arXiv:1709.00672v1 [cs.CV] 3 Sep 2017

Unsupervised feature learning with discriminative
encoder

Gaurav Pandey and Ambedkar Dukkipati
Department of Computer Science and Engineering
Indian Institute of Science
Email: {gauravp, ambedkar} @iisc.ac.in

Abstract—In recent years, deep discriminative models have
achieved extraordinary performance on supervised learning
tasks, significantly outperforming their generative counterparts.
However, their success relies on the presence of a large amount
of labeled data. How can one use the same discriminative
models for learning useful features in the absence of labels?
We address this question in this paper, by jointly modeling
the distribution of data and latent features in a manner that
explicitly assigns zero probability to unobserved data. Rather
than maximizing the marginal probability of observed data,
we maximize the joint probability of the data and the latent
features using a two step EM-like procedure. To prevent the
model from overfitting to our initial selection of latent features,
we use adversarial regularization. Depending on the task, we
allow the latent features to be one-hot or real-valued vectors,
and define a suitable prior on the features. For instance, one-
hot features correspond to class labels, and are directly used
for unsupervised and semi-supervised classification task, whereas
real-valued feature vectors are fed as input to simple classifiers
for auxiliary supervised discrimination tasks. The proposed
model, which we dub dicriminative encoder (or DisCoder), is
flexible in the type of latent features that it can capture. The
proposed model achieves state-of-the-art performance on several
challenging tasks.

I. INTRODUCTION

Deep neural networks have achieved extraordinary perfor-
mance for several challenging supervised learning tasks in
recent years. Convolutional neural networks [1l], [2] have
greatly improved the state-of-the-art for several problems in
computer vision including classification [3], object detec-
tion [4], semantic segmentation [3] etc. Similarly, recurrent
neural networks (and its variants) [6] have greatly improved
the state-of-the-art on several sequential modeling tasks, such
as speech-to-text generation [7]], language translation [§] etc.

However, access to large amount of labeled data has been
crucial for the success of neural networks for most of the above
tasks. Since obtaining labeled data in such large quantities is
expensive, one may wonder if it is possible to make use of
unlabeled data for learning meaningful representations. This
question has been addressed by several researchers using a
plethora of techniques.

Among these models, generative approaches model the joint
distribution of the visible and the latent features. The marginal
log-probability of the observed data is then maximized. Ex-
amples of such models in deep learning include restricted
Boltzmann machines [9], variational autoencoders [10]], [11]
and generative adversarial networks [12f], [13]]. Variants of

these models have been successfully used for learning cat-
egorical embeddings for unsupervised and semi-supervised
classification tasks [14], [L5], [10].

Another set of models use self-supervision for learning real
valued embeddings of data [[16], [17], [18]]. These embeddings
are then fed to a much smaller network for solving an auxiliary
classification problem. The success of these models relies on
the assumption that networks trained using self-supervision
will learn meaningful embeddings that generalize well for
other tasks.

In this paper, we propose a general approach for learning
latent representations from unlabeled data. The model, which
we refer to as discriminative encoder (or DisCoder) is com-
pletely specified by the encoding and the prior distribution
on the latent features. The model makes no assumptions
about the distribution of the latent features. However, in our
experiments we limit ourselves to categorical and normally
distributed latent features only, and show that these latent
features consistently achieve the state-of-the-art performance
on several tasks.

The rest of the paper is organized as follows: In Section [II}
we motivate the choice of our model, and discuss the steps
involved in training the model. We also discuss an adversarial
regularization strategy that prevents the model from getting
stuck to its initial configuration. In Section we discuss
other models that are used for unsupervised representation
learning. In Section we present the results achieved by our
model on several tasks including clustering, semi-supervised
and auxiliary classification.

II. THE PROPOSED MODEL

In this section, we will motivate our choice of the model
for unsupervised feature learning. We will discuss optimization
strategies for the model that utilize minibatches of data, and
are nearly as fast as models used in supervised learning.
The observed features will be denoted by x = (z1,...,24),
whereas the corresponding latent features will be denoted
by z = (z1,...,2n). In particular bold font will be used
for vectors, while normal font will be used to denote the
corresponding components. The distribution pg(z|x) will be
referred to as the encoding distribution, whereas py(x|z) will
be referred to as the decoding distribution. The parameters of
the networks will be denote by 6. The output of the encoding
network will be denoted as ¢. We will denote that the number

of samples in the training data by n, and the size of the latent
features by K.

A. Motivation

A common approach to address the problem of unsupervised
learning with latent features is by defining a joint distribution
over the observed and the latent features. Such a model will
be referred to as generative model in the sequel. One can then
maximize the marginal distribution of the observed features.

po(x) =Y po(x,2) ()

The MAP estimate of the latent features given the observed
features can then be used as a representation for the data.

z = arg max log py(x, z) 2)

The above approach is one of the most common approaches
for modeling latent features, and has been successfully used
in Gaussian mixture models (GMM), hidden Markov models
(HMM), restricted Boltzmann machines (RBM), variational
autoencoder (VAE), latent Dirichlet allocation (LDA) etc. De-
spite its almost ubiquitous success, this approach for learning
latent features suffers from a fatal flaw: It is theoretically
possible to maximize the pg(x) without changing the encoding
distribution py(z|x) at all. This is particularly true when the
choice of decoding distribution pg(x|z) is flexible enough to fit
the data distribution. In such a scenario, the model can choose
to ignore the latent features z in the decoding distribution
po(x|z) by equating py(x|z) to pp(x). When this happens,

_ po(x|2)pe(z) _ po(x)po(z)

po(x) po(x)
that is, the latent features z are completely independent of the
observed features x.

In general, the choice of decoding model is simple enough
to prevent this from happening. For instance, in HMM,
RBM, VAE and LDA, the decoding distribution factorizes
completely, whereas in GMM, the decoding distribution is
a Gaussian distribution. This forces the model to utilize the
latent features to effectively model the data distribution.

Hence, generative models rely on weak decoding distribu-
tions for learning useful representations. In general, a good
generative model doesn’t guarantee a useful latent represen-
tation. The problem lies in the fact, that generative models
spend most of their time optimizing pg(x), and may or may
not choose to care about the encoding distribution py(z|x). To
address this specific issue, we define a model that specifically
assigns zero probability to any point x that doesn’t occur in
the training data. One can see that such a modeling strategy
is intinsically used by discriminative models for supervised
learning tasks. In particular, if (x(V),z(M), ... (x(™) z(™) are
the observed points and their labels, the joint log-likelihood £
can be written as

po(z|x) =pe(z),)

L= logpy(xV) +> logpe(zVx") 4
i=1 =1

In discriminative models, the first term in the above equation is
completely independent of the parameters in the second term,
and hence can be maximized independently. The maximum
occurs, when py(x) = % for all the observed points, and 0 for
any point that doesn’t occur in the training data.

Unfortunately, when the labels z are unknown, the same
strategy can’t be used, since the model collapses to a single z
with py(z|x) = 1 for all x. To prevent this from happening,
we couple the encoding distribution py(z|x) with a function
f(z), and define a new distribution

q0(X,2) = po(2|x) f(2) 5)

To obtain the value of f at z, we force the distribution to
satisfy the following constraints:

1) The marginal distribution of gy(x,z) over z is py(z).
This is done to prevent the model from collapsing to a
single z. This also allows us to incorporate the prior
information about the latent features into our model.
For instance, if we know that the components of z
should form a Markov chain, we can incorporate that
information easily into the model.

2) The distribution gy assigns O probability to any point that
doesn’t occur in the training data. This is done to prevent
the model from spending its time and effort in training
¢o(x). In the words of Vapnik, “One should solve the
problem directly and never solve a more general problem
as an intermediate step”.

Lemma 1: Let gg be a distribution of the form given in (3]

that satisfies the constraints above. Then

_ _Po(zx)pe(z)
W) = S ()

for any x observed in the training data and, O otherwise.
This is the distribution that we will optimize for unsupervised
feature learning in the rest of the paper. Note that the model
is completely specified by the choice of the prior pyg(z) and
the encoding distribution pg(z|x).

(6)

B. Discriminative Encoder (DisCoder)

In the previous section, we motivated the choice of the
model used for unsupervised feature learning in this paper.
The model will be referred to as discriminative encoder (or
DisCoder) in the sequel. In this section, we will discuss
the model in further detail, and will see, why the name
discriminative encoder is apt for this model.

Given an i..d sequence of unlabeled samples
x(M .., x(™ the joint likelihood function can be written as
a function of the corresponding latent features z(1), ... z("),
and parameters of the model 6.

£(0,2,...,2") = "logge(x?,2"), (7
i=1

where gg(x,2z) is as defined in (©). In order to optimize the
above objective, we use an EM-like procedure, that alternates
between the selection of z(¥) and optimization with respect to
6.

In the selection step, for each x in the training data, we
find the best z, that is, the z that maximizes log gs(x(*), z).
The quantity log go(x(?), z) can be expanded as

logZpe z|x))

®)
Hence, the optimal latent representation should be such it
maximizes log pg(z|x”), but minimize log >°7_, py(z[x\7)).
In other words, the latent representation should have high
probability of being assigned to x(*), but low probability of
being assigned to any other x), j # i.

Once we have found the optimal latent representation for
x| we equate it to z(*). Next, we optimize the objective with
respect to the parameters of the model. In expanded form, the
objective as a function of # can be written as

0) = ZIngg(Z() - ZIOgZPe(Z(i)|XU)) €))
i=1 i=1 j=1

For instance, when py(z|x) is normally distributed with mean
¢(x) and variance 1/2, the objective can be written as

0) = llo(x™) — 20|
=1
+) log > exp(—[lp(x)) —
i=1 j=1

Since z(") are fixed for this step, the terms that depend on
z(") alone, have been removed from the objective. For a fixed
x(9), this step trains the network to maximize the probability
of the z(¥) selected in the previous step while simultaneously
lowering the probability of other z(), j = i.

Both the steps of training try to ensure that the learnt
representations are as dissimilar to each other as possible,
while simultaneously satisfying the requirement of prior
distribution. Hence, the representations learn to capture those
features that vary among the samples, while completely
ignoring the features common to all the samples. Hence, we
name the model as discriminative encoder (or DisCoder).

log qo(x'"), z) = log py(z[x'")+log py(z

z9(?) (10

Semi-supervised learning: If we have access to a set of la-
belled samples, DisCoder can utilize those samples to improve
upon the learnt embeddings. We achieve this by adding a term
to the objective to maximize the conditional log-likelihood
over the labelled samples. If we denote the set of labelled
samples as {(xs 7zgl)), ooy (x0™) 2(m)1 | the new objective
can be written as:

£,z .

= Zlog qo(x",

C. Optimization

,z™) (11)

Oy, 12

+Zlogp9

As mentioned in the previous section, the optimization
proceeds in the following two steps:

1) Latent feature selection
2) Encoding network optimization

The latent feature selection step differs depending on the
choice of the latent features, while the encoding network
optimization step remains essentially the same irrespective
of the latent features. We will first discuss the latent feature
selection step for 2 special cases and then discuss the network
optimization step.

Latent feature selection: While the proposed model is general
enough to handle any encoding distribution, in this paper,
we restrict ourselves to categorical and Gaussian distribution.
Categorical distribution is used, when the latent features are
one-hot vectors. For a fixed x(¥), the mean of the encoding
distribution ¢(x(¥)) is the output of the network. The latent
feature selection step for categorically distributed latent fea-
tures can be obtained by exponentiating equation (8]

H?:l or(x())=

(i) _
z'" = argmax — e - (13)
a0 [imy dn(x@)=
In particular, zl(i) =1, if
l= argmax O(x!) (14)

ke{l,..

} 21 fr(x9)

The last equation follows from the fact that only one com-
ponent of z can be non-zero at a time. It can be computed
efficiently and independently for each component.

For real valued latent features z, we assume that the
prior over z follows a uniform distribution over a sphere,
while the encoding distributed is normally distributed with
a constant variance A, which is selected by cross-validation
on a validation set for a secondary task For a fixed x(¥,
the mean of the encoding distribution ¢(x() is the output of
the network. The latent feature selection step for real valued
vectors can be written as:

llo(x

@) —a|?
22

lp(x7)) — 2|
1 § (WA 2l
+ log exp(3\

The above objective is a differentiable function of z. Hence,
we use stochastic gradient descent (SGD) for optimization.
Moreover, we optimize the restriction of the third term in
the objective over a small batch of 1000 samples only. In
particular, we keep a queue of 1000 samples on which the
model was trained recently, and use the samples in this queue
for minimizing the objective.

Encoding network optimization: For fixed x and z, the
encoding distribution py(z|x) is a differentiable function of 6.
Hence, we use minibatch SGD to maximize the objective £(0)
defined in (@). Given a minibatch of samples, we optimize the
restriction of the objective to this minibatch, while ignoring
the examples from other minibatches. In particular, the sum-
mation inside the log of second term in (9) is evaluated over

7\ = arg min

15)

the minibatch only. This greatly reduces the computational
complexity of optimization from O(n?) to O(nb), where b
is the batchSize. Furthermore, the randomness introduced by
the restriction serves to regularize the encoding network, and
encourages it to explore other choices of z.

D. Regularizing the model

As mentioned in the previous section, the training of
the model alternates between latent feature selection and
encoding network optimization. The latent features selected at
the beginning of training are completely random. Now, if the
encoding network is sufficiently powerful, and the encoding
network optimization step proceeds for a sufficiently long
time, the encoding network may attempt to fit to the initial
features, despite the fact that they are completely random.

This is a problem faced by almost all the approaches for un-
supervised representation learning. For instance, in clustering
based approaches [[19], [20], [14]], if the encoding network that
maps the samples to clusters is sufficiently powerful, and the
training of encoding network proceeds for a sufficiently long
time, keeping the clusters fixed, any choice of the clusters
can be predicted with absolute certainty. Even in the case of
autoencoders, if the encoding and the decoding networks are
sufficiently powerful, the autoencoder will be able to map any
image to any representation, while the decoding network will
be able to map the same representation back to the image.
(In fact, in our experiments on 2D-representations of MNIST
digits, we found that if the encoding and decoding networks
are deep enough, the representations learnt by an autoencoder
don’t change much during the course of training.)

In general, a number of reasons prevent an unsupervised
learning algorithm from getting stuck in the initial choice of
representations:

1) The encoding network is often optimized for a single
stochastic gradient descent update, and is immediately
followed by a secondary step, such as clustering (or
latent feature selection in our case).

2) The encoding network is regularized heavily to force it
to learn simpler mappings.

3) Stochastic gradient descent training in neural networks
prefers simple mappings that result in flat minima [21]].

Badly selected latent features can be escaped easily, if the
variance of the encoding distribution is high. This can be
observed from equation (I3) for normally distributed latent
features. When A is high, a slight change in the latent repre-
sentation z, doesn’t change the objective by much. Hence, the
stochasticity introduced by the optimization technique is often
enough for the model to explore other choices for z. However,
as A gets smaller, the expression gets more and more sharply
trenched around ¢(x(*). This makes it almost impossible for
the model to assign any value other than ¢(x(")) to z, despite
the stochasticity of training.

Hence, primarily for the above reason, we fix the vari-
ance of the encoding distribution to a constant, which is
selected via cross-validation on a validation set for a secondary
task, when the latent features are normally distributed. This

approach works, since the latent space is continuous, and
several choice of latent features have high probability under
the encoding distribution. However, if we try to achieve the
same for categorically distributed latent features, we end up
with distributions that are almost uniform over all the labels.
The DisCoder ends up learning nothing meaningful. The same
is true for any choice of discrete distribution, since the latent
features are far apart. To prevent this from happening, we use
adversarial regularization for categorical latent features, which
is discussed next.

Adversarial regularization: The adversarial regularization
works as follows: While training the DisCoder to maximize
S logge(x,2()) for real samples x(V),... x(™), we
simultaneously train it to be totally confused about a set of
fake samples x(V), ..., x("). We force this by maximizing the
probability over all the latent features for fake images. Hence,
the new objective becomes:

L(0) = logge(x™,27) + 3> " p(z)log po(z|x"”)
i=1 i=1 =z

(16)
The above regularization forces the model to learn mappings
from data to categories that are completely unsure about
samples that don’t occur in the training data. A similar scheme
for regularization was also used in [14].
Note: The adversarial regularization used in this paper must
not be confused with adversarial training used in [22|]. We
choose the term adversarial regularization for lack of a better
name.

In order to complete the description of the model, we also

need a way to generate fake samples. We use a generator
to generate fake images, while we use negative sampling to
generate fake documents.
Class-conditioned generation: In order to generate fake
image samples, one can couple the encoder with a generator
G, that takes Gaussian noise n and latent features z as input
and generates fake samples x as output, that is,

x = G(n,z)

The generator is trained to generate samples X, such that
the encoder can extract z back from x. We achieve this by
training the generator to maximize logpy(z|Xx = G(n,z)).
Note that the discriminator is simultaneously being trained
to be completely confused about the latent features of the
fake examples. This creates an adversarial game akin to the
adversarial game of generative adversarial networks [12]]. The
choice of the generative model allows us to visualize the
latent features, and hence, determine if the model is learning
anything meaningful. In particular, if we wish to determine
the information captured by the i*" latent feature, we set it to
1 and the other latent features to 0, couple it with Gaussian
noise and pass it through the generator.

Feature matching: Class-conditioned generation results in
images that are sharp with the object immediately identifiable.
Note that the encoding network is simultaneously being trained
to be totally confused about the generated samples. However,

if the underlying class of the fake image is immediately
identifiable, training a network to be confused about the image
results in unstable training. Hence, while class conditioned
generation is useful when the underlying task is to generate
sharp images, it is not really suitable for classification tasks.

In order to address this problem, we use feature matching
for classification tasks. Noise is passed through the generator
to generate a batch of fake images X, that is, X = G(n). The
statistics of the fake batch is then compared with the statistics
of the real batch. As suggested in [15], we pass the fake
batch as well as the real batch through the encoding network,
and compute the squared difference between the means of
encodings of the real and fake batch for the penultimate layer.
The generator is trained to minimize the distance between
the average encodings for the penultimate layer. The reultant
images aren’t very sharp. However, this approach works quite
well for classification task as has been observed in [15]].
Negative Sampling: To generate fake documents, we ran-
domly select words from the vocabulary, based on the fre-
quency with which they occur in the corpus. The size of the
document is Poisson distributed whose mean is the mean of
the length of the documents that occur in the corpus

Algorithm [I| combines all the above steps for training the
model.

E. Complexity of training

As mentioned in the previous sections, the complexity
of each step (latent feature selection as well as network
optimization) is quadratic in the size of the batch, that is,
O(b?). However, when the batch size is small enough (< 2000
samples), the empirical running time depends linearly on the
batch size rather than quadratically. This is because, most
of the running time is spent in forward and backpropagating
through the network, which needs to be done only once for the
entire batch). Very little time is utilized in the computation of
the distribution of the Discoder or its gradient from the output
of the network. Empirically, we observed that DisCoder takes
approximately the same time as Improved GAN [15] for semi-
supervised learning tasks.

III. RELATED WORKS

Unsupervised learning is a well studied problem in machine
learning, and a plethora of techniques exist for addressing
this problem, including probabilistic and non-probabilistic
approaches. Most of the probabilistic models for unsupervised
learning are generative models, that is, they explicitly model
the probability of the observed data. In this paper, we will re-
strict ourselves to discuss only those models that are employed
in deep learning.

A. Generative models

Representation learning in generative models proceeds by
defining a joint distribution over the visible features and
the latent features. One can then optimize the marginal log-
likelihood (or its approximation) over the observed data.
Examples of such models include Boltzmann machines

Algorithm 1: Minibatch training of DisCoder

Input: Observed features xM o x™)
Output: An encoder py(z|x) and generator G (if

adversarial regularization is enabled)

1 Repeat the following steps until convergence
1) Randomly select a batch of observed features B.
2) Forward propagate them through the encoder to obtain
the encoding distribution py(z|x),x € B.
3) Select the latent features zy for all x € B by
maximizing log go(x,z) for each x in the batch.
4) Train the encoding network to maximize

0) = logqs(x, 7x)

xeB
5) If semi-supervised learning is enabled:

a) Randomly select a batch B of labeled samples.

b) Train the encoding network to maximize
Z(x,z)GBs logpg(z|x).

6) If class conditioned generation is enabled:

a) Concatenate noise n with the latent features
obtained in the previous step zx and propagate
them through the generator to get a batch of fake
samples B.

b) Train the encoding network to maximize

2D vl

xEB %

) log py(z|x")

¢) Train the generator to maximize
log py(z[x = G(n,2))
7) If feature matching is enabled:

a) Forward propagate noise n through the generator
to generate a batch of fake samples.
b) Train the encoding network to maximize

PP

x€EB z

z) log po(z \x())

c) Let the mean of the penultimate layer of the
encoder for the fake batch be ¢z and for the real
batch be ¢p.

d) Train the generator to minimize the squared
distance between the average encodings for the
real and fake batch for the penultimate layer.

8) If negative sampling is enabled:

a) Create a batch of fake documents B by sampling
words in the vocabulary based on their frequency
with which they occur in the corpus.

b) Train the encoding network to maximize

PP

x€B 2z

) log po (z|x")

(RBM [9], DBM [23]]), variational autoencoders (VAE) [10],
[L1] and generative adversarial networks (GAN) [12].

RBM and DBM have proved to be excellent for unsuper-
vised learning on simple datasets such as MNIST. However,
training as well as inference in deep extensions of these models
is quite challenging, especially when convolutional layers are
employed in these models. This severely limits the application
of these models for unsupervised feature learning.

In contrast, variational autoenoders [10l], [11] and its de-
terministic variant [24] utilize deep neural networks for mod-
eling, and are comparatively simpler to train. These models
learn embeddings so as to minimize the reconstruction error.
Variational autoencoders have been successfully used for a
wide variety of tasks in deep learning, that include image
captioning [25]], semi-supervised learning [26] etc.

Among the generative models, the model most relevant to
our work is GAN [12]. In a GAN, a discriminator is trained to
distinguish between fake and real samples, while a generator
is simultaneously trained to generate images from a latent
distribution that fool the discriminator. Recent works involving
GANS [13], [27] have explored methods for inferring the latent
representations from the samples, and successfully utilized
these latent representations for several auxiliary tasks.

Variants of GANs have also been used for unsupervised and
semi-supervised learning tasks. In particular, CatGANs [14]
learn a categorical latent representation for the data by
maximizing the mutual information between the data and
the categorical labels, while simultaneously maximizing the
entropy over the class labels for fake images. Adversarial
autoencoders [28] learn a mapping from the data to the
latent space so as to minimize reconstruction error. However,
unlike variational autoencoders, they use a GAN framework
to enforce the prior on the latent features. This allows the
model to learn hybrid (discrete + continuous) embeddings,
which isn’t possible for variational autoencoders.

B. Self-supervised learning:

Self-supervised learning proceeds by generating labels from
the data using information present in the structure of the
data. There has been a growing interest in such methods,
since no extra effort is need for labeling these samples. For
instance, Dosovitskiy et al. [29]] train a model for training
a convolutional network that assigns each image to its own
class. In particular, each image is used as a seed to generate
a class of images by applying various transformations. Hence,
the output layer of the CNN grows linearly with the number
of images in the dataset, severely limiting the scalability of
the model.

Another set of methods force the model to learn the relative
position of various patches in the image with respect to each
other. For instance, jigsaw networks [16] permute the patches
of the image, and train the network to predict the correct
permutation. Similarly, context prediction networks [17] are
trained to predict the correct relationship relationship between
two patches. To successfully complete this task, the models are

forced to learn representations that capture the global structure
of the image.

Models that rely on videos as training data, attempt to
learn features by exploiting the motion information present
in videos. In particular, the approach in [17], identifies two
patches that correspond to the same trajectory in a video,
and minimizes the distance between their representations.
This forces the model to learn feature that are invariant to
orientation of the object in the video.

IV. EXPERIMENTS

In order to evaluate the capability of the model for
learning meaningful representations, we evaluate the learnt
representations across several tasks. For each task, we evaluate
our model against the state-of-the-art models for that task.
The code for the experiments in this paper is available at
https://github.com/gauravpandeyamu/DisCoder.

A. Unsupervised and semi-supervised classification

We evaluate the one-hot embeddings learnt by the model
for the task of clustering on MNIST, and 20-newsgroup
dataset. We also evaluate the embeddings for the task of
semi-supervised classification on CIFAR-10 dataset. In all
our experiments, we use a batch size of 100 images, and
Adam optimizer with a constant learning rate of 0.0002.
Since neural networks are likely to get stuck in local optima,
we repeat the experiment 10 times, and report the mean and
the standard deviation.

MNIST: The MNIST [30] is a relatively simple dataset of
digits from O to 9. We normalize the images, by dividing the
pixel intensities by 255. We evaluate DisCoder on this dataset
for the clustering task into 20 clusters. We use generative
adversarial regularization for regularizing the DisCoder as
discussed in Section The architecture of the generator
and encoding network are provided in Table [l In order to
evaluate the accuracy of the clustering algorithm, we need
to associate each cluster with a label. Towards that end, we
compute the intersection of the cluster with all the classes. The
label of the class with the maximum intersection, is assigned
to the cluster.

The clustering error achieved by the various models on
MNIST dataset is shown in Table [II} The accuracy is computed
as follows: For each cluster ¢, we identify the sample x that
maximizes p(z = i|x). Next, the label of the selected x is
assigned to all the samples in this cluster. The test error is
computed based on the labels assigned to the points using this
procedure. Such a scheme is also used for evaluating clustering
in [28].

For completeness, we also show the results, when adversar-
ial regularization isn’t used. As can be observed, adversarial
regularization is extremely crucial for achieving good perfor-
mance, when one-hot embeddings are used in DisCoder. Also
noteworthy, is the high standard deviation of an unregularized
DisCoder, which indicates that the model is overfitting to the
initial assignment.

TABLE I
Network architecture for MNIST

Encoder
64 Conv 4x4, stride 2, leaky relu
128 Conv 4x4, stride 2, bn, Irelu
128 Conv 3x3, stride 1, bn, Irelu
256 Conv 3x3, stride 2, bn, Irelu
256 Conv 3x3, stride 1, bn, Irelu

nc Conv 4x4, stride 1, softmax

Generator
256 ConvT 4x4, relu
128 ConvT 3x3, stride 2, bn, relu

64 ConvT 4x4, stride 2, bn, relu

1 ConvT 4x4, stride 2, sigmoid

*ConvT=transposed convolution
*relu = rectified linear units
*Irelu=leaky rectified linear units
*bn=batch normalization
*nc=number of clusters

TABLE II
Clustering error on MNIST dataset for various models

Model Percentage error
DEC (10 clusters) [20] 15.6
CatGAN (20 clusters) [14] 4.27
Adversarial autoencoder (32 clusters) [28]] 4.10+1.13
Discoder (unregularized) 24.34+10.6
DisCoder (20 clusters) 3.124+0.93

The DisCoder achieves the state-of-the-art results for clus-
tering on MNIST, significantly outperforming other methods.
Since the generator is trained along with the encoder, we can
visualize the images associated with each latent feature by
setting the corresponding component of z to 1, concatenating
it with noise and passing it through the generator. The resultant
images are shown in Figure|l| As expected, each latent feature
has learned to associate itself with images of a single class.
20 newsgroup: In order to ensure reproducibility, we use
a preprocessed version of the datase We use tf-idf rep-
resentation for the documents. We train a DisCoder with
negative sampling for clustering on this dataset as detailed in
Section[[I-D} The encoding network consists of a single hidden
layer with 1000 units. In order to compute clustering accuracy,
we use the same strategy that we had used for MNIST.

The clustering accuracy achieved by the various models on
20 newsgroup dataset is shown in Table|llIl For LSA and LDA,
we set the number of topics to the number of clusters. We
assign each document to the topic with the highest probability
for the given document. Again, as in the case of MNIST, a
regularized DisCoder outperforms all the other models.
CIFAR-10: Next, we evaluate the performance of the Dis-
Coder on semi-supervised learning task for CIFAR-10 dataset.
CIFAR-10 is a relatively complicated image dataset with
50000 training samples belonging to 10 classes. There is high
variability within each class, making it almost impossible to
perform clustering on this dataset. Hence, we use the dataset
for semi-supervised classification. We normalize the images

I'The pre-processed dataset is available at
https://sites.google.com/site/renatocorrea02/textcategorizationdatasets

3 Li
™
i

[AT~y

s n]
e ™

D oy e 0~

W oog o

] — {"‘I N il S Y :1!-‘
NOH — TN NRP WD e
o) LD O~y LM e ag (W00

RN —E N
PO LoD — b T~ iy pd e -0

o O

oy eed I

~EQood=nopiowelwe g

7

ok
T

L%

L
l!.j—_.r
3
A
F
/
7
[
7
{
&
L~
q
7
G

1=l £ QN ~ o~ iy

el h eV e~ Db wes e

a
oo
[

Fig. 1. Generated samples from the unsupervised MNIST generator condi-
tioned on z. Each row corresponds to a different component of z set to 1. Note
that despite the fact that training was done in an unsupervised fashion, the
generator was successfully able to associate different clusters with different
classes.

TABLE III
Clustering accuracy on 20 newsgroup dataset for various models

Model Percentage accuracy on 20 newsgroup
K-means 40.4
LSA [31] 57.25
LDA [32] 55.6
Discoder (unregularized) 35.11£8.13
DisCoder 61.431+-2.24

to lie between —1 and 1. We use 400 examples per class as
labelled data, and use the rest of the images as unlabelled.
The architecture of the generator and the encoding network
used for this task is given in Table The architecture of the
encoding network is essentially the same as the architecture of
discriminator in Improved GAN [15]]. In particular, the mag-
nitude of weights in all the convolution layers of the encoding
network are held fixed during training, and leaky rectified non-
linearities with a slope of .2 follow every convolution layer.

TABLE IV
Network architecture for CIFAR10

Generator

Encoder

512 ConvT 4x4, relu

dropout(.2)
96 Conv 3x3, stride 1, wn, Irelu
96 Conv 3x3, stride 1, wn, Irelu

E-EH.EE-F
FEEEEEEEDe
N

—_— 96 Conv 3x3, stride 2, wn, Irelu
256 ConvT 4x4, stride 2, bn, relu dropout(.5)

—_— 192 Conv 3x3, stride 1, wn, Irelu

—_ 192 Conv 3x3, stride 1, wn, Irelu

—_ 192 Conv 3x3, stride 2, wn, Irelu
128 ConvT 4x4, stride 2, bn, relu dropout(.5)

J— 192 Conv 3x3, stride 1, wn, Irelu

—_ 192 Conv 1x1, stride 1, wn, Irelu

— 192 Conv 1x1, stride 1, wn, Irelu

— Global average pooling

3 ConvT 4x4, stride 2, tanh 10 linear,wn, softmax

*wn= weight normalization

TABLE V
Performance of various models on CIFAR-10 dataset for the task of
semi-supervised classification.

Model Percentage error using 4000 labeled samples
Ladder network [33]] 20.44+0.47
CatGAN 19.58+0.46
Improved GAN 18.63£2.32
Discoder (unregularized) 31.33+44
DisCoder 17.24+0.43

Batch normalization is used in the layers of the generator.

We use feature matching to generate the fake images for
our experiments on semi-supervised learning. The classifica-
tion error achieved by the various models on CIFAR-10 is
shown in Table [Vl DisCoder achieves the lowest classification
error among all the models, significantly outperforming both
Imrpoved GAN and CatGAN.

We use class-conditioned generation to visualize samples
associated with each class learnt by the generator. To generate
each row, we set the corresponding component of z to 1,
concatenate it with noise, and pass it through the generator.
The corresponding images for the 10 classes are shown in
Figure 2} One can observe that for many classes, the generator
is able to capture the shape of the objects quite effectively,
which has been known to be quite challenging for CIFAR-
10. For comparison, we have shown the images generated by
feature matching when trained on CIFAR-10 for the same task.
As one can observe, most of the images are meaningless blobs.
SVHN: We also evaluate the performance of the DisCoder for
semi-supervised learning on the Street View House Numbers
(SVHN) dataset [34]. The dataset consists of cropped images
of digits extracted from house numbers in Google Street View
images. As is the case with CIFAR-10, the dataset has high
variability, and hence, requires a few labelled examples per
class to achieve satisfactory classification result. We use 100
examples per class as labelled images, while the rest of the

IHII ljﬂﬂ!ﬂ
ERNYABRNaNEE
FEEEENERENP
I (R e S S B
= e
=TT LY L

SR B R
T 3

B % I B O L
=Rl P [h
e AT [T
o s 1 P R R e
Ba% s~ B B
e R
NEOESEE v =
i I D I BT

Fig. 2. (Top) Generated samples from the semi-supervised CIFAR-10 gener-
ator using class-conditioned generation. Each row corresponds to a different
component of z set to 1. Since this problem is semi-supervised, z isn’t exactly
a latent feature. Note that for many classes, the generator is able to preserve
the shape of the objects, which is known to be quite challenging for CIFAR-10
images. (Bottom) Samples generated by the generator using feature matching
for the same task. Note that the shape of the objects isn’t preserved in the
images.

images are used as unlabelled images.

The architecture of the generator and the encoding network
used for this task is given in Table Again, the architecture
of the encoding network is essentially the same as the architec-
ture of discriminator in Improved GAN [13]. Feature matching
is used to generate the fake images for our experiments on
semi-supervised learning. The classification error achieved by
the various models on SVHN is shown in Table [VIIl As
can be observed, regularized DisCoder outperforms Improved
GAN by a significant margin, despite using the same network
architecture. The samples generated using feature matching
are given in Figure 3]

B. Auxiliary classification

Finally, we train the Discoder to obtain real valued embed-
dings for the STL-10 dataset. The dataset consists of 100, 000

TABLE VI
Network architecture for SVHN

Generator

Encoder

512 ConvT 4x4, relu

dropout(.2)
64 Conv 3x3, stride 1, wn, Irelu
64 Conv 3x3, stride 1, wn, Irelu

—_ 64 Conv 3x3, stride 2, wn, Irelu
256 ConvT 4x4, stride 2, bn, relu dropout(.5)
—_ 128 Conv 3x3, stride 1, wn, Irelu
—_ 128 Conv 3x3, stride 1, wn, Irelu
— 128 Conv 3x3, stride 2, wn, Irelu
128 ConvT 4x4, stride 2, bn, relu dropout(.5)
J— 128 Conv 3x3, stride 1, wn, Irelu
—_ 128 Conv 1x1, stride 1, wn, Irelu
— 128 Conv 1x1, stride 1, wn, Irelu
— Global average pooling
3 ConvT 4x4, stride 2, tanh

*wn= weight normalization

10 linear,wn, softmax

TABLE VII
Performance of various models on SVHN dataset for the task of
semi-supervised classification.

Model Percentage error using 4000 labeled samples
SDGM [333]] 16.61+£0.24
ADGM [33] 22.86
Improved GAN 8.11+1.13
Discoder (unregularized) 16.334+2.42
DisCoder 5.2240.12

Fig. 3. Samples generated by the generator using feature matching for semi-
supervised learning on SVHN.

unlabelled images of size 64 x 64 of vehicles and animals. We
normalize the images to lie between —1 and 1. The encoding
network consists of 3 convolution layers with 64, 128 and 256
filters respectively of filter size 5 x 5. The last two layers are
fully connected layers with 512 and 10 neurons respectively.
We use weight normalization with fixed norm for all but the
last layer.

We use a batch size of 500 images. Adam optimizer with a
learning rate of .0003 is used. The encoding network is trained
for 800 epochs. In particular, the objectives in (13)) and (10} are
optimized alternatively. No adversarial regularization is used
for training. After training, the weights of all but the last layer
are frozen. Finally, the last layer is trained using labelled data
to minimize classification loss.

The trained network achieves a classificiation accuracy of
71.2% on STL-10 dataset. In contrast, the state of the art on
STL-10 using fully supervised training is 70.1% [36].

V. CONCLUSION

In this paper, we introduced a method for encoding the data
in an unsupervised manner. We demonstrated the results for the
cases when the encoding distribution is either categorical or
Gaussian. The learnt embeddings were either used directly in
an unsupervised or semi-supervised learning problem or fed to
a fully connected neural network for auxiliary classification.
Using the learnt embeddings, we were able to achieve the
state-of-the-art performance for several well known datasets.

While the objective of an autoencoder encourages it to learn
embeddings that minimize reconstruction error, the objective
function of a DisCoder encourages the embeddings to be
dissimilar to each other. To achieve this task, the DisCoder is
forced to capture features that are most discriminative among
the samples. For one-hot features, we regularize the model
using adversarial regularization to prevent it from overfitting
to our initial selection of latent features. However, no such
regularization is needed for real valued features because of
the continuity of feature space and the stochastic nature of
optimization.

In this paper, we have dealt with categorical and Gaussian
encoding distributions only. However, the model definition
makes no assumptions about the encoding distribution or prior.
It will be interesting to explore the utility of the model for
handling more complicated embeddings (for instance, a latent
Markov chain) in the future.

REFERENCES

[1] K. Fukushima and S. Miyake, “Neocognitron: A self-organizing neural
network model for a mechanism of visual pattern recognition,” in
Competition and cooperation in neural nets. Springer, 1982, pp. 267—
285.

[2] Y. LeCun, J. Denker, D. Henderson, R. Howard, W. Hubbard, and
L. Jackel, “Handwritten digit recognition with a back-propagation net-
work,” in Advances in Neural Information Processing Systems. Citeseer,
1990.

[3] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM international
conference on Multimedia. ACM, 2014, pp. 675-678.

[4] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 1440-1448.

[5] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 3431-3440.

[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[71 A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Acoustics, speech and signal pro-
cessing (icassp), 2013 ieee international conference on. IEEE, 2013,
pp. 6645-6649.

[8]

[9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104-3112.

G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural computation, vol. 14, no. 8, pp. 1771-1800, 2002.
D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backprop-
agation and approximate inference in deep generative models,” in
Proceedings of The 31st International Conference on Machine Learning,
2014, pp. 1278-1286.

1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672—
2680.

J. Donahue, P. Krihenbiihl, and T. Darrell, “Adversarial feature learn-
ing,” 2016.

J. T. Springenberg, “Unsupervised and semi-supervised learning
with categorical generative adversarial networks,” arXiv preprint
arXiv:1511.06390, 2015.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford,
X. Chen, and X. Chen, “Improved techniques for training gans,”
in Advances in Neural Information Processing Systems 29, D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds.
Curran Associates, Inc., 2016, pp. 2234-2242. [Online]. Available: http:
/Ipapers.nips.cc/paper/6125-improved-techniques-for-training- gans.pdf
M. Noroozi and P. Favaro, “Unsupervised learning of visual representa-
tions by solving jigsaw puzzles,” in European Conference on Computer
Vision. Springer, 2016, pp. 69-84.

C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual repre-
sentation learning by context prediction,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 1422-1430.
X. Wang and A. Gupta, “Unsupervised learning of visual representations
using videos,” in Proceedings of the IEEE International Conference on
Computer Vision, 2015, pp. 2794-2802.

J. Yang, D. Parikh, and D. Batra, “Joint unsupervised learning of
deep representations and image clusters,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
5147-5156.

J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding
for clustering analysis,” in Proceedings of The 33rd International
Conference on Machine Learning, 2016, pp. 478-487.

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P.
Tang, “On large-batch training for deep learning: Generalization gap and
sharp minima,” arXiv preprint arXiv:1609.04836, 2016.

L. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

R. Salakhutdinov and G. Hinton, “Deep boltzmann machines,” in
Artificial Intelligence and Statistics, 2009, pp. 448-455.

Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle et al., “Greedy layer-
wise training of deep networks.”

K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel,
and Y. Bengio, “Show, attend and tell: Neural image caption generation
with visual attention,” in International Conference on Machine Learning,
2015, pp. 2048-2057.

D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-
supervised learning with deep generative models,” in Advances in Neural
Information Processing Systems, 2014, pp. 3581-3589.

V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Arjovsky, O. Mastropi-
etro, and A. Courville, “Adversarially learned inference,” arXiv preprint
arXiv:1606.00704, 2016.

A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adver-
sarial autoencoders,” arXiv preprint arXiv:1511.05644, 2015.

A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and T. Brox, “Dis-
criminative unsupervised feature learning with convolutional neural
networks,” in Advances in Neural Information Processing Systems, 2014,
pp. 766-774.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, 1998.

T. K. Landauer, P. W. Foltz, and D. Laham, “An introduction to latent
semantic analysis,” Discourse processes, vol. 25, no. 2-3, pp. 259-284,
1998.

(33]

[34]
(35]

[36]

D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993-1022,
2003.

A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko,
“Semi-supervised learning with ladder networks,” in Advances in Neural
Information Processing Systems, 2015, pp. 3546-3554.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning.”
L. Maalge, C. K. Sgnderby, S. K. Sgnderby, and O. Winther, “Auxiliary
deep generative models,” arXiv preprint arXiv:1602.05473, 2016.

K. Swersky, J. Snoek, and R. P. Adams, “Multi-task bayesian

optimization,” in Advances in Neural Information Processing
Systems 26, C. J. C. Burges, L. Bottou, M. Welling,
7Z. Ghahramani, and K. Q. Weinberger, Eds. Curran
Associates, Inc., 2013, pp. 2004-2012. [Online]. Available:

http://papers.nips.cc/paper/5086- multi- task-bayesian-optimization.pdf,

http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf
http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf
http://papers.nips.cc/paper/5086-multi-task-bayesian-optimization.pdf

	I Introduction
	II The proposed model
	II-A Motivation
	II-B Discriminative Encoder (DisCoder)
	II-C Optimization
	II-D Regularizing the model
	II-E Complexity of training

	III Related works
	III-A Generative models
	III-B Self-supervised learning:

	IV Experiments
	IV-A Unsupervised and semi-supervised classification
	IV-B Auxiliary classification

	V Conclusion
	References

