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Abstract—Over the past decades, numerous techniques have
been developed to forecast the temporal evolution of epidemic
outbreaks. This paper proposes an approach that combines
high resolution agent-based models using realistic social contact
networks for simulating epidemic evolution with a particle filter
based method for assimilation based forecasting. Agent-based
modeling using realistic social contact networks provides two
key advantages: (i) they capture the causal processes underlying
the epidemic and hence are useful to understand the role of
interventions on the course of the epidemics – typically time
series models cannot capture this and as a result often do not
perform well in such situations; (ii) they provide detailed forecast
information – this allows us to produce forecast at high levels of
temporal, spatial and social granularity. We also propose a new
variation of particle filter technique called beam search particle
filtering. The modification allows us to more efficiently search
the parameter space which is necessitated by the fact that agent-
based techniques are computationally expensive.

We illustrate our methodology on the synthetic dataset of
Ebola provided as a part of the NSF/NIH Ebola forecasting
challenge. Our results show the efficacy of the proposed approach
and suggest that agent-based causal models can be combined with
filtering techniques to yield a new class of assimilation models
for infectious disease forecasting.

I. INTRODUCTION

Epidemics cause significant social, economic, and health

impact on societies [1]. More than 60 million cases of H1N1

were reported between April 2009 and April 2010 in the

United States. Infectious disease outbreaks of Ebola in West

Africa (2014), Cholera in Bangladesh (2011), and Zika in

Brazil (2015) remind us that despite of significant progress

by authorities around the world, infectious diseases continue

to be an important global societal challenge.

Reliable and granular forecasting of infectious diseases

facilitates intervention planning and targeted resource distri-

bution to alleviate the negative impacts of pandemics. There

have been multiple efforts to forecast seasonal as well as

emerging disease outbreaks. The choice of a reliable model

to emulate the disease’s behavior remains a challenge. Recent

efforts relied on mathematical compartment models like SEIR

and SIR [2] as the disease dynamics simulator. Some studies

improved model fidelity by considering the individual-level

interactions across social networks [3]–[6]. However, these

individual-based models impose an additional burden on com-

putational resources by increasing the number of unknown

parameters that should be adjusted through data assimilation.

Moreover, the choice of calibration method can drastically

affect the accuracy of the epidemic model and thus forecast

performance. A variety of filtering techniques have been

utilized in the context of epidemic forecasting [7], [8] and

particle filters stand out among other methods because of their

promising capabilities in dealing with non-linear and multi-

modal systems [8].

Our Contributions and significance. In this paper, we

propose a new methodology for forecasting infectious dis-

ease dynamics. The basic approach combines two powerful

techniques: (i) we use a high resolution agent-based model

to simulate disease evolution and (ii) we use a variant of

particle filtering technique (called smart beam particle filtering
technique) for assimilation-based forecasting. Together the

approach provides a general technique to forecast a range of

infectious diseases. We illustrate the method by carrying out

detailed computational experiments using Ebola data which

was generated as a part of the National Institutes of Health

(NIH) (RAPIDD Ebola Challenge) [9]. We use realistic social

contact networks for cities in the west Africa. These high

quality representations of social contact networks provide a

unique starting point. Additionally, we use a novel epidemic

simulator called Epifast [3], that simulates not only disease

dynamics but also can account for dynamic interventions that

occur during the course of an outbreak.

To the best of our knowledge, no prior effort has been made

towards combining a network agent-based model with a par-

ticle filter framework as the data assimilation method. Recent

papers have used the particle filter as the data assimilator in the

context of outbreak forecasting. These efforts, use compart-

mental models (SEIR models or their extensions) [8], [10]–

[16] to simulate disease dynamics. Although computationally

efficient, the models make simplifying assumption regarding

well mixed populations that are homogeneous. Recent models
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extended this by using a contact factor that determines a

percentage, or fixed number of contacts between susceptible

and infected individuals [17], [18].

Simulating disease propagation by using realistic agent-

based models impose significant computational costs and

hence impose restrictions on the number of particles as well

as the number of running iterations of the particle filter. Most

particle filters used in the context of epidemic forecasting

generate 5,000 to one million particles to establish converged

best results. Running agent-based methods with such a large

number of particles is not practical. To solve this problem, we

propose a smart diffuser embedded in the state dynamics of

the particle filter. The smart diffuser examines the predicted

and observed data based on machine learning methods and

determines the direction and size of the perturbation for each

parameter of the state vectors. The smart diffuser enables the

particle filter to find more accurate results with a lower number

of particles and fewer running iterations.

II. NETWORKED EPIDEMIOLOGY

Networked epidemiology studies epidemic processes over

networks; over the last decade these models have become pop-

ular owing to their ability to incorporate spatial and individual

level heterogeneity and complex interventions. See [4], [19]

for additional discussion. We briefly describe the terminology

here. Let G(V,E) denote a social contact graph on a popula-

tion V – each edge e = (u, v) ∈ E denotes that the individuals

(also referred to as nodes) u, v ∈ V come into contact. Let

N(v) denote the set of neighbors of v.

For the SEIR model on the graph G, we have a dynamical

process with each node being in S, E, I or R states. Infection

can potentially spread from u to v along edge e = (u, v) with a

probability of β(e, t) at time instant t after u becomes infected,

conditional on node v remaining uninfected until time t.
Let τ(u) denote the time that node u would remain in the

infected state, and let τ = max{τ(u) : u ∈ V }. If a node

u ∈ V gets infected at time tu, it attempts to infect each

susceptible neighbor v with probability β((u, v), t−tu) for t =
tu+1, . . . , tu+1/λ(u). After 1/λ(u) steps (called the period

of infection), node u switches to state R. If the susceptible

node v contracts the infection it moves to Exposed state E
and stays in this state for 1/γ(v) (called the incubation period)

steps and then moves to state I . A node in state E cannot infect

other nodes. We let I(t) denote the set of nodes that become

infected at time t. The sequence I(t), along with the (random)

subset of edges on which the infections spread, represent a

disease outcome, also referred to as a dendogram. The time

series (|I(t)|, t = 0, 1, . . .) is referred to as an epidemic curve
corresponding to a stochastic outcome. This dynamical system

starts with a configuration in which there are one or more

nodes in state I and reaches a fixed point in which all nodes

are in states S or R.

A. Agent-Based Network Model

We use a high performance computing based modeling

environment called Epifast for simulating epidemic and as-

TABLE I
PARAMETERS TO CONTROL THE EPIDEMIC MODEL AND INTERVENTIONS.

Parameter Calibrated/Fixed
β Transmission Rate Calibrated

γ Incubation period distribution Fixed

λ Infectious period distribution Fixed

I0 No. of initial infections Calibrated

ωnsb Natural isolation efficacy Fixed

βHT Hospitalization efficacy Calibrated

βHD Hospitalization delay Calibrated

ωtr Travel reduction ratio Calibrated

betaETU Ebola treatment units’ efficacy Fixed

sociated interventions over social contact networks [3]. Epi-

fast simulates the spatiotemporal propagation of the disease

through social interactions between individuals. Epifast pro-

vides the capability of simulating a broad range of policy-

based, as well as individual-based, interventions. Interventions

could be pharmaceutical (PI) or non-pharmaceutical (NPI).

PIs include dispensing of antivirals, vaccines, and antibiotics,

whereas NPIs refer to any change in individual interactions

or social network structure aside from using medicine. More

information about mathematical modeling and the details of

such networks can be found in [6], [19].

B. Agent-Based Model Output

Epifast provides detailed outputs as compared with the

compartment SEIR model. The outputs of Epifast are as

follows: (i) The daily health status of each individual; (ii)
Dendogram that provides detailed temporal description of who

infects whom and at what time; (iii) Health status and statistics

for different subpopulations. A complete demographic data for

each individual makes it possible to obtain different epidemic

statistics for subpopulations in various categories based on age,

gender, regions, etc.

C. Simulating Ebola Propagation by Epifast

Epifast provides extensive freedom and capabilities for

modeling disease dynamics and interventions. Those capabil-

ities are controlled by different parameters that are mostly

unknown. When Epifast uses the SEIR model to simulate

Ebola dynamics, the minimum-required parameters are those

that control SEIR dynamics like transmission rate (β), mean

incubation period (1/γ), and mean infectious period (1/λ).

Depending on the available information about disease charac-

teristics and type of applied interventions to control the epi-

demic, additional parameters could show up. Table I presents

the parameters used to characterize the Ebola models. Some

of these parameters are estimated and fixed according to prior

knowledge, and others are calibrated through a data-driven

particle filter framework.

III. PARTICLE FILTER

Particle Filter (PF), which is best known as bootstrap

filtering [20], is a sequential Monte Carlo (SMC) approach

to estimate the posterior distribution defined in a discrete

Bayesian filter. The basic idea of this method is to represent
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the posterior density function of a state vector by a set of

weighted random particles. Each particle is a sample of the

state vector and is shown as xi. The PF algorithm consists of

three main steps.

Initialization. The initial values of particles are set randomly

by sampling from a prior distribution defined for the state

vector. The PF has two fundamental parts: state dynamics

and observation equations. The state dynamics (system model)

describes the change of the state vector over time and is

assumed to be a function of the state vector in the preceding

step: Xk = fk−1(Xk−1, Vk−1), where Xk is the state vector to

be estimated, fk−1 is the known possible non-linear function,

and Vk−1 is the system error. This equation corresponds to

transition probability density function (pdf) p(xk|xk−1) in the

probabilistic description of the state evolution in a Bayesian

filter. The observation (measurement) equation shows the

relation between the observed data and the state vector:

yk = hk(Xk,Wk), where Wk is the observation error. This

function corresponds to the likelihood function p(yk|xk) in

a Bayesian model. The initial condition of this model is

defined as the prior pdf p(x0) for the state vector in which no

measurement has been received. After the initialization step is

complete, each iteration comprises of two steps.

Prediction step. PF uses N particles to estimate the posterior

distribution of the state vector. The initial particles in step k are

the samples from the posterior pdf p(xk−1|Yk−1) generated in

the previous cycle, where Yk−1 is all observations received

up to time k − 1 and including yk−1 : Yk−1 = {yi, i =

1, ..., k − 1}. These particles are denoted by
{
xi∗
k−1

}N

i=1
. In

the prediction phase, the samples from step k − 1 are passed

through the state dynamics to generate the new set of samples,

which are prior particles in step k:

xi
k = fk−1(x

i∗
k−1, v

i
k−1)

This new set of particles
{
xi
k

}
represents the samples of the

prior pdf p(xk|Yk−1), that is the prediction of the new state

vector based on the previous observed data.

Update Step. In the update step, the prior samples
{
xi
k

}
are

updated based on the new measurement received at step k
(Yk). A weight w̃i

k is calculated for each particle based on

these measured values. This weight defines the likelihood of

the observed value based on the prior sample: w̃i
k = p(yk|xi

k) .

The weights are normalized and calculated with the following

equation: wi
k = w̃i

k/
∑N

j=1 w̃
j
k. The particles are resampled

according to the normalized weights to generate the new set

of particles, denoted by
{
xi∗
k

}N

i=1
. This set of particles is

considered as the samples of posterior function p(x∗k|Yk).
Therefore, the aggregation of these weighted samples con-

structs the required pdf p(x∗k|Yk):

p(x∗k|Yk) =
N∑

i=1

wi
k × δ(xk − xi

k) =
N∑

i=1

(1/N)× δ(xk − xi∗
k )

This completes one iteration of the algorithm. This procedure

is repeated when a new observation is received.

IV. SMART BEAM-PARTICLE FILTER

Smart Beam Particle Filter (SBPF) is inspired from the

Beam Search (BS) method [21], to explore the search space

more actively, alleviate the impoverishment problem, and to

escape from local optima traps. The SBPF epidemic calibrator

solves a dynamic estimation problem to figure out the model’s

parameters that best describe the trend of the observed epi-

demic. As mentioned earlier, a PF uses a set of particles to

estimate the posterior distribution of the state vector. The state

vector for our model contains the unknown parameters that

control the dynamics of the epidemic model (Table I).

The mechanism of our SBPF epidemic calibrator is shown

in Fig 1. In the first cycle, the state vectors
{
xi∗
0

}N2

i=1
are initialized by sampling from a prior distribution, where

N2 >> N1. Initial particles are passed unchanged to the

simulator, i.e., Epifast as the first prediction for particles.

Epifast receives the particles and uses them as base parameters

to run the simulation of the agent-based model and generates

various epidemic outputs as well as the corresponding epi-

demic curves.

In the other cycles, the initialization step is replaced by

the prediction process in which N1 sampled particles are

received from the previous cycle, and the new states of the

particles are predicted based on their previous values and past

observations (p(xk|Yk−1)). The SBPF framework expands and

diffuses each old sample, xk−1, to multiple new state vectors,

(xk), in different directions. This process increases the number

of particles from N1 particles to N3, where N3 >> N1,

resulting in more diverse solutions in each round. The size and

direction of perturbation are determined based on predictive

decisions made in the smart state dynamics component. Smart

state dynamics is discussed in detail in the section IV-B. New

predicted particles are passed to Epifast to simulate the disease

propagation and generate corresponding epidemic curves.

The next step of the particle filter is calculating the likeli-

hood of observations given the state vectors. Epidemic curves

that are generated by epidemic simulator are compared to the

observed curve to calculate the likelihood of the observed data

given the model’s parameters. The details of the likelihood

function are provided in Section IV-A.

In the update procedure, the likelihood score can be used

as the weights of the particles after normalization. The SBPF

performs the non-replacement Monte Carlo sampling to re-

sample the particles based on their weights and selects N1

particles among N2/N3 ones that are the most promising

state-vectors to generate the better forecast. The resampled

particles are treated as the (approximate) samples from the

posterior distribution with density p(x∗k|Yk). Therefore, the

aggregation of these samples could be used to produce an

empirical estimate of pdf p(x∗k|Yk). At this stage, one cycle

has been completed, and the results of this cycle are fed to

the next cycle. Usually, the PF cycle is repeated whenever

a new measurement (observation) is received. However, the

SBPF repeats the cycle more than once for the same observed

data to converge to a better solution.
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Fig. 1. Functional architecture of the smart beam particle filter. The width of
arrows indicates the number of particles transferred between different units.

A. SBPF Components: Likelihood Function

The likelihood function represents the possibility of ob-

served epidemic data given the hidden parameters of the epi-

demic simulator. Although Epifast generates various outputs,

the available surveillance observed data are usually limited

to the time series of the weekly number of new infected

cases. We use similarity/dissimilarity functions as the criteria

of closeness between the observed and simulated curves for

assessing the likelihood.

Examining various dissimilarity functions, we have selected

wMAPE (window-MAPE) which is the MAPE function in

which recent data points of the time-series are valued more

than older ones. In other words, we calculate the likelihood

based on the latest � recent data points of the time-series and

discard the older ones:

wMAPE = 1/�

T∑

i=T−�

|yi − Ii|/yi

where {yi}Ti=1 denotes the target time-series of newly infected

case counts until week T , {Ii}Ti=1 represents the predicted

case counts, and � denotes the width of the window. For

comparison purposes, the similarity score is defined as the

inverse of distance score. The scores are normalized over all

particles and reported as the likelihood scores of the observed

data given the state vector of parameters.

B. SBPF Component: Smart State Dynamics

State dynamics models the changes in the state vector and

predicts the value of the state vector in the next cycle based

on its current value (p(xk|xk−1)). We have designed a smart

state dynamics utility that examines the predicted epidemic

curves and the observed ones to determine the perturbation’s

size and direction for each parameter of the state vector.

This has five basic components: (i) a feature selector, (ii) a

classifier, (iii) a smart director, (iv) an adaptive tuner, and a

(v) diffuser; see Fig 2. The feature selector picks different

features from the observed and predicted epidemic curves

TABLE II
POSSIBLE CATEGORIES OF PREDICTED EPIDEMIC CURVE IN COMPARISON

WITH THE OBSERVED CURVE. NEGLIGIBLE MEANS CLOSE TO OBSERVED

DATA IN TERMS OF TIME OR CASE COUNTS.

State Number Amplitude Deviation Time Deviation
1-UL Underestimate Late prediction

2-UE Underestimate Early prediction

3-UN Underestimate Negligible

4-OL Overestimate Late prediction

5-OE Overestimate Early prediction

6-ON Overestimate Negligible

7-NL Negligible Late prediction

8-NE Negligible Early prediction

9-NN Negligible Negligible

including (a) peak value, (b) peak time, (c) length of season,

and (d) wwL1 error for the predicted curves. The rule-based

classifier receives the selected features of both the predicted

and observed epidemic curves and determines the state vector’s

category as summarized in Table II. The tree structure and

rules of classifier is constructed based on the relative values

of the predicted and observed features.

Knowing the class of each state vector (particle), the smart
director decides about the drifting direction of each parameter.

For example, if the classifier labels a predicted curve with

Overestimate Early (OE) tag, the smart director decides to

change the epidemic parameters in ways that slow down

the epidemic dynamics, like decreasing the transmission rate

and/or infectious period. The director is trained based on the

epidemiologist’s opinion about the effect of each epidemic

parameter on the trend of the pandemic. In other words,

epidemiologist should simply specify the positive, negative,

or neutral effect of parameters, that should get calibrated, on

slowing down or speeding up the epidemic. Refer to Table I for

the specified parameters. Smart director expands each particle

into multiple ones by perturbing one or more parameters in the

desired directions and generating new combinations of them.

Another feature of the smart director is that it determines the

level of certainty for the smart decisions. More uncertainty

results in generating more random particles that are moved in

erratic directions. Deterministic decisions are also combined

with little randomness in a random diffuser to explore the

search space and avoid local optima traps.

The adaptive tuner receives the history of the particle’s

evolution and determines the amount of perturbation (step size)

for each parameter to help converging to the optimal solution.

The inputs of the adaptive tuner are the categories and some

features of both current and parent particles like perturbation

directions, the distance of the current particle from the ideal

solution (relative error), etc. When the relative error does not

change significantly by perturbing a parameter, it implies that

the step size of the parameter is too small. Adjusting the step

size results in larger steps in flat areas of the search space

to move faster toward good solutions. On the other hand, if

perturbation direction of a parameter alternates frequently, it

indicates that the step size is too large in that area of the

search space. Therefore, adaptive tuner decreases the step size
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Fig. 2. Smart state dynamics framework. The feature selector chooses
different features from the epidemic curves. Base on the selected features
of both predicted and observed epidemic curves, the classifier determines the
category to which the state vector (particle) belongs. The smart director makes
the directional adjustment for each parameter. The adaptive tuner adjusts the
step size for each parameter.

to avoid particle filter from fluctuating in near-optimal-solution

space. The aforementioned smart analysis results in non-blind

searches to achieve optimum values for the parameters in a

faster way.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the accuracy and robustness of

our agent-based model in simulating the propagation of Ebola

as well as the performance of the proposed particle filter ap-

proach. It is intended to demonstrate how the SBPF algorithm

can adjust multiple unknown parameters of the agent-based

model for forecasting Ebola pandemics given independent

data. The dataset we used for modeling and calibrating Ebola

disease parameters was provided for the Ebola Challenge [9],

organized under the Research and Policy for Infectious Disease

Dynamics (RAPIDD) program at the NIH. This Ebola disease

dataset was generated by a previously published agent-based

model [22] calibrated with real data of 2014 Ebola epidemic

for Liberia under different scenarios. Epidemic data for each

scenario was released in five time points, and each time point

contained outbreak situation reports, weekly reported new

Ebola Virus Disease (EVD) cases at the county and country

level, and current/future intervention plans for preventing and

fighting the outbreak. New EVD cases were forecasted by

each team at one, two, three and four weeks after each time

point as the short-term prediction. We have used the country-

level incidence time-series data and have predicted the short-

term epidemic curve. Fig 3 represents the short-term predicted

epidemic curves for the first and second time points of the

first scenario. The weighted mean and weighted standard

deviation of new cases of EVD are calculated based on the

best weighted particles among all particles generated in the

repetitive search iterations. Fig 3 demonstrates that the SBPF

could perfectly calibrate the configuration parameters of the

epidemic model such that the weighted-mean of predicted

curves matches the ground truth curve in the training part. The

short-term prediction shows a little over-estimation, especially

for the second time point. The over-estimation originates from

incomplete information that is provided at each time point

regarding future intervention plans. For example, in the second

time point at week 20, there is no plan for contact tracing and

isolating suspicious cases. However, in the next report for time

point three, it is announced that 10292 individuals had been

contact traced between week 20 and 26 to prevent the disease

propagation. This shows the fidelity and consistency of our

model with regard to the real-life intervention plans.
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Fig. 3. Results for forecasting Ebola epidemic: The weighted mean of
predicted versus ground truth curve - The weighted mean of best particles
after 20 iterations of search. a) Demonstrates the short-term prediction for
time point 1 (PW=13). b) Shows the prediction for time point 2 (PW=20).

We calculated several error measures [23] over the short-

term predicted curves. The predefined set of error measures

included: Pearson’s correlation coefficient, mean absolute error

(MAE), the mean absolute percentage error (MAPE), and root

mean square error (RMS). We compared our results with

the available output of other teams participated in the 2015

Ebola challenge. At the time of this writing, only one team

had published the numerical results of their methods [24].

We compared the aforementioned error-measures with those

provided by Pell et al. [24] for their two phenomenological

models. Their first method, named Logistic Equation (LGM),

consistently underestimated the epidemic curve and its neg-

ative value of Pearson’s correlation coefficient demonstrates

that the LGM’s epidemic-curve does not follow the trend

of the epidemic in the correct direction [24]. Pell et al.

proposed another method, named Generalized Richards Model

(GRM), that generates positive values for Pearson’s correlation

coefficient for most of the data points. Our SBPF approach

demonstrates Pearson value of 0.80 and 0.94 for the first and

second data points that shows agreement between the output

and the trend of incidence data. SBPF generates lower MAPE
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and RMS errors comparing both GRM and LGM approaches.

(see Fig 4). The current results are achieved by running SBPF

for only 20 iterations, N2 = 20, N1 = 10, and N3 ≈ 140 as

initial, resampled, and expanded particles, respectively.
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Fig. 4. Error measures on forecasting results of Ebola epidemic: Comparing
the performance of SBPF with two other methods: GRM, LGM. Figures a,
b, and c correspond to the first time point. Figures d, e, and f are associated
with the second time point.

VI. CONCLUSIONS

We present a data-driven causal modeling based methodol-

ogy forecasting epidemic dynamics. It uses an agent-based

modeling framework in conjunction with a modified par-

ticle filter approach that yields ensemble-based forecasts.

The methodology was demonstrated on large regions repre-

sented by a realistic social contact network with millions of

nodes/edges. The smart beam particle filter framework over-

comes the computational burden of running agent-based mod-

els over large instances. The proposed particle filter approach

implements a smart state dynamics unit that regulates the

direction and perturbation of the particles. The smart director

diffuses and scatters the particle in targeted directions to yield

a non-blind search that swiftly achieves optimum values for

parameters. Therefore, the smart particle filter approach is able

to find near-optimal results with a lower number of particles

and fewer running iterations.
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