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Abstract—We deal with online learning of acyclic Conditional
Preference networks (CP-nets) from data streams, possibly cor-
rupted with noise. We introduce a new, efficient algorithm relying
on (i) information-theoretic measures defined over the induced
preference rules, which allow us to deal with corrupted data in
a principled way, and on (ii) the Hoeffding bound to define an
asymptotically optimal decision criterion for selecting the best
conditioned variable to update the learned network. This is the
first algorithm dealing with online learning of CP-nets in the
presence of noise. We provide a thorough theoretical analysis
of the algorithm, and demonstrate its effectiveness through an
empirical evaluation on synthetic and on real datasets.

I. INTRODUCTION

Preference representation, reasoning (e.g. [19]–[21]), and
learning (e.g. [4], [10], [13]), are receiving increasing at-
tention in the literature, in particular within the context of
recommender systems. In this paper, we address the prob-
lem of learning combinatorial preferences, and more pre-
cisely, learning acyclic conditional preference networks (CP-
nets) [3].

CP-nets constitute a preference representation language
based on ceteris paribus (“all other things being equal”)
comparisons, that is, comparisons of objects which differ over
only one attribute. Such comparisons are arguably cognitively
simpler than general ones, and CP-nets leverage this principle
for factorizing the preferences over each attribute (or vari-
able), leading to compact graphical representations.

Learning CP-nets, even by adding acyclicity constraints,
is an NP-Complete problem [4]. Some works try to solve
this problem by considering consistent preferences1, e.g.
regression-based learning [8], [9], [14], learning by reduction
to 2-SAT [6], [18] and learning using user queries [4], [11],
[13]. Recently, [15], [16] considered the problem of learning
CP-nets from noisy data. We call noise (also called incoher-
ence or inconsistency in other papers) an observed preference
opposite to the real one, that is, observing “the user prefers a
to b” whereas her true preference is “I prefer b to a”. Noise
can be caused by many factors: distracted user, corrupted data,
unobserved variables, etc.

1i.e. the opposite preference is never observed (in the binary case).

In addition to noise, we consider an online setting, where
observations (data) arrive as a stream and cannot be memoized,
as in recommender systems where they could be generated by
user clicks. In that sense, our approach differs from most of the
literature: we consider the target CP-net to reflect the global
preferences of a set of users, with variations among different
users’ preferences seen as noise w.r.t. this global relation.

Noise and onlineness of course make the problem more
complex, and call for an algorithm that can maintain a best
hypothesis about the target CP-net, given the observations
received so far. The only online algorithm we know for
solving this problem is a query-based algorithm [11]. We give
experimental results comparing our approach to this one.
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Fig. 1. Global scheme of a learning procedure for CP-nets.

To summarize, we propose a new, efficient, and robust to
noise online algorithm for learning acyclic CP-nets on binary
variables, as illustrated in Fig. 1. Our aim is to come up with a
learning procedure that can be used in a recommender system.
The algorithm observes a stream of pairwise preferences
between two ceteris paribus objects, and learns an acyclic CP-
net which maximizes the agreement with the observations. We
support our claim by theoretical guarantees and experimental
results on synthetic and real data.

II. CONDITIONAL PREFERENCE NETWORKS (CP-NETS)
Let V be a set of binary variables, with each V ∈ V

associated with a domain Dom(V ) = {v, v′}. For V′ ⊆ V,
we write Dom(V′) =

∏
V ∈V′

Dom(V ), and call state an



element v′ of Dom(V′). Complete states, that is, elements o
of Dom(V), are called outcomes, and constitute the objects
over which preferences are expressed.

For states v′ ∈ Dom(V′),v′′ ∈ Dom(V′′) with V′∩V′′ =
∅, we write v′v′′ ∈ Dom(V′ ∪V′′) for their concatenation.
We also use the notation v′v′′ for the extension of state v′′ ∈
Dom(V′′) by the value v′ ∈ Dom(V ′) (where V ′ ∈ V, and
V′′ ⊆ V \ {V ′}). Finally, o[V′] denotes the projection of the
outcome o onto the variables in V′.

A (strict) preference relation is a partial order � on
Dom(V). o � o′ should be read “outcome o is strictly
preferred to outcome o′”. We call ceteris paribus pair (CP-
pair), denoted by (o,o′)V , a pair of outcomes which differ
only over V (in formulas, o[V \ {V }] = o′[V \ {V }]).

Let � be a strict preference relation on Dom(V) and
X,Y ∈ V. Variable X is said to be a parent of variable
Y if there is a context in which X alone changes the
preference over the values of Y ; precisely, if there is a
state z ∈ Dom(V \ {X,Y }) satisfying zxy � zxy′ and
zx′y′ � zx′y (or zxy′ � zxy and zx′y � zx′y′).

CP-nets are built on this notion. A CP-rule for variable
V with domain Dom(V ) = {x, x′} is a rule of the form
r = (u : v � v′), or r̄ = (u : v′ � v), with u ∈ Dom(U) for
some U ⊆ V. The semantics of r is that o � o′ must hold
for all CP pairs (o,o′)V such that o[U] = o′[U] = u and
o[V ] = x,o′[V ] = x′; the semantics of r̄ is the opposite. A
CP-table for V is a collection of CP-rules for V , all sharing
the same parent set U, with at most one rule ru or r̄u per
state u ∈ Dom(U). The set U is also written Pa(V ), as
it indeed corresponds to (a redundant superset of) the set of
parent variables of V in the induced relation. Finally, given
two opposite rules ru and r̄u, we define the notation of a
global rule as follow.

Definition 1 (Rule schema). Let ru and r̄u be two opposite
rules on V ∈ V. R = (u : V ) denotes the common
rule schema of ru and r̄u, where the preference over the
assignment of V is not specified.

Definition 2 (Conditional preference network). A condi-
tional preference network (CP-net) is a triple N =
(V, A,CPT (V )V ∈V), where (V, A) is a directed graph on
the set of variables V, and for all V , CPT (V ) is a CP-table
for V with Pa(V ) = {X ∈ V, (X,V ) ∈ A}.

The preference relation �N induced by a CP-net N is
the transitive closure of the relation induced by all rules in
the CP-tables of N . It is known that if the digraph (V, A)
associated withN is acyclic, then the relation �N is consistent
(irreflexive). We focus on such acyclic CP-nets in this work.

We say that a binary CP-net is complete if ∀V ∈ V,
|CPT (V )| = 2|Pa(V )|. Otherwise, we say that the CP-net
is incomplete.

Fig. 2 depicts an example of a CP-net, which contains four
variables A,B,C,D with three sets of independent variables
{A,D}, {B,D}, {C,D}, and one variable B conditioned by

A and C. We have, for example, a′b′cd � a′bcd (bottommost
rule) and a′bcd � abcd (top left rule), and hence a′b′cd � abcd
(by transitivity).

b b

b
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B

C
a′ ≻ a

a′c : b′ ≻ b
ac : b ≻ b′

c ≻ c′

ac′ : b ≻ b′

a′c′ : b′ ≻ b

bD
d ≻ d′

Fig. 2. A complete CP-net with four variables.

III. THE LEARNING PROBLEM

We consider the problem of learning a CP-net from ob-
servations of the form o � o′, where (o,o)V forms a CP
pair. Such preferences are natural since they correspond to
statements like, e.g., “I would prefer this car in blue color
than in red color”. We consider a stream Ω of observations,
and our aim is to learn, at all times t (i.e., after receiving t
observations), an acyclic learned CP-net N t

L maximizing an
accuracy measure L w.r.t. Ωt (the stream restricted to its first
t observations).

We choose the following, natural agreement measure,
which is also used in [16]:

L(Ωt,N t
L) =

|{(o � o′) ∈ Ωt | o �N t
L
o′}|

t
. (1)

In words, we seek to maximize the number of comparisons in
the stream which the learned CP-net correctly predicts.

Since Ω may contain some noise, i.e. observations o � o′

and o′ � o for the same CP pair (o,o′)V , we cannot hope to
achieve perfect accuracy (Eq. (1)) in general. This would only
fit the noise and result in an inconsistent (reflexive) learned
preference relation. Furthermore, the problem of testing the
consistency of a cyclic CP-net is known to be PSPACE-
hard [13]. For these reasons, we require acyclicity, and hence
consistency, for the learned CP-net, which can be seen as a
regularization bias. Fig. 3 gives a formal definition of our
problem.

Fig. 3. The learning problem.
Input: a data stream Ω of ceteris paribus

pairwise comparisons
Ouput: an acyclic CP-net NL
Measure: maximize Eq. (1) (under acyclicity)

IV. PROPOSED ALGORITHM FOR LEARNING A CP-NET

To cope with noise and maximize agreement with the
observed data, the algorithm chooses, for each rule schema
R = (u : V ), the rule ru or the rule r̄u to be the one



which corresponds to the greatest number of observations
received so far. Hence our algorithm relies on identifying good
rule schemas and for each one, on maintaining estimates of
the number of received observations in favor of ru and r̄u.
For the latter objective, we use estimated counters which are
maintained online.

The high-level procedure is shown in Algorithm 1 (the
learned CP-net NL is a global variable that is not included
as a parameter). This procedure processes the observed CP-
comparisons online: for each new one, it generates a CP-rule
(which always exists) by using the received swap (from which
we deduce the preference), and the parents of the current
variable in the CP-net (the conditioned part of the CP-rule).
Then, it updates all counters with respect to the comparison
and decides whether it is necessary to add a new parent
variable or not (Line 5). Algorithm 1 also needs to set the
maximum number of parents for each conditioned variable. If
so, it finds the best new parent variable, and updates all the
counters (Line 6). We describe all these steps in details in the
rest of this section.

Algorithm 1: learningCPNet()

Data: A data flow Ω, a parent bound k, and a trust
probability δ.

Result: A learned CP-net NL.
1 Initialize NL and all counts to 0;
2 for (o,o′)V ∈ Ω do
3 Let r = (u : o[V ] � o′[V ]) be the CP-rule induced

by (o,o′)V with u ∈ Dom(Pa(V )) and R its
associated rule schema;

4 update CPTable(V,R, r,o);
5 if Eq. (6) and |Pa(V )| < k then
6 addParent(CPT (V ));

For the sake of clarity, we use the following notation. For
a rule schema R = (u : V ), a new parent variable P ∈
V \ ({V } ∪ Pa(V )) and a value p ∈ Dom(P ), we write Rp

for the “extended” rule schema (up : V ). Similarly, given a
CP-rule r = (u : v � v′) (resp. r̄ = (u : v′ � v)), we write rp

for the rule (up : v � v′) (resp. r̄p for (up : v′ � v)). Finally,
we denote the set of all nonparent variables of a variable V
by Pa(V ) (i.e., Pa(V ) = V \ (Pa(V ) ∪ {V })).

A. Counters

Definition 3 (Rule counter). Let V ∈ V be a variable and
R ∈ CPT (V ) a rule schema. We call rule counter the number
of observed swaps that support the CP-rule r (resp r̄), which
is denoted by c(r) (resp. c(r̄)).

Definition 4 (Nonparent counter). Let V ∈ V be a variable,
R ∈ CPT (V ) a rule schema, and X ∈ Pa(V ). We call
nonparent counter the number of observed swaps (o,o′)V
that support the CP-rule r with o[X] = x (resp o[X] = x′),
which is denoted by c(xr) (resp. c(x′r)). We define in the same

way the nonparent counter for the opposite rule r̄, with c(xr̄)
(resp. c(x′r̄)).

In an online setting, we cannot memorize each received
observation, not even a counter for each of them since the
data stream can be infinite. Hence we use rule counters
(Definition 3) and nonparent counters (Definition 4) that are
maintained online. Precisely, for each rule schema R = (u :
V ) in the current learned CP-net NL, it maintains an estimate
c(r) (resp. c(r̄)) of the number of observed CP-comparisons
that support the rule r = (u : v � v′) (resp. r̄ = (u : v′ � v)),
where o � o′ supports (u : v � v′) if (o, o′)V is a CP-pair
and o[Pa(V )] = u,o[V ] = v,o′[V ] = v′ hold. Moreover, for
each nonparent variable X ∈ Pa(V ) with domain {x, x′},
the algorithm maintains estimates c(xr), c(x′r), c(xr̄), and
c(x′r̄)). For instance, the counter c(xr) estimates the number
of observed comparisons o � o′ that support r and satisfy
o[X] = o′[X] = x. Observe that we only need m(4n + 2)
counters for a CP-net NL containing m rules over n variables.
The estimation of the updated counters is described in the
sequel.

B. Parent decision phase

The parent decision phase consists in deciding whether a
variable needs a new parent (for maximizing the agreement),
and draws inspiration from the stochastic multi-armed bandit
problem [2].

To each variable V we associate a value of “information
gain”, representing to what extent it would be worth adding
a new parent to V . Intuitively, V needs a new parent when
there are many states u ∈ Dom(Pa(V )) such that there
are the same number of observations supporting the CP-rule
u : v � v′ and the rule u : v′ � v. More precisely, for
each rule schema R for V (over its current set of parents
Pa(V )) with associated CP-rules r, r̄, we call R impure if
both c(r) and c(r̄) are nonzero and equal (otherwise, the rule
schema is pure when just one of the counters is equal to zero.
Then the current set Pa(V ) is clearly sufficient). We then
measure a degree of impurity using Shannon’s entropy [5].
Let f(r) = c(r)

c(r)+c(r̄) and f(r̄) = c(r̄)
c(r)+c(r̄) measure the

relative (estimated) frequencies of observations supporting r
and r̄. Then we define

E(R) =

{
0, if c(r) = 0 or c(r̄) = 0,
−f(r) log(f(r))− f(r̄) log(f(r̄)), otherwise.

(2)
To aggregate impurity of all rules for a given variable V
together, we simply define the “information gain” of V to
be:

G(V ) =
∑

R∈CPT (V )

fRE(R), (3)

with fR = c(r)+c(r̄)∑
R′∈CPT (V)

c(r′) + c(r̄′)
the estimated frequency

of the rule schema R among all rule schemas of N (computed
from the counters).



Obviously, in an online and noisy setting, we do not want
to add one parent at each step, since the algorithm would
overfit noise. Intuitively, the decision needs to be supported
by sufficiently many observations, and for this we use Ho-
effding’s bound (also called “additive Chernoff’s bound”) [7],
[12], [17]. Let |Y | be the range of a (real-valued) random
variable Y , assume that we have observed m realizations of
Y ’s observations, and write

ε =

√
|Y |2 ln

(
1
δ

)
2m

. (4)

Then, Hoeffding’s bound states that the mean of the observa-
tions is in [ỹ − ε, ỹ + ε] with a probability 1 − δ, where ỹ is
the true mean of the values in Y .

Back to our algorithm, we consider the mean of the infor-
mation gains of a variable V as computed after seeing each
of m comparisons on V :

G̃mV
(V ) =

1

mV

mV∑
i=1

Gi(V ), (5)

with mV the number of times we have observed comparisons
on V (i.e., CP-pairs (o, o′)V ), and Gi(V ) the information gain
computed for V after seeing the ith comparison on V (we can
see this mean as a way to give more importance to the current
gain). Following Hoeffding’s bound, if V is a variable such
that it has the highest observed G̃mV

(V ) after seeing mV

comparisons, we decide to select V as a conditioned variable
if and only if

G̃mV
(V ) > εmV

(6)

holds, with |Y | = log(2), m = mV and δ ∈]0, 1] a
hyperparameter (i.e. a parameter which is fixed by the user)
in Eq. 4. That is, if observations are drawn i.i.d. and up to
the estimation induced by the counters, variable V is indeed
the best choice with a probability of 1 − δ. The intuition
behind Eq. 4 is to look for a conditioned variable which has
a sufficient entropy while enough swaps have been seen. For
more details, the reader can refer to [7, Section 2].

Algorithm 2: update CPTable(V,R, r,o)

Data: A variable V , a CP-rule r with its associated
rule schema R, and an outcome o.

Result: Update each corresponding counter.
1 c(r)← c(r) + 1;
2 for X ∈ Pa(V ) do
3 if o[X] = x then c(xr)← c(xr) + 1;
4 else c(x′r)← c(x′r) + 1;
5 Update the nonparent variable relevance Eq. (7);

6 if c(r) > c(r̄) and r̄ ∈ CPT (V ) then
7 CPT (V )← (CPT (V ) \ {r̄}) ∪ {r};
8 if c(r) < c(r̄) and r ∈ CPT (V ) then
9 CPT (V )← (CPT (V ) \ {r}) ∪ {r̄};

C. Parent search phase

Once the algorithm has decided to add a parent to a variable
V with domain {v, v′}, the parent search phase consists of
finding the best new parent. By definition, a parent variable P
of V is characterized by having, in at least one context u, value
p when v is preferred to v′, and the other value p′ when v′ is
preferred. Hence for r = (u : v � v′) and Dom(P ) = {p, p′}
we should observe either (i) many comparisons supporting
rp = (pu : v � v′) and many supporting r̄p

′
= (p′u : v′ � v),

or (ii) many supporting rp
′

and many supporting r̄p. Then,
using the counters, we define the relevance of each nonparent
variable X of V :

rel(X,V ) =
1

|CPT (V )|
∑

R∈CPT (V )

max(C, C̄)

c(r) + c(r̄)
, (7)

where C = c(xr) + c(x′r̄) and C̄ = c(x′r) + c(xr̄), with
c(r) + c(r̄) a normalization value. This relevance can be
gradually updated without browsing all CP-rules (Line 5 of
Algorithm 2).

We can see that 1
2 ≤ rel(P, V ) ≤ 1. However, the worst

case for a parent candidate P is, for each of these assignments
and each type of a CP-rule, to observe the same counters, i.e.
rel(P, V ) = 1

2 . Then, the algorithm only accepts variables that
have rel(P, V ) > 1

2 . Finally, the best parent variable for V is
defined by

argmax
P∈Acy(Pa(V ))

rel(P, V ),

s.t. rel(P, V ) > 1
2 ,

(8)

(breaking ties arbitrarily), where Acy restricts the candidate
to those whose addition induces no cycle in the digraph of
NL (which can be computed in time linear in the size of the
digraph).

D. Updating rules and counters

When no parent is added, updating the counters simply
consists of incrementing by 1 those supported by the just
received observation, and for each rule schema R in NL we
only need to check which of c(r) and c(r̄) is highest.

Contrastingly, when P is chosen as a new parent of V ,
we need to update all rule schemas in CPT (V ) and their
corresponding counters. Let R = (u : V ) be a schema with
rules r, r̄, and let P be a new parent variable for V . By
definition of c(pr), we can compute the new counter for rp

by
c(rp) = c(pr), (9)

and similarly for r̄p, rp
′
, r̄p
′
. We however also need to compute

counters c(brp), c(b′rp), c(brp′ ), . . . for all remaining nonpar-
ent variables B of V (with domain {b, b′}) and all newly intro-
duced rules. Due to the loss of information in online methods,
it is obviously difficult to find the exact new counter for the
remaining nonparent variables. The problem of estimating the
new counters can be viewed as follows: consider a known set
of objects E and a known size of two subsets E1 ⊆ E and
E2 ⊆ E. How can we estimate the size of the intersection



|E1 ∩ E2|? Such an intersection can be bound between the
Łukasiewicz t-norm (lower bound), denoted here by c−(.),
and the Nilpotent minimum (upper bound), denoted here by
c+(.). Then, we obtain for an assignment b ∈ Dom(B) and a
new rule rp:

c−(brp) = max (c(br)− c(r) + c(pr), 0) , (10)
c+(brp) = min (c(br), c(pr)) . (11)

These bounds bring us to obtain c−(brp) ≤ c∗(brp) ≤
c+(brp). We conservatively choose the lower bound c−(.)
(Equation (10)), which is the estimated new counter on the
overlap between the counter for the nonparent variable B
as associated to R, and the new parent P as associated to
R (and similarly for value b′ of B and rules rp

′
, r̄p, r̄p

′
).

This estimation is the price to pay for the online setting.
However, all counters are used after seeing mV swaps (Eq. (4))
for the variable V , then the error made by this conservative
bound is statistically corrected with a sufficient probability
(see Section V). Moreover, this is the only place where an
estimation occurs, and we show in our experiments that this
works well in practice.

Algorithm 3 summarizes the whole procedure.

Algorithm 3: addParent(CPT (V ))

Data: The CP-table CPT (V ).
Result: Update, if it is possible, the parents of V .

1 Choose P by applying Eq. (8);
2 if P exists then
3 Pa(V )← Pa(V ) ∪ {P};
4 for R ∈ CPT (V ) do
5 Replace R by Rp and Rp

′
;

6 Update all new CP-rules (Eq. (9)) and
nonparent variables (Eq. (10)) counts;

7 CPT (V )← CPT (V ) \ {r, r̄};
8 if c(rp) > c(r̄p) then
9 CPT (V )← CPT (V ) ∪ {rp};

10 if c(rp) < c(r̄p) then
11 CPT (V )← CPT (V ) ∪ {r̄p};
12 if c(rp

′
) > c(r̄p

′
) then

13 CPT (V )← CPT (V ) ∪ {rp′};
14 if c(rp

′
) < c(r̄p

′
) then

15 CPT (V )← CPT (V ) ∪ {r̄p′};

16 rel(V, V ′)← 0,∀V ′ ∈ Pa(V );

a) Example: Let A,B,C be three variables and Ω be the
following database:

1 abc � abc′
2 a′bc′ � a′bc
3 a′b′c′ � a′b′c

We fix our hyperparameter δ to 0.7. We first handle abc �
abc′. After updating all counters, NL contains only the CP-
rule {∅ : c � c′} and Ineq. (6) is False, so no parent is

added. Then we handle a′bc′ � a′bc. Let r = (∅ : c � c′)
and r̄ = (∅ : c′ � c). We have the best information gain with
variable C, with G̃2(C) ≈ 0.15 > ε ≈ 0.13. Hence we add a
parent to C so as to split the CP-rule into two distinct ones.
We have rel(A,C) = 1 and rel(B,C) = 1

2 , hence we choose
A and update the counters of all new CP-rules using Eq. (9)
and Eq. (10). The learned CP-net NL now contains two CP-
rules: {a : c � c′, a′ : c′ � c}. We finally handle a′b′c′ � a′b′c
and update all counters. Ineq. (6) is False and the algorithm
stops. We obtain a CP-net which contains two CP-rules, which
(in this small example) perfectly fit the observations.

V. THEORETICAL RESULTS

We remind that we denote by Ω the dataset which contains
a set of swaps. This section begins by a proof of the soundness
and the completeness of our algorithm.

Proposition 1 (Soundness). Algorithm 1 always returns an
acyclic CP-net (which is possibly incomplete) for any dataset
Ω.

Proof. By construction: each arc added between two variables
corresponds to a parent link (Line 3 of Algorithm 3) with a
duplication of all CP-rules of the current variable w.r.t. the
values of the new parent (Line 5 of Algorithm 3). Furthermore,
the acyclic property is verified once Algorithm 3 adds a parent
(Eq. (8)). Finally, the only objects that are added to the CP-
tables are CP-rules (Line 6 of Algorithm 3), which verify the
definition of an acyclic CP-net, and prove the soundness of
Algorithm 1.

Definition 5 (Restriction of a CP-net). Let (<,V2) be an
order on the arcs in the digraph of a CP-net N . For a current
arc (P0, V0), we denote by N(P0,V0) the restriction of N for
the relation (P, V ) < (P0, V0), i.e. N contains only the arcs
that have a lower position in (<,V2) (including (P0, V0)),
where the restriction is defined by:

(i) ∀V ∈ V, if Pa(P0,V0)(V ) = Pa(V ), then
CPT(P0,V0)(V ) = CPT (V );

(ii) if Pa(P0,V0)(V ) ⊂ Pa(V ), then (u : v � v′) ∈
CPT(P0,V0)(V ) if and only if the majority of rules in N
has the form (uw : v � v′), where u ∈ Pa(P0,V0)(V ),
and w ∈ Pa(V ),w 6∈ Pa(P0,V0)(V ).

Definition 6 (Exact counter). We call exact counter for a CP-
net N and a set of swaps Ω the actual number of times each
rule and nonparent counter has been observed on Ω so far.

Definition 7 (Information gain consistency). Let (<,V2) be
an arc ordering on V, and a set of swaps Ω. (<,V2) is
information gain consistent w.r.t. Ω if, by using the exact
rule counters of N(P0,V0) and Ω:

(i) (P, V ) is the successor of (P0, V ) in (<,V2), where V is
the variable that maximizes the information gain among
all variables that have missing parents;

(ii) ∀(P, V ) in the digraph of N , (P, V ) < (P ′, V ′) in (<
,V2), where P ′ 6∈ Pa(V ′) in N ;



(iii) let (Plast, Vlast) be the last arc in (<,V2) to complete the
digraph of N , then ∀V ∈ V, G(V ) = 0 for N(Plast,Vlast).

Lemma 1. There always exists an order (<,V2) which is
information gain consistent for acyclic CP-nets.

Proof. We construct an order (<,V2) such that ∀(P, V ) with
P ∈ Pa(V ) and ∀(P ′, V ′) with P ′ 6∈ Pa(V ′), (P, V ) <
(P ′, V ′).
The point (i) of Definition 7 is verified by ordering and adding
in a decreasing way following the values of information gain
of all the arcs (P, V ). The arcs (P ′, V ′) are considered only
after the arcs (P, V ): it means that all variables in V already
have their parents, so their information gains are equal to 0,
which verify the point (iii). Finally, the point (ii) is verified
by the construction of (<,V2).

Intuitively, Lemma 1 says that the order (<,V2) corre-
sponds to the order where the algorithm has the highest
probability to learn the relations.

The Hoeffding bound gives us a trust probability (1 − δ)
which bounds all of the counters and information gains. Then,
Algorithm 1 chooses the new parent variables following (<
,V2) with the trust probability (1− δ). Finally, the algorithm
will learn the appropriate structure since it will not add any
parent after the arc (Plast, Vlast) (point (iii) of Definition 7),
which exactly corresponds to the set of parents of N ∗ (point
(ii) of Definition 7).

Definition 8 (relevant consistency). Let (<,V2) be an order
on arcs in the digraph of a CP-net N and a set of swaps Ω.
(<,V2) is relevant consistent w.r.t. Ω if, by using the exact
nonparents counters into N(P0,V0), (P, V ) is the successor of
(P0, V0) in (<,V2),∀(P0, V0) < (Plast, Vlast), where P is the
parent that maximizes the value of rel(P, V ).

Lemma 2. There always exists an order (<,V2) which is
information gain and relevance consistent w.r.t. a set of swaps
Ω.

Proof. Consider the order constructed in the proof of
Lemma 1. We extend this order: (P1, V1) < (P2, V1) <
. . . < (Pk1 , V1) < . . . < (P0, V0) < . . . < (Plast, Vlast) <
(P ′, V ′),∀(P ′, V ′) s.t. P ′ 6∈ Pa(V ′), where k1 is the kth

parent of V1, and ∀i, j, l s.t. i < j, rel(Pi, Vl) > rel(Pj , Vk).
This extension verifies by construction the Definition 8, and
is still compatible with Lemma 1 due to the independence of
P in the information gain of V .

Lemma 3. Let an unnoised set of swaps Ω be a dataset which
induces the optimal batch CP-net N ∗. If the counters used in
Algorithm 1 are exact, then it learns all arcs (P, V ) of N ∗ for
an information gain and relevance consistent order (<,V2).

Proof. Let NL the CP-net learned by Algorithm 1. We denote
by (P, V ) ∈ N ∗ the arcs that are in the digraph of N ∗.
Suppose by induction that Algorithm 1 had already learned
all arcs before (P, V ) following (<,V2), and the next arc is
(P0, V0) (the initialization trivially works if we set |V| = 1).
Two cases occur:

• V0 needs no parent, so G(V0) = 0. Furthermore, Algo-
rithm 1 selects the variable which maximizes Eq. (3), then
∀V ′ ∈ V \ {V0} and ∀P ′ ∈ Pa(V ′), (P0, V0) < (P ′, V ′)
and G(V ′) = 0;

• V0 needs the parent P0. Then, rel(P0, V0) > 1
2 , and

Algorithm 1 chooses the variable P which maximizes,
after choosing V0 the value of rel(P, V0) (Eq. (7)). Then,
for P = P0 and ∀P ′ ∈ Pa(V0) \ {P0}, rel(P0, V0) >
rel(P ′, V0). The arc (P0, V0) corresponds to the succes-
sor of (P, V ) in the order (<,V2), which proves the
lemma.

A direct consequence of Lemma 3 is that for an unnoised
dataset Ω, Algorithm 1 can learn the corresponding target CP-
net N ∗ following the agreement measure defined in Eq. (1). It
also proves the completeness of Algorithm 1. Another corol-
lary of Lemma 3 is that the corresponding batch algorithm
which receives all swaps between each adding parent phase
can also learn the target CP-net N ∗, even for a noisy dataset
Ω (with a noise probability lower than 1

2 ).

Definition 9 (Arc disagreement). Let N and N ′ be two CP-
nets respectively associated to two different learning algo-
rithms A and A′. We define the arc disagreement, denoted
by da(N(P,V ),N ′(P ′,V ′)) as the probability that

da(N(P,V ),N ′(P ′,V ′)) = P(V 6= V ′)P(P 6= P ′)P(c 6= c′),

where (P, V ) and (P ′, V ′) respectively denote the new arc
of N learned by A, and the new arc of N ′ learned by A′,
and c, c′ denote the disagreement between the counters of both
CP-nets after adding the corresponding arc.

Intuitively, Definition 9 expresses the probability of having,
when the Hoeffding bound is used to find a new parent
variable, a difference between two CP-nets: the conditioned
variable, the parent variable, and/or the counters can differ. It is
then easy, from this probability and the fact that an algorithm
can only learn nk different parents (n(n−1)

2 with acyclicity
constraint), to deduce the whole disagreement which is made
by two different learning algorithms on two different CP-nets.

Definition 10 (CP-net disagreement). The CP-net disagree-
ment between two CP-nets N and N ′, denoted by dc(N ,N ′),
corresponds to the sum of arcs disagreement for all possible
arcs, i.e.

dc(N ,N ′) =

nk∑
i=1

P((P, V ) 6= (P ′, V ′)),

where n is the number of variables in the CP-nets and k
the maximum number of parents per variable (modulo the
acyclicity constraint).

Roughly speaking, these two previous definitions express
the probability of an algorithm to learn the optimal structure
and preferences compared to the optimal learning algorithm.
In our case, the batch algorithm is considered as the optimal
one, which allows us to deduce the following learning bound.



Theorem 1. Let A be the batch algorithm of Algorithm 1, N ∗
its learned CP-net, and N̂ the learned CP-net of Algorithm 1.
Let Ω be an infinite noisy dataset (set of swaps) with p < 1

2
the associated noise probability.

Algorithm 1 has a CP-net disagreement equal to
dc(N ,N ′) ≤ pnk(4n−2)δ32k+1

m , with n the number of vari-
ables, k the maximum number of parents per variable, δ
the Hoeffding probability, and m the necessary number of
swaps before the adding parent phase (we suppose here that
mV = m,∀V ∈ V).

Proof. Let (P̂ , V̂ ) and (P ∗, V ∗) be, respectively, the arc added
in N̂ by Algorithm 1, and the arc adding in N ∗ by the batch
algorithm A.

We firstly compute the probability of the arc disagreement
between N̂(P̂ ,V̂ ) and N ∗(P∗,V ∗):
• by the Hoeffding bound and the Lemma 3, we have

P(V̂ 6= V ∗) ≤ δ;
• in the same manner, we have P(P̂ 6= P ∗) ≤ δ;
• the counters are estimated by the Łukaciewicz norm, but

can be refined by the Hoeffding bound: after m observed
examples, the mean of seeing each form of CP-rule is
m

2k+1 multiply by (i) the number of counters in one
rule schema (4n − 2) and (ii) by the original Hoeffding
probability δ. Then we obtain P(ĉ 6= c∗) ≤ (4n−2) 2k+1δ

m .
We can deduce the probability of the arc distance:

da(N̂(P̂ ,V̂ ),N ∗(P∗,V ∗)) = P(V̂ 6= V ∗)P(P̂ 6= P ∗)P(ĉ 6= c∗)

≤ δ2(4n− 2)
2k+1δ

m

=
(4n− 2)δ32k+1

m
.

Then, by using the union bound, we find the whole disagree-
ment for all of the arcs that can be added during the learning
phase:

dc(N̂ ,N ∗) =

nk∑
i=1

P((P̂ , V̂ ) 6= (P ∗, V ∗))

=

nk∑
i=1

P(V̂ 6= V ∗)P(P̂ 6= P ∗)P(ĉ 6= c∗)

≤
nk∑
i=1

δ2(4n− 2)
2k+1δ

m

=
nk(4n− 2)δ32k+1

m
.

Finally, we apply the noise probability p of the dataset Ω to
obtain the result which proves the theorem:

dc(N̂ ,N ∗) ≤
pnk(4n− 2)δ32k+1

m
.

Theorem 1 shows that the disagreement polynomially in-
creases following the number of variables n and the maximum
number of parents per variable k.

Moreover, it is easy to see that the time complexity of the
whole procedure after an observation has been received is in
O(mn), where m is the number of rules in the current learned
CP-net NL (the size of NL is in O(mn)). Since it is easy,
and reasonable, to further impose that the learned CP-net has
a digraph with a small degree k (see the experiments), and
hence that m is in O(nk), we finally get an efficient learning
algorithm for acyclic CP-nets in an online and noisy setting
(for more details about the complexity of learning acyclic CP-
nets, we refer the reader to [1]).

VI. EXPERIMENTAL RESULTS

To evaluate the efficiency of our algorithm, three experi-
mental protocols have been designed: the first one aimed at
testing the accuracy with presence of noise, the computational
time and the experimental convergence of our procedure. The
second one consists in testing our algorithm on real datasets.
Finally, the last one concerns the comparison between our
algorithm and the online procedure proposed by [11].

We made these experiments on a laptop with an Intel core
i7-4600U, 16Go of RAM and Python language2.

In all of the graphics in the sequel, each point corresponds
to a simple averaged value according to 30 runs, with a report
of the standard deviation as an error bar on these points. We
use Eq. (1) as accuracy measure.

A. Learning from synthetic noisy datasets

We consider an uniform random noise (it is appropriate to
use the Hoeffding bound) represented by a probability p ∈
[0, 1].3 This amounts, for each pairwise comparison, to reverse
at random the true preference with a probability p in order to
represent the corrupted preferences. To generate our synthetic
dataset Ω , we proceed as follow:

1) compute a random acyclic CP-net NT with n variables
following Algorithm 3 in [11] (we firstly generate ran-
dom links between variables, then we generate random
preferences for each CP-table);

2) generate a random pairwise comparison (o,o′)V and
deduce the preference from NT , i.e. o �NT

o′ or
o′ �NT

o;
3) let o �NT

o′ be the current preference. Generate a
random number x ∈ [0, 1]. If x > p, then Ω← Ω∪{o �
o′}. Ω← Ω ∪ {o′ � o} otherwise;

The first experiment is designed to assess the robustness
of the algorithm w.r.t. noise. Fig. 4 depicts the algorithm’s
accuracy as a function of the amount of noise affecting the
dataset. The algorithm shows that the accuracy varies follow-
ing the given noise rate. We can also observe an overfitting of
our structure when the number of parents is too high, with a
decreasing accuracy.

Fig. 5 is obtained by learning a CP-net NL from a noiseless
dataset Ω and computing the error rate 1−L(NL,Ω) (Eq. (1)).

2The code is available here: https://services.lamsade.dauphine.fr/owncloud/
s/SW5UtCRk5BBYHHb.

3However, when p > 1
2

, Algorithm 1 will clearly learn the noisy
preferences because they will be in majority.
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Fig. 4. Learning accuracy according to the maximum number of parents per
variable. Dataset is randomly generated (20, 000 comparisons, 12 variables,
and δ = 0.95) with a varied noise probability (one per graphic line).
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Fig. 5. Error rate between a noiseless and a noisy dataset according to noise
level. Dataset is randomly generated (10, 000 comparisons, and 12 variables).

We corrupt Ω with various noise levels (denoted by Ω′), and
learn a new CP-net N ′L from it. We compute the error rate
using the original dataset, i.e., 1 − L(N ′L,Ω). Finally, the
error rate from noiseless and the one from noisy dataset are
subtracted to obtain the points in Fig. 5. The obtained error
rate does not reflect the true one, and induces a bias in the
graphic lines because we cannot perfectly learn the CP-net.
Again, the algorithm demonstrates a quite good robustness to
noise, depending on the hyperparameter value δ.

Fig. 6 reveals a lack of efficiency for values of δ less or
equal to 0.8. For higher values, the algorithm allows for adding
more new parent variables, which amounts to increase the
accuracy scores.

Fig. 7 shows the convergence of our algorithm. Note that
we compute here the error rate after each iteration of Line 2
in Algorithm 1. One can observe that this error decreases
drastically at the first steps, and continue decreasing smoothly
as soon as new pairwise comparisons are acquired.

Finally, the computation time is given by Fig. 8. One can
observe a linear growth of the computation time w.r.t. the
number of parents. Moreover, this time, and its extreme values,
also grow linearly w.r.t. the size of Ω.
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Fig. 6. Learning accuracy according to the hyperparameter δ. Dataset is
randomly generated (20, 000 comparisons, 15 variables) with a varied noise
probability (one per graphic line).
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Fig. 7. Experimental convergence of our algorithms. One iteration correspond
to a consideration of one pairwise comparison. Dataset is randomly generated
(1, 000 comparisons, 8 variables, and δ = 0.95) with a varied noise
probability (one per graphic line).

0 2 4 6 8 10 12 14

3

6

9

12

15

18

max number of parents

tim
e

(s
ec

on
ds

)

10 000 50 000 100 000

Fig. 8. Learning time according to the maximum number of parents per
variable. Dataset is randomly generated (15 variables, δ = 0.95) with varied
number of comparisons (one per graphic line).

B. Learning from a real dataset

We consider in this section the TripAdvisor4 dataset [22],
[23], which contains about 81, 000 hotel reviews (from 1, 850

4http://times.cs.uiuc.edu/∼wang296/Data/, “text” folder.



different hotels) represented by seven ratings (value as-
pect, rooms aspect, location aspect, cleanliness aspect, check
in/front desk aspect, service aspect and business service as-
pect) plus one overall rating (which represents the preference
relation). To be able to learn a binary CP-net, we compute,
for each hotel, its median review, and we rescale it with the
median values in order to obtain the median binary review
for each hotel (for more details, see the procedure described
in [16, Subsection 5.1]).

One of the limits of CP-nets is that cycles of size 2 between
two ceteris paribus outcomes cannot be represented (even for
cyclic CP-nets). However, such a cycle can occur in real life,
and deteriorates the algorithm’s learning accuracy. Hence, we
do not use these 2-cycles in this experiment.
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Fig. 9. Learning accuracy according to the maximum number of parent per
variable from real datasets. For each dataset, we select two different number
of pairwise comparisons.

We can observe from Fig. 9 that without 2-cycles, we
can learn the whole structure with about 99% of accuracy
(the remaining 1% may correspond to the noisy part of the
comparisons). Moreover, we can see that there are not many
conditional preferences in this dataset (we have less than 1%
of accuracy difference between the unconditional network and
the complete CP-net). We also can observe that the size of the
TripAdvisor dataset does not affect the accuracy.

C. Comparison with Guerin et al.

In order to reproduce the experiments in [11], we fix the
maximum number of parents to 5 and the density of NT ,
denoted by λ = #arcs

n , which is a ratio of arcs per node.
Furthermore, we consider the indecision case, meaning that
one cannot decide whether o � o′ or o′ � o, and we use
Eq (1) as accuracy measure5.

Table I shows better results for our algorithm due to the
absence of indecision. However, in some cases, the algorithm
proposed in [11] has a better disagreement. When the number
of variables is small, we can observe close agreement results
between both algorithms, when the indecision case does not
appear.

5disagreement = 1− (agreement + indecision).

TABLE I
COMPARISON RESULTS BETWEEN OUR ALGORITHM (GRAY CELLS) AND

ALGORITHM OF GUERIN et al. (WHITE CELLS), WITH 20, 000
COMPARISONS, AND δ = 0.95. THE BEST RESULT IS WRITTEN IN BOLD.

n Accuracy (%) Error (%) Indecision (%)
λ = 1

4
100 0 0
100 0 0

8
72 3 25
100 0 0

12
70 1 29
98 2 0

λ = 3

4
98 2 0
97 3 0

8
51 1 48
91 9 0

12
40 2 58
89 11 0

VII. CONCLUSION

We have proposed in this paper a new online learning
algorithm of acyclic CP-nets from noisy datasets. This pro-
cedure improves the results presented in [11] and provides an
asymptotically optimal decision for the choice of conditioned
variables. The theoretical and experimental results show the
efficiency of its robustness to noise, and a fast convergence
during the first iterations.

Future work will concern the management of parent vari-
ables in the learned CP-net, when, at some point, these
variables become useless and could be deleted. We are also
interested about agnostic PAC-learning properties that may
guarantee stronger theoretical properties of our algorithm.
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