj as follows:

max{cj(a), cj(c), d(a, c)}
≥

max{cj(a), cj(b), d(a, b)}
(18)

There are again three possible cases, cj(a), cj(c), d(a, c),
that the max function on the left-hand side of Inequality
(18) can evaluate to, and we show that each one leads to a
contradiction to what we already know about a, b, and c:

1) max{cj(a), cj(c), d(a, c)} = cj(a).
In this case, Inequality (18) yields the following.

cj(a) ≥ d(a, b) (19)

Since core distances cmpts can only increase when mpts
increases, we have ckmax(a) ≥ cj(a) and, accordingly, we
obtain the following from Inequality (19).

ckmax(a) ≥ d(a, b) (20)

This contradicts Inequality (13)!
2) max{cj(a), cj(c), d(a, c)} = cj(c).

Analogously to the previous case, from (18) we get (21), and

then from ckmax(c) ≥ cj(c) we get (22), which contradicts
Inequality (15)!

cj(c) ≥ d(a, b) (21)
ckmax(c) ≥ d(a, b) (22)

3) max{cj(a), cj(c), d(a, c)} = d(a, c).
In this case, we get from Inequality (18) that d(a, c) ≥ d(a, b),
which is a contradiction to Inequality (16)!

This proves that Inequality (9) cannot hold under our
assumption. We can prove analogously the same result for
Inequality (10), which contradicts our assumption that there
is a j < kmax such that RNGj 6⊆ RNGkmax . Hence
RNGi ⊆ RNGkmax , ∀i ≤ kmax.

When we combine the results of Theorems 1 and 2, we
obtain the following corollary, which states that the MST (Gi)
for all i < kmax is contained in RNGkmax , and can thus be
obtained by extending RNGkmax with edge weights mrdi,
and computing the MST of this graph RNGkmax

i .
Corollary 1: MST (Gi) ⊆ RNGkmax

i , ∀i ≤ kmax.
Proof 3: MST (Gi) ⊆ RNGi

i (Theorem 1), and RNGi ⊆
RNGkmax (Theorem 2). By extending both graphs from
Theorem 2 with edge weights mrdi, we obtain RNGi

i ⊆
RNGkmax

i . Hence, MST (Gi) ⊆ RNGkmax
i .

E. RNG Computation

The performance gain when running HDBSCAN* w.r.t. all
values of mpts ∈ {k1, . . . , kmax} by using RNGkmax instead
of the complete graph G of a dataset relies on a number of
factors: the complexity of the additional time to construct
RNGkmax

i (recall that G does not have to be explicitly
constructed), the number of edges in RNGkmax

i compared to
G, and the number of hierarchies kmax to be computed.

The naive way to compute an RNG for a set of points
X is to check for every pair of points p, q ∈ X and each
point c, whether c is inside lune(p, q). This algorithm runs
in O(n3) time, which is inefficient for large datasets. More
efficient strategies are surveyed in [16].

We adopt the approach in [1] —which has sub-quadratic
expected time complexity under the assumption that points are
in general position— with an adaptation of the definition of
well-separated pairs proposed in [4]. This approach has three
main steps.

In the first step, the entire dataset is decomposed recursively
into smaller and smaller subsets (see [4] for details), so
that all pairs of obtained subsets (A,B) are well-separated.
The notion of well-separability requires the smallest possible
distance between any point a ∈ A to any point b ∈ B to
be larger than the largest possible distance between points
within each of the two sets. For efficiency reasons one does
not compute pairwise distances, but instead uses “safe” bounds
that can be efficiently computed to determine well-separability
of two sets. The distance is in our case the mutual reachability
distance mrdmpts, and the smallest possible mrdmpts between
two point sets A and B is, because of the max function in the
definition of mrdmpts, the shortest possible Euclidean distance
between a point a ∈ A and a point b ∈ B. This distance



D(A,B) can be bounded, as in [4], by the distance between
the smallest enclosing balls BA and BB around the minimum
bounding hyper-rectangles enclosing A and B, respectively.
Then, we can define that A and B are well-separated if:

D(A,B) ≥
s ·max{diameter(BA), diameter(BB), max

p∈A∪B
(cmpts(p))}

max{diameter(BA), diameter(BB),maxp∈A∪B(cmpts(p))}
represents a bound on the largest possible mutual reachability
distance within the sets A and B. The separation factor s > 0
determines how far both sets have to be from each other to be
considered well-separated. The larger the separation factor,
the larger the number of generated pairs. For 0 < s < 1,
there is no guarantee that the resulting graph will contain the
MST edges, and hence we adopt s = 1.

In the second step, all the well-separated pairs are connected
with edges such that a supergraph of the RNG, which we will
call RNG**, is obtained. For each pair (A,B), the points
ai ∈ A and bj ∈ B are connected with an edge if they
are Symmetric Bichromatic Closest Neighbors (SBCN), i.e.,
if there is no other point in B that is closer to ai than bj and
vice versa. For example, in Figure 4, the points a3 and b3 are
SBCN and thus the edge (a3, b3) is part of the RNG**.

The third step of the RNG computation consists of filtering
RNG** to remove edges that are not in the RNG. Although
RNG** has typically far fewer edges than the complete graph
G, a naive filtering approach, which checks for each edge
(a, b) in RNG**whether each point c is in lune(a, b), can
be extremely time consuming for large datasets. Therefore,
we propose an alternative strategy using information that
is computed anyway for HDBSCAN*, which can make the
overall filtering process more efficient. It is based on the
intuition that points closer to a or b are more likely in
lune(a, b) than points that are farther away. For computing
multiple HDBSCAN* hierarchies, we initially compute all the
needed core distances by performing a single kmax-nearest
neighbor query for each point, which means that we do find
the kmax closest points to each point. To support our pruning
strategy, we only have to store in addition to the ci values also
the actual mpts-nearest neighbors. Using this information, for
each edge (a, b) with weight w, we first check if any of the
mpts-nearest neighbor of a and b is inside lune(a, b). As soon
as we find one that is inside, we can safely remove the edge
without further checking. If none of those neighbors is inside
lune(a, b), we check if w is equal to the core-distance of a
or b. If that is the case (say for a), we know that no other
point can be in lune(a, b) (since lune(a, b) is a subset of the
ball around a with radius w and we have checked all points
inside this ball); hence we know without further checking that
the edge is in the RNG. We can choose to perform only these
2 × kmax checks per edge to obtain a graph, which we call
RNG*, that is smaller than RNG** but may contain more
edges than the RNG. To obtain the exact RNG, we search the
entire dataset whenever we cannot exclude or include an edge

a1
a2

a3

b1

b2b3

A B

Fig. 4: Symmetric Bichromatic Closest Neighbor (SBCN)

based on the 2×kmax tests, to determine whether or not there
is a point in lune(a, b).

Algorithm 1
Input: X: dataset; n: |X|; [k1, . . . , kmax]: mpts range; T : graph to

be computed (RNG, RNG, RNG**);
1: for i ∈ {1, ..., n} do
2: for j ∈ {k1, . . . , kmax} do
3: M [i][j] ← (jth-NN(i), cj(i));
4:
5: wspd←WSPD(X,M);
6:
7: for (A,B) ∈ wspd do
8: RNGkmax ← RNGkmax ∪ SBCN(A,B);

9:
10: remove← False;
11:
12: if T 6= RNG** then
13: for (a, b) ∈ RNGkmax do
14: for x ∈ M [a] ∪ M [b] do
15: if x ∈ lune(a, b) then
16: remove← True;
17: break;
18: if ¬ remove then
19: if mrdkmax(a, b) = max{ckmax(a), ckmax(b)} then
20: remove← False;
21: continue;
22: if ¬ remove and T = RNG then
23: for x ∈ X do
24: if x ∈ lune(a, b) then
25: remove← True;
26: break;
27: if remove then
28: RNGkmax ← RNGkmax \ (a, b);
29: remove← False;
30:
31: for mpts ∈ {k1, . . . , kmax} do
32: MSTmpts ←MST (RNGkmax

mpts );
33: compute-hierarchy(MSTmpts);

The pseudo-code for the overall strategy is shown in Algo-
rithm 1. It takes as input a dataset X with n points, a range of
mpts values, [k1, . . . , kmax], and the type T of the RNG to
be computed. All the core-distances for each point x ∈ X and
its corresponding k-NN neighbors, for k ∈ {k1, . . . , kmax},
are computed in Lines 1-3. It is important to emphasize that
a single kmax-NN query is performed for each x ∈ X. The
statement in Line 3 illustrates the format of the entries of
the matrix M . Next, the Well-Separated Pairs Decomposition
(WSPD) is performed in Line 5. In Lines 7-8, the RNG** is
constructed by adding one edge for each of the Symmetric



Bichromatic Closest Neighbors (SBCN) between the pairs
(A,B) ∈ wspd. The edge filtering occurs between Lines
13-29. In case the RNG** is chosen, the filtering process
is completely skipped (Line 12). Otherwise (both RNG* and
RNG), the filter steps based on the kmax-nearest neighbors
are performed. The last filter, based on the sequential scan of
the dataset (Lines 23-26), is only performed when the RNG
is to be computed. At the end (Lines 31-33), the MSTs and
hierarchies are computed for all the values of mpts ≤ kmax,
using the computed RNG.

Note that, if one has to compute just a single MST from
G, even though this operation is quadratic in the number of
points since it depends on the number of edges in G, it may not
pay off to first construct RNGkmax . However, as the number
of hierarchies that have to be computed increases, the initial
overhead of constructing RNGkmax can substantially speed up
the overall time to complete the kmax MSTs, if the number
of edges in RNGkmax is much smaller than in G.

V. EXPERIMENTS

We conducted experiments to evaluate the efficiency of
the proposed method with respect to changes in size and
dimensionality of the dataset, and, most importantly, with
respect to the number of hierarchies to be computed. We also
show the RNG, RNG*, and RNG** sizes in comparison to
the size of the Gmpts, since the difference in the number of
edges is the source of our performance gain.

To the best of our knowledge, there is no other strategy
in the literature that aims at computing multiple hierarchies
efficiently. Thus, we compare our strategy to a straightforward
baseline that runs HDBSCAN* multiple times, one for each
mpts value in the given range, but with the optimization of
pre-computing the core distances for all points, in the same
way we do in our approach (see Section IV), so that kNN
queries are only executed once and not for each value of mpts.

To study the computational trade-offs of the different edge
filtering strategies described in Subsection IV-E, we show
results for three variants: RNG**-HDBSCAN*, which just
uses the RNG** without any additional filtering; RNG*-
HDBSCAN*, which applies only the filtering based on kmax

nearest neighbors; and RNG-HDBSCAN*, which applies the
complete filtering to obtain the exact RNG.

All methods have been implemented on top of the original
HDBSCAN* code, provided by the authors of [6], in Java. The
core-distances are computed with the aid of a Kd-Tree index
structure, adapted from [24]. The experiments were performed
in a virtual machine with 64GB RAM, running Ubuntu. For
runtime experiments, we measure the total running time to
compute core-distances and MSTs, and report the average
runtime over 5 experiments.

The datasets were obtained using the generator proposed in
[12], varying the number of dimensions from 2 to 128, the
number of points from 16k to 1M, and the value of kmax

from 2 to 128. Table I shows these values and indicates in
bold the default value for each variable when other variables
are varied.

TABLE I: Experimental Setup

Variables Values

#points 16k, 32k, 64k, 128k, 256k, 512k, 1M

#dimensions 2, 4, 8, 16, 32, 64, 128

kmax 2, 4, 8, 16, 32, 64, 128

A. Effect of Dataset Size

Figure 5a shows the total runtime as a function of the
dataset size with default values for the remaining variables
(i.e., computing 16 MSTs in 16-dimensional datasets). As
expected, the runtime tends to increase as the number of points
increases for all methods. For datasets up to 64k points, all
strategies have similar performances, but for larger datasets the
difference between our approaches and the baseline increases
significantly as the number of points increases. For 128k
points, the baseline strategy already takes approximately twice
as much time as our approaches. For 1024k points, we actually
interrupted each run of the baseline before it finished.

Figure 6a shows the number of edges in Gmpts, RNG**,
RNG*, and RNG, as a function of the dataset size. As
expected, the number of edges increases with the number of
points. However, the RNGs are significantly smaller than the
complete graph for all dataset sizes. In fact, even for the largest
dataset, the sizes of the RNG* and RNG are smaller than the
size of the Gmpts for the smallest dataset.

When comparing RNG and RNG**, the time spent filtering
to obtain the exact RNG is compensated by a smaller graph
size, which in turn results in faster MST computations. This
explains why both RNG and RNG** exhibit similar running
times in Figure 5a, despite the differences in their sizes. Only
when the partial fast filter based on k-nearest neighbors is
applied to obtain RNG*, the total runtime is faster. This is
because the filter is effective in producing a graph that is
almost as small as the exact RNG, yet in less time.

B. Effect of Dimensionality

Figure 5b shows the effect of dataset dimensionality on the
runtimes. As expected, all approaches are affected by increas-
ing dimensionality, since most of the underlying techniques for
clustering, kNN queries, and RNG computation are bound to
eventually become less effective as dimensionality increases.
This is due to a number of effects that are generally referred
to as “curse of dimensionality.” However, since our datasets
do contain cluster structures, these effects are not critically
severe even in 128 dimensions.

We can observe that all RNG-based strategies perform
better than the baseline in all datasets, but as dimensionality
increases, the difference between the unfiltered RNG (RNG**)
and the filtered versions (RNG* and RNG) increases. This
can be explained by looking at the number of graph edges,
as shown in Figure 6b. The size of the exact RNG is barely
affected by an increase of dimensionality in these datasets,
while the unfiltered RNG** exhibits a pronounced growth in
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Fig. 5: Runtime as a function of the dataset size, dataset dimensionality, and kmax. (Note that the x-axis is in log scale.)
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Fig. 7: Ratio: runtime to compute kmax MSTs/hierarchies divided by the runtime to compute a single MST/hierarchy.

the number of edges, which approaches the complete graph
Gmpts. This shows that the generation of well-separated pairs
is very sensitive to dimensionality, becoming less effective in
implicitly excluding edges that cannot be in an RNG. On
the other hand, the exact relative neighborhood graph still
has significantly fewer edges than a complete graph in these
scenarios —although, theoretically, it also must eventually
approach the complete graph [3], [16].

Notably, the number of edges for RNG* increases only
slightly as the dimensionality increases, which shows that
the pruning strategy using only the pre-computed k-nearest

neighbors (16, as kmax = 16 in this experiment) stays quite
effective, even in the 128-dimensional datasets, resulting in
the best runtime performance overall.

C. Effect of Upper Limit kmax

Figure 5c and Table II show the runtimes w.r.t. kmax. The
runtime of all our methods is very low compared to the
baseline, for which runtime increases linearly, as expected.
The runtime of HDBSCAN*-RNG** increases very slightly
with kmax as also the number of edges increases slightly, but
stays significantly below the number of edges in Gmpts, as
shown in Figure 6c.



TABLE II: kmax vs. Runtime (min.)

kmax HDBSCAN* RNG**-HDBSCAN* RNG*-HDBSCAN* RNG-HDBSCAN*

2 12 12 12 99
4 33 12 12 45
8 79 14 12 22
16 169 17 13 15
32 363 23 14 15
64 781 40 18 19

128 1759 72 29 30

RNG-HDBSCAN* shows a slightly higher runtime for
mpts = 2, which then decreases for mpts = 4 and mpts = 8,
after which it stays almost constant and becomes almost indis-
tinguishable in performance to RNG*-HDBSCAN*. RNG*-
HDBSCAN*, which only uses the kmax-nearest neighbors of
objects for pruning RNG**, shows the most stable runtime
behavior; its increase in runtime as kmax increases is almost
unnoticeable. For the largest value of kmax, its difference in
runtime to the baseline method corresponds to a speedup of
about 60 times. The runtime behavior of RNG and RNG* can
be explained by the number of edges in RNG and RNG*,
shown in Figure 6c. For mpts = 2, the number of edges in
RNG* is much larger than in RNG (while still being smaller
than in RNG**). The reason is that the the filtering strategy
based on the kmax-NN is not yet very effective when only the
two nearest neighbors are considered. In this case, for all the
edges that are removed from RNG* to obtain RNG, a sequen-
tial scan has to be performed, which is overall more costly in
terms of runtime than the gain in runtime for computing the
MST of RNG with fewer edges. These results also show that
(1) computing MSTs is very fast, compared to the rest of the
computation, if the underlying graphs are already relatively
small compared to the complete graph, and (2) our pruning
heuristic based on kmax-NNs becomes more effective as kmax

increases, leading to an almost indistinguishable performance
between RNG and RNG* for kmax ≥ 16.

While the observed speedups are impressive, the signifi-
cance of our contribution becomes even more clear, if we look
at the runtime from a different perspective. Figure 7 shows the
ratio of the runtime to compute kmax MSTs over the runtime
to compute a single MST. RNG* exhibits a very stable ratio
of about 2 for all values of kmax, i.e, we can use it to compute
as many as 128 MSTs/hierarchies for the computational cost
of naively computing about 2 MSTs/hierarchies.

VI. CONCLUSION

We presented an efficient strategy for computing multiple
density-based clustering hierarchies. We formally showed that
the use of the Relative Neighborhood Graph as a substitute
for the Mutual Reachability Graph is advantageous when one
wants to explore state-of-the-art HDBSCAN* solutions w.r.t.
multiple values of mpts, while ensuring theoretical correctness
of results. Our experiments showed that the proposed method
can be significantly faster than a baseline strategy based
on running HDBSCAN* exhaustively (yet in an optimized
way) for different values of mpts. In particular, it scales

considerably better when running on large datasets and more
prominently for broader ranges of mpts values.

In our future work we intend to investigate strategies to
simultaneously explore, visualize and possibly combine the
whole spectrum of clustering solutions that are available both
across multiple hierarchies (corresponding to different values
of mpts) as well as across different hierarchical/density levels,
taking into account the quality of these solutions according to
different unsupervised criteria.
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