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Abstract—In this paper, we focus on developing a novel
mechanism to preserve differential privacy in deep neural net-
works, such that: (1) The privacy budget consumption is totally
independent of the number of training steps; (2) It has the ability
to adaptively inject noise into features based on the contribution
of each to the output; and (3) It could be applied in a variety
of different deep neural networks. To achieve this, we figure
out a way to perturb affine transformations of neurons, and
loss functions used in deep neural networks. In addition, our
mechanism intentionally adds “more noise” into features which
are “less relevant” to the model output, and vice-versa. Our
theoretical analysis further derives the sensitivities and error
bounds of our mechanism. Rigorous experiments conducted on
MNIST and CIFAR-10 datasets show that our mechanism is
highly effective and outperforms existing solutions.

I. INTRODUCTION

Today, deep learning has become the tool of choice in many
areas of engineering, such as autonomous systems, signal
and information processing, and data analytics. Deep learning
systems are, therefore, not only applied in classic settings, such
as speech and handwriting recognition, but also progressively
operate at the core of security and privacy critical applications.

For instance, self-driving cars make use of deep learning for
recognizing objects and street signs [1]. Detection systems for
email spam integrate learning methods for analyzing data more
effectively [2]. Furthermore, deep learning has applications in
a number of healthcare areas, e.g., phenotype extraction and
health risk prediction [3], prediction of the development of
various diseases, including schizophrenia, cancers, diabetes,
heart failure, etc. [4], and many more. This presents an obvious
threat to privacy in new deep learning systems which are being
deployed. However, there are only a few scientific studies in
preserving privacy in deep learning.

In the past few decades, a subject of significant interest has
been how to release the sensitive results of statistical analyses
and data mining, while still protecting privacy. One state-
of-the-art privacy model is ε-differential privacy [5], which
ensures that the adversary cannot infer any information about
any specific record with high confidence (controlled by a
privacy budget) from the released learning models, even if
all the remaining tuples of the sensitive data are possessed
by the adversary. The privacy budget controls the amount by

1 This is a correction version of the previous arXiv:1709.05750 and
ICDM’17 published version. Refer to Appendix G for summary of changes.

which the output distributions induced by two neighboring
datasets may differ: A smaller privacy budget value enforces
a stronger privacy guarantee. Differential privacy research has
been studied from both theoretical and application perspectives
[6, 7]. The mechanisms of achieving differential privacy
mainly include adding Laplace noise [5], the exponential
mechanism [8], and the functional perturbation method [6].

It is significant and timely to combine differential privacy
and deep learning, i.e., the two state-of-the-art techniques in
privacy preserving and machine learning. However, this is
a challenging task, and only a few scientific studies have
been conducted. In [9], Shokri and Shmatikov proposed a dis-
tributed training method, which injects noise into “gradients”
of parameters, to preserve privacy in neural networks. In this
method, the magnitude of injected noise and the privacy budget
ε are accumulated in proportion to the number of training
epochs and the number of shared parameters. Thus, it may
consume an unnecessarily large portion of the privacy budget,
as the number of training epochs and the number of shared
parameters among multiple parties are often large [10].

To improve this, based on the composition theorem [11],
Abadi et al. [12] proposed a privacy accountant, which keeps
track of privacy spending and enforces applicable privacy poli-
cies. However, the approach is still dependent on the number
of training epochs, as it introduces noise into “gradients” of
parameters in every training step. With a small privacy budget
ε, only a small number of epochs can be used to train the
model [12]. In practice, that could potentially affect the model
utility, when the number of training epochs needs to be large
to guarantee the model accuracy.

A recent approach towards differentially private deep neural
networks was explored by Phan et al. [10]. This work pro-
posed deep private auto-encoders (dPAs), in which differential
privacy is enforced by perturbing the cross-entropy errors in
auto-encoders [13]. Their algorithm was designed particularly
for auto-encoders, in which specific objective functions are ap-
plied. A different method, named CryptoNets, was proposed
in [14] towards the application of neural networks to encrypted
data. A data owner can send their encrypted data to a cloud
service that hosts the network, and get encrypted predictions in
return. This method is different from our context, since it does
not aim at releasing learning models under privacy protections.

Another drawback of the existing techniques is that all
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parameters are treated the same in terms of the amount of noise
injected. This may not be ideal in real scenarios, since different
features and parameters normally have different impacts upon
the model output. Fig. 1 shows the relevance estimated by
applying Layer-wise Relevance Propagation (LRP) [15] of
input features to the prediction of the image’s label in the
MNIST dataset [16]. Dark red units have stronger impacts
than green and yellow units. Injecting the same magnitude of
noise into all parameters may affect the model utility.

Fig. 1. An instance of rel-
evance of each input feature
given to the classification out-
put (MNIST dataset). Red neu-
rons indicate stronger rele-
vances, and green neurons indi-
cate weaker relevances.

Research Goal. Therefore,
there is an urgent demand for
the development of a privacy
preserving mechanism, such that:
(1) It is totally independent of
the number of training epochs
in consuming privacy budget; (2)
It has the ability to adaptively
inject noise into features based
on the contribution of each to
the model output; and (3) It can
be applied in a variety of deep
neural networks. Mechanisms

with such characteristics will significantly enhance the
operation of privacy preservation in deep learning.

Our Contribution. Motivated by this, we develop a novel
mechanism, called Adaptive Laplace Mechanism (AdLM), to
preserve differential privacy in deep learning. Our idea is to
intentionally add “more noise” into features which are “less
relevant” to the model output, and vice-versa. To achieve that,
we inject Laplace noise into the computation of Layer-wise
Relevance Propagation (LRP) [15] to estimate a differentially
private relevance of each input feature to the model output.
Given the perturbed features, we figure out a novel way to
distribute adaptive noise into affine transformations and loss
functions used in deep neural networks as a preprocessing step,
so that preserving differential privacy is feasible. As a result,
we expect to improve the utility of deep neural networks under
ε-differential privacy. It is worth noting that our mechanism
does not access the original data again in the training phase.
Theoretical analysis derives the sensitivities and error bounds
of our mechanism, and shows that they are totally independent
of the number of epochs.

Different from [9, 12], in our mechanism, the injected noise
and the privacy budget consumption do not accumulate in each
training step. Consequently, the privacy budget consumption in
our mechanism is totally independent of the number of training
epochs. In addition, different from [10], our mechanism can be
applied in a variety of deep learning networks with different
activation functions. Convolution neural networks (CNNs)
[16] are used as an example to validate the effectiveness of our
mechanism. Rigorous experiments conducted on MNIST and
CIFAR-10 datasets [17] show that our mechanism is effective
and outperforms existing solutions.

II. PRELIMINARIES AND RELATED WORKS

In this section, we revisit differential privacy, existing tech-
niques in preserving differential privacy in deep learning, and
the Layer-wise Relevance Propagation (LRP) algorithm [15].

Let D be a database that contains n tuples x1,x2, . . . ,xn
and d+1 attributes X1, X2, . . . , Xd, Y , and for each tuple xi =
(xi1, xi2, . . . , xid, yi). We assume, without loss of generality,√∑d

j=1 x
2
ij ≤ 1 where xij ≥ 0. This assumption can be

easily enforced by changing each xij to xij−αj

(βj−αj)·
√
d

, where
αj and βj denote the minimum and maximum values in the
domain of Xj .

To be general, let us consider a classification task with M
possible categorical outcomes, i.e., the data label yi given
xi ∈ L is assigned to only one of the M categories.
Each yi can be considered as a vector of M categories
yi = {yi1, . . . , yiM}. If the l-th category is the class of xi,
then yil = 1, otherwise yil = 0. Our objective is to construct a
differentially private deep neural network from D that (i) takes
xi = (xi1, xi2, . . . , xid) as input and (ii) outputs a prediction
of yi that is as accurate as possible. To evaluate whether model
parameters θ lead to an accurate model, a cost function FD(θ)
is used to measure the difference between the original and
predicted values of yi.

A. ε-Differential Privacy

As the released model parameter θ may disclose sensitive
information of D, to protect the privacy, we require that the
model training should be performed with an algorithm that
satisfies ε-differential privacy. The definition of differential
privacy is as follows:

Definition 1: ε-Differential Privacy [5]. A randomized algo-
rithm A fulfills ε-differential privacy, if for any two databases
D and D′ differing at most one tuple, and for all O ⊆
Range(A), we have:

Pr[A(D) = O] ≤ eεPr[A(D′) = O] (1)

where the privacy budget ε controls the amount by which the
distributions induced by D and D′ may differ. A smaller ε
enforces a stronger privacy guarantee of A.

A general method for preserving ε-differential privacy of
any function F (on D) is the Laplace mechanism [5], where
the output of F is a vector of real numbers. In fact, the
mechanism exploits the global sensitivity of F over any two
neighboring data sets (differing at most one record), which is
denoted as GSF (D). Given GSF (D), the Laplace mechanism
ensures ε-differential privacy by injecting noise η into each
value in the output of F(D): pdf(η) = ε

2GSF (D)exp(−|η| ·
ε

GSF (D) ), where η is drawn i.i.d. from Laplace distribution
with zero mean and scale GSF (D)/ε.

Research in differential privacy has been significantly stud-
ied, from both the theoretical perspective, e.g., [6, 18], and
the application perspective, e.g., data collection [19], spatio-
temporal correlations [20, 21], data streams [22], stochastic
gradient descents [23], recommendation [7], regression [6],



online learning [24], publishing contingency tables [25], and
spectral graph analysis [26].

B. Differential Privacy in Deep Learning

Deep neural networks define parameterized functions from
inputs xi ∈ D to outputs, i.e, a prediction of yi, as compo-
sitions of many layers of hidden neurons and nonlinear func-
tions. For instance, Fig. 2 illustrates a multilayer neural net-
work, in which there are k hidden layers H = {h1, . . . ,hk}.
Rectified linear units (ReLUs) and sigmoids are widely used
examples of activation functions. By adjusting parameters of
these neurons, such parameterized functions can be trained
with the goal of fitting a finite set of input-output data
instances. We specify a loss function FD(θ) that represents
the penalty for mismatching between the predicted and original
values of yi. FD(θ) on parameters θ is the average of the loss
over the training examples {x1,...,xn}. Stochastic gradient
descent (SGD) algorithm is used to minimize the cross-entropy
error [13], given the model outputs and true data labels.

Fig. 2. An instance of
differentially private neu-
ral networks.

In the work of Abadi et al. [12],
to preserve differential privacy, normal
(Gaussian) distribution noise is added
into the gradients g̃ of parameters W as
follows. At each training step t, the al-
gorithm first takes a random sample Lt
with sampling probability L/n, where
L is a group size and n is the number
of tuples in D. For each tuple xi ∈ Lt,
the gradient gt(xi) = ∇θtFxi

(θt) is
computed. Then the gradients will be
bounded by clipping each gradient in
l2 norm, i.e., the gradient vector gt is
replaced by gt/max(1, ‖g2

t ‖/C) for a
predefined threshold C. Normal distri-
bution noise is added into gradients of
parameters θ as

g̃t ←
1

L

∑
i

( gt(xi)

max(1, ‖gt(xi)2‖
C )

+N (0, σ2C2I)
)

(2)

θt ← θt − ξtg̃t (3)

where ξt is a learning rate at the training step t.
Finally, differentially private parameters θ, denoted θ,

learned by the algorithm are shared to the public and other
parties. Overall, the algorithm introduces noise into “gradi-
ents” of parameters at every training step. The magnitude of
injected noise and the privacy budget ε are accumulated in
proportion to the number of training epochs.

Compared with the work in [12], the goal is similar: learn-
ing differentially private parameters θ. However, we develop a
novel mechanism in which the privacy budget consumption is
independent of the number of training epochs. Our mechanism
is different. We redistribute the noise so that “more noise”
will be added into features which are “less relevant” to the
model output, and vice-versa. Moreover, we inject noise into
coefficients of affine transformations and loss functions, such
that differentially private parameters can be learned.

C. Layer-wise Relevance Propagation

Layer-wise Relevance Propagation (LRP) [15] is a well-
accepted algorithm, which is applied to compute the relevance
of each input feature xij to the model outcome Fxi

(θ).
Given the relevance, denoted R

(k)
m (xi), of a certain neuron

m at the layer k, i.e., m ∈ hk, for the model outcome
Fxi

(θ), LRP algorithm aims at obtaining a decomposition of
such relevance in terms of messages sent to neurons of the
previous layers, i.e., the layer (k-1)-th. These messages are
called R(k−1,k)

p←m (xi). The overall relevance of each neuron in
the lower layer is determined by summing up the relevance
coming from all upper-layer neurons:

R(k−1)
p (xi) =

∑
m∈hk

R(k−1,k)
p←m (xi) (4)

where the relevance decomposition is based on the ratio of
local and global affine transformations and is given by:

R(k−1,k)
p←m (xi) =

{
zpm(xi)
zm(xi)+µ

R
(k)
m (xi) zm(xi) ≥ 0

zpm(xi)
zm(xi)−µR

(k)
m (xi) zm(xi) < 0

(5)

with: zm(xi) is the affine transformation of neuron m ∈ hk:

zpm(xi) = pxi
×Wpm (6)

zm(xi) =
∑
p∈hk

zpm(xi) + bm (7)

s.t. pxi is the value of neuron p given xi, Wpm is a weight
connecting the neuron p to neuron m, and bm is a bias term.
A predefined stabilizer µ ≥ 0 is introduced to overcome
unboundedness.

In Eq. 5, in order to back propagate the relevance, we need
to compute the relevance R(k)

m (xi) at the last hidden layer, i.e.,
the k-th layer, from the output layer. Given the output variable
o, R(k)

m (xi) is computed as follows:

R(k)
m (xi) =

{
zmo(xi)
zo(xi)+µ

Fxi
(θ) zo(xi) ≥ 0

zmo(xi)
zo(xi)−µFxi

(θ) zo(xi) < 0
(8)

Given k hidden layers {h1, . . . ,hk}, by using Eqs. 4, 5,
and 8, we can compute the relevance of every hidden neuron
and input feature. As in [15], the following equation holds:

Fxi
(θ) =

∑
m∈hk

R(k)
m (xi) = . . . =

∑
xij∈xi

Rxij
(xi) (9)

where Rxij
(xi) is the relevance of the feature xij given

the model outcome Fxi
(θ). To ensure that the relevance

Rxij (xi) ∈ [−1, 1], each Rxij (xi) is normalized to
Rxij

(xi)−χ
(ϕ−χ) , where ϕ and χ denote the maximum and min-

imum values in the domain of
{
Rxi1

(xi), . . . , Rxid
(xi)

}
.

III. ADAPTIVE LAPLACE MECHANISM (ADLM)

In this section, we formally present our mechanism. Given
a loss function F(θ) with model parameters θ, the network is
trained by optimizing the loss function F(θ) on D by applying
SGD algorithm on T random training batches consequently.
At each training step, a single training batch L is used. A batch



L is a random set of training samples in D with a predefined
batch size |L|.

The pseudo-codes of Algorithm 1 outline five basic steps
in our mechanism to learn differentially private parameters of
the model. The five basic steps are as follows:
• Step 1 (Lines 1-7). In the first step, we obtain the average

relevances of all the j-th input features, denoted as Rj(D),
by applying the LRP algorithm on a well-trained deep neural
network on the database D. Rj(D) is computed as follows:

Rj(D) =
1

|D|
∑
xi∈D

Rxij
(xi) (10)

Then, we derive differentially private relevances, denoted as
Rj , by injecting Laplace noise into Rj for all the j-th input
features. The total privacy budget in this step is ε1.
• Step 2 (Lines 8-14). In the second step, we derive a

differentially private affine transformation layer, denoted h0.
Every hidden neuron h0j ∈ h0 will be perturbed by injecting
adaptive Laplace noise into its affine transformation to pre-
serve differential privacy given a batch L. Based on Rj , “more
noise” is injected into features which are “less relevant” to the
model output, and vice-versa. The total privacy budget used
in this step is ε2. The perturbed affine transformation layer is
denoted as h0L (Fig. 2).
• Step 3 (Line 15). In the third step, we stack hidden layers
{h1, . . . ,hk} on top of the differentially private hidden layer
h0L to construct the deep private neural network (Fig. 2).
The computations of h1, . . . ,hk are done based on the differ-
entially private layer h0L without accessing any information
from the original data. Therefore, the computations do not
disclose any information. Before each stacking operation, a
normalization layer, denoted h, is applied to bound non-linear
activation functions, such as ReLUs (Fig. 2).
• Step 4 (Lines 16-19). After constructing a private struc-

ture of hidden layers {h0L,h1, . . . ,hk}, we need to protect
the labels yi at the output layer. To achieve this, we derive a
polynomial approximation of the loss function F . Then, we
perturb the loss function F by injecting Laplace noise with a
privacy budget ε3 into its coefficients to preserve differential
privacy on each training batch L, denoted FL(θ).
• Step 5 (Lines 20-30). Finally, the parameter θT is derived

by minimizing the loss function FL(θ) on T training steps
sequentially. In each step t, stochastic gradient descent (SGD)
algorithm is used to update parameters θt given a random batch
L of training samples in D. This essentially is an optimization
process, without using any additional information from the
original data.

In our mechanism, differential privacy is preserved, since it
is enforced at every computation task that needs to access the
original data D. Laplace noise is injected into our model only
once, as a preprocessing step to preserve differential privacy in
the computation of the relevance Rj(D), the first layer h0L,
and the loss function FL(θ). Thereafter, the training phase
will not access the original data again. The privacy budget
consumption does not accumulate in each training step. As
such, it is independent of the number of training epochs.

A. Private Relevance

In this section, we preserve differential privacy in the
computation of the relevance of each j-th input feature on
database D by injecting Laplace noise into Rj(D). We set
∆R = 2d

|D| based on the maximum values of all the relevances
Rj(D) (line 4, Alg. 1). In lines 5-6, the relevance of each j-
th input feature Rj(D) is perturbed by adding Laplace noise
Lap(∆R

ε1
). The perturbed relevance is denoted as Rj . In line

7, we obtain the set of all perturbed relevances R(D):

R(D) =
{
Rj
}
j∈[1,d]

(11)

where Rj =
1

|D|
∑
xi∈D

Rxij
(xi) + Lap(

∆R

ε1
) (12)

The computation of R(D) is ε1-differential private. The
correctness is based on the following lemmas.

Lemma 1: Let D and D′ be any two neighboring databases.
Given R(D) and R(D′) be the relevance of all input features
on D and D′, respectively, and denote their representations as

R(D) =
{
Rj(D)

}
j∈[1,d]

s.t. Rj(D) =
1

|D|
∑
xi∈D

Rxij (xi)

R(D′) =
{
Rj(D

′)
}
j∈[1,d]

s.t. Rj(D′) =
1

|D′|
∑

x′
i∈D′

Rx′
ij

(x′i)

Then, we have the following inequality:

1

|D|

d∑
j=1

∥∥∥ ∑
xi∈D

Rxij
(xi) −

∑
x′
i∈D′

Rx′
ij

(x′i)
∥∥∥

1
≤ 2d

|D|
(13)

where d is the number of features in each tuple xi ∈ D.
Proof 1: The proof of Lemma 1 is in Appendix A.
Lemma 2: Algorithm 1 preserves ε1-differential privacy in

the computation of R(D).
Proof 2: The proof of Lemma 2 is in Appendix B1.

Fig. 3. The average differ-
entially private relevance
of each input feature given
MNIST dataset.

Lemma 2 shows that the computa-
tion of the relevances R(D) is dif-
ferentially private. Fig. 3 illustrates
the differentially private relevance Rj
(Eq. 12) of each j-th coefficient given
the database D. It is worth noting
that the relevance distribution is not
identical. In the next section, R(D) is
used to redistribute the noise injected
into the affine transformation layer h0

in our deep neural network.

B. Private Affine Transformation
Layer with Adaptive Noise

In general, before applying activation functions such as
ReLU and sigmoid, the affine transformation of a hidden
neuron h ∈ h0 can be presented as:

hxi(W ) = b+ xiW
T (14)

where b is a static bias, and W is the parameter of h. Given
a training batch L, h can be rewritten as:



hL(W ) =
∑
xi∈L

(b+ xiW
T ) (15)

Given the above representation of each neuron hL(Wh),
we preserve differential privacy in the computation of h0 on
L by injecting Laplace noise into inputs b and xi of every
neuron hL(W ) ∈ h0. Intuitively, we can apply an identical
noise distribution 1

|L|Lap(
∆h0

ε2
) to all input features, where

∆h0
= 2

∑
h∈h0

d (line 9, Alg. 1). This approach works well
when every input feature has an identical contribution to the
model outcome. (Please refer to the Appendix C1.)

In practice, this assumption usually is violated. For instance,
Fig. 1 illustrates the relevance, estimated by the LRP algorithm
[15], of each input feature given different handwritten digits. It
is clear that the relevances are not identical. The differentially
private relevances are not identical as well (Fig. 3). Therefore,
injecting the same magnitude of noise into all input features
may affect the utility of differentially private neural networks.

To address this problem, we propose an Adaptive Laplace
Mechanism (AdLM), to adaptively redistribute the injected
noise to improve the performance. Given hidden units hxi

(W )
in Eq. 14, our key idea is to intentionally add more noise into
input features which are less relevant to the model output Y ,
and vice-versa. As a result, we expect to improve the utility
of the model under differential privacy. In fact, we introduce
a privacy budget ratio βj and the privacy budget εj for each
j-th input feature as follows:

βj =
d× |Rj |∑d
j=1 |Rj |

s.t. εj = βj × ε2 (16)

We set ∆h0
= 2

∑
h∈h0

d based on the maximum values
of all the input features xij (line 9, Alg. 1). In line 11, βj
can be considered as the fraction of the contribution to ∆h0

from the j-th input feature to the hidden neuron h ∈ h0. In
lines 12-13, each input feature xij of every hidden neuron h in
the first affine transformation layer h0 is perturbed by adding
adaptive Laplace noise 1

|L|Lap(∆h0
/εj). The perturbed input

features are denoted as xi. In lines 20-21, given a random
training batch L, we construct the differentially private affine
transformation layer h0L, which consists of perturbed hidden
neurons hL(W ):

h0L(W0) =
{
hL(W )

}
h∈h0

s.t. hL(W ) =
∑
xi∈L

(
xiW

T + b
)

where b = b+ 1
|L|Lap(

∆h0

ε2
) is the perturbed bias (line 14). The

following lemma shows that Alg. 1 preserves ε2-differential
privacy in the computation of h0L.

Lemma 3: Let L and L′ be any two neighboring batches.
Given parameter W0, let h0L and h0L′ be the first affine
transformation layers on L and L′, respectively, and denote
their representations as follows:
h0L(W0) = {hL(W )}h∈h0 s.t. hL(W ) =

∑
xi∈L

(b+ xiW
T )

h0L′(W0) = {hL′(W )}h∈h0
s.t. hL′(W ) =

∑
x′
i∈L′

(b+ x′iW
T )

Then, we have the following inequality:

Algorithm 1 Adaptive Laplace Mechanism (Database D,
hidden layers H , loss function F(θ), and privacy budgets ε1,
ε2, and ε3, the number of batches T , the batch size |L|)

1: Compute the average relevance by applying the LRP Alg.
2: ∀j ∈ [1, d] : Rj(D) = 1

|D|
∑

xi∈D Rxij (xi) #Eq.10#
3: Inject Laplace noise into the average relevance of each j-th

input feature
4: ∆R = 2d/|D| #Lemma 1#
5: for j ∈ [1, d] do
6: Rj ← 1

|D|
∑

xi∈D Rxij (xi) + Lap( ∆R
ε1

)

7: R(D) = {Rj}j∈[1,d]

8: Inject Laplace noise into coefficients of the differentially
private layer h0

9: ∆h0 = 2
∑
h∈h0

d #Lemma 3#
10: for j ∈ [1, d] do
11: εj ← βj × ε2 #Eq. 16#
12: for xi ∈ D, j ∈ [1, d] do
13: xij ← xij + 1

|L|Lap(
∆h0
εj

) #perturb input feature xij#

14: b← b+ 1
|L|Lap(

∆h0
ε2

) #perturb bias b#
15: Construct hidden layers {h1, . . . ,hk} and normalization

layers {h1, . . . , h(k)}
16: Inject Laplace noise into coefficients of the approximated

loss function F̂
17: ∆F = M(|h(k)|+ 1

4
|h(k)|2) #Lemma 5#

18: for xi ∈ D,R ∈ [0, 2], l ∈ [1,M ] do
19: φ

(R)

lxi
← φ

(R)
lxi

+ 1
|L|Lap(

∆F
ε3

) #perturb coefficients of F̂
20: Initialize θ0 randomly
21: for t ∈ [T ] do
22: Take a random training batch L
23: Construct differentially private affine transformation

layer
24: h0L(W0)← {hL(W )}h∈h0

25: s.t. hL(W ) =
∑

xi∈L
(
xiW

T + b)
])

26: Construct differentially private loss function
27: FL(θt) =

∑M
l=1

∑
xi∈L

∑2
R=0

(
φ

(R)

lxi
WT
l(k)

)R
28: Compute gradient descents
29: θt+1 ← θt − ηt 1

|L|OθtFL(θt) #ηt is a learning rate#
30: Return θT #(ε1 + ε2 + ε3)-differentially private#

∆h0
=
∑
h∈h0

d∑
j=1

∥∥∥ ∑
xi∈L

xij −
∑

x′
i∈L′

x′ij

∥∥∥
1
≤ 2

∑
h∈h0

d (17)

where d is the number of features in each tuple xi ∈ D.
Proof 3: Assume that L and L′ differ in the last tuple. Let

xn (x′n) be the last tuple in L (L′). We have that

∆h0
=
∑
h∈h0

d∑
j=1

∥∥∥ ∑
xi∈L

xij −
∑

x′
i∈L′

x′ij

∥∥∥
1

=
∑
h∈h0

d∑
j=1

‖xnj − x′nj‖1 ≤ 2 max
xi∈L

∑
h∈h0

d∑
j=1

‖xij‖1 (18)

Since ∀xi, j : xij ∈ [0, 1], from Eq. 18 we have that: ∆h0
≤

2
∑
h∈h0

d. Eq. 17 holds. �
Lemma 4: Algorithm 1 preserves ε2-differential privacy in

the computation of h0L(W0) (lines 24-25).
Proof 4: From lines 24-25 in the Alg. 1, for each h ∈ h0L,



h can be re-written as:

hL(W ) =

d∑
j=1

[ ∑
xi∈L

(
xij +

1

|L|
Lap(

∆h0

εj
)
)
WT

]
+
∑
xi∈L

(
b+

1

|L|
Lap(

∆h0

ε2
)
)

(19)

Let us consider the static bias b = 1 as the 0-th input feature
and its associated parameter Wb, i.e., xi0 = b = 1 and W =
Wb ∪W , we have that

hL(W ) =

d∑
j=0

[ ∑
xi∈L

(
xij +

1

|L|
Lap(

∆h0

εj
)
)
WT

]
(20)

=

d∑
j=0

[ ∑
xi∈L

xij + Lap(
∆h0

εj
)
]
WT =

d∑
j=0

φ
h

jW
T (21)

where φ
h

j =
[∑

xi∈L xij + Lap(
∆h0

εj
)
]
.

We can see that φ
h

j is the perturbation of the input feature
xij associated with the j-th parameter Wj ∈W of the hidden
neuron h on L. Since all the hidden neurons h in h0 are
perturbed, we have that:

Pr
(
h0L(W0)

)
=
∏
h∈h0

d∏
j=0

exp
(εj‖∑xi∈L xij − φ

h

j ‖
∆h0

)
∆h0

is set to 2
∑
h∈h0

d (line 9 in Alg. 1). h0L(W0) is the
output (lines 24-25 in Alg. 1). We have that

Pr
(
h0L(W0)

)
Pr
(
h0L′(W0)

) =

∏
h∈h0

∏d
j=0 exp

( εj‖∑xi∈L xij−φ
h
j ‖1

∆h0

)
∏
h∈h0

∏d
j=0 exp

( εj‖∑x′
i
∈L′ x′

ij−φ
h
j ‖1

∆h0

)
≤
∏
h∈h0

d∏
j=0

exp(
εj

∆h0

∥∥∥ ∑
xi∈L

xij −
∑

x′
i∈L′

x′ij

∥∥∥
1
)

≤
∏
h∈h0

d∏
j=1

exp(
εj

∆h0

2 max
xn∈L

∥∥xnj∥∥1
) ≤

∏
h∈h0

d∏
j=1

exp(
2εj
∆h0

)

≤
∏
h∈h0

d∏
j=1

exp(ε2

2
d×|Rj |∑d
j=1 |Rj |

∆h0

)

≤ exp(ε2

2
∑
h∈h0

d
[∑d

j=1
|Rj |∑d

j=1 |Rj |

]
∆h0

) = exp(ε2)

Consequently, the computation of h0L(W0) preserves ε2-
differential privacy in Alg. 1. �

Lemma 4 shows that we can redistribute the noise in the
computation of the first hidden layer h0L under differential
privacy. In addition, given a batch L, without accessing
additional information from the original data, none of the
computations on top of h0L risk the privacy protection under
differential privacy. These computation tasks include the appli-
cation of activation functions, e.g., ReLU and sigmoid, on h0L,
the computation of hidden layers h1, . . . ,hk, local response

normalizations, drop-out operations, polling layers, etc. (line
15, Alg. 1). This result can be applied to both fully-connected
layers and convolution layers. In this paper, we applied ReLU
on top of h0L and other layers h1, . . . ,hk. Local response
normalization layers are used after the application of ReLUs
in each hidden layer to bound ReLU functions.

Local Response Normalization. The hidden units of the
lower layer will be considered as the input of the next layer
(Fig. 2). To ensure that this input is bounded hxi

∈ [0, 1], as in
[10, 27], we add a local response normalization (LRN) layer on
top of each hidden layer. Given a fully-connected layer, as in
[10], given an input xi, each perturbed neuron hxi(W ) can be
directly normalized as follows: hxi

←
(
hxi

(W )−χ
)
/(ϕ−χ),

where ϕ and χ denote the maximum and minimum values in
the domain of {hxi

}i∈L.

Given a convolution layer with a perturbed neuron h
k

ij at
location (i, j) in the k-th feature map, based on [27], our local
response normalization (LRN) is presented as follows:

h
k

ij ← h
k

ij/max
(
h
k

ij ,
(
q + α

min(N−1,k+l/2)∑
m=max(0,k−l/2)

(h
m

ij )
2
)β)

(22)

where the constants q, l, α, and β are hyper-parameters, N is
the total number of feature maps. As in [27], we used q =
2, l = 5, α = 10−4, and β = 0.75 in our experiments.

C. Perturbation of the Loss Function FL(θ)

On top of our private deep neural network (Fig. 2), we add
an output layer with the loss function FL(θ) to predict Y .
Since the loss function FL(θ) accesses the labels yi given
xi ∈ L from the data, we need to protect the labels yi at the
output layer. First, we derive a polynomial approximation of
the loss function based on Taylor Expansion [28]. Then, we
inject Laplace noise into coefficients of the loss function F to
preserve differential privacy on each training batch L.

The model output variables {ŷ1, . . . , ŷM} are fully linked to
the normalized highest hidden layer, denoted h(k), by weighted
connections W(k) (Fig. 2). As common, the logistic function
can be used as an activation function of the output variables.
Given, l-th output variable ŷl and xi, we have:

ŷil = σ
(
hxi(k)W

T
l(k)

)
(23)

where hxi(k) is the state of h(k) derived from h0xi
by

navigating through the neural network.
Cross-entropy error [13] can be used as a loss function. It

has been widely used and applied in real-world applications
[13]. Therefore, it is critical to preserve differential privacy
under the use of the cross-entropy error function. Other loss
functions, e.g., square errors, can be applied in the output layer,



as well. In our context, the cross-entropy error function is
given by:

FL(θ) = −
M∑
l=1

∑
xi∈L

(
yil log ŷil + (1− yil) log(1− ŷil)

)
= −

M∑
l=1

∑
xi∈L

(
yil log(1 + e−hxi(k)W

T
l(k))

+ (1− yil) log(1 + ehxi(k)W
T
l(k))

)
(24)

Based on [10] and Taylor Expansion [28], we derive the
polynomial approximation of FL(θ) as:

F̂L(θ) =

M∑
l=1

∑
xi∈L

2∑
q=1

2∑
R=0

f
(R)
ql (0)

R!

(
hxi(k)W

T
l(k)

)R
=

M∑
l=1

∑
xi∈L

[ 2∑
q=1

f
(0)
ql (0) +

( 2∑
q=1

f
(1)
ql (0)

)
hxi(k)W

T
l(k)

+
( 2∑
q=1

f
(2)
ql (0)

2!

)
(hxi(k)W

T
l(k))

2
]

(25)

where ∀l ∈ [1,M ] : f1l(z) = yil log(1 + e−z) and f2l(z) =
(1− yil) log(1 + ez).

To achieve ε3-differential privacy, we employ functional
mechanism [29] to perturb the loss function F̂L(θ) by injecting
Laplace noise into its polynomial coefficients. So, we only
need to perturb F̂L(θ) just once in each training batch. To be
clear, we denote {φ(0)

lxi
, φ

(1)
lxi
, φ

(2)
lxi
} as the coefficients, where

φ
(0)
lxi

=
∑2
q=1 f

(0)
ql (0) and φ(1)

lxi
and φ(2)

lxi
are coefficients at the

first order and the second order of the function F̂L(θ). In fact,
φ

(1)
lxi

and φ(2)
lxi

will be combinations between the approximation

terms
∑2
q=1 f

(1)
ql (0),

∑2
q=1

f
(2)
ql (0)

2! , and hxi(k).
In Alg. 1, we set ∆F = M(|h(k)| + 1

4 |h(k)|2) (line 17).
In essence, coefficients φ(R)

lxi
with R ∈ [0, 2] are functions

of the label yil only. Therefore, we can perform the pertur-
bation by injecting Laplace noise 1/|L|Lap(∆F

ε3
) into φ

(R)
lxi

for every training label yil ∈ D (lines 18-19). Then, the
perturbed coefficients, denoted φ

(R)

lxi
are used to construct the

differentially private loss function FL(θt) (line 27) during
the training process without accessing the original label yil
again (lines 20-30). Stochastic gradient descent and back-
propagation algorithms are used to minimize the perturbed
loss function FL(θt).

Now, we are ready to state that the computation of FL(θt)
is ε3-differentially private, and our mechanism preserves (ε1 +
ε2 + ε3)-differential privacy in the following lemmas.

Lemma 5: Let L and L′ be any two neighboring batches.
Let F̂L(θ) and F̂L′(θ) be the loss functions on L and L′

respectively, then we have the following inequality:

∆F =

M∑
l=1

2∑
R=0

∥∥∥ ∑
xi∈L

φ
(R)
lxi
−
∑

x′
i∈L′

φ
(R)
lx′

i

∥∥∥ ≤M(|h(k)|+
1

4
|h(k)|2)

where |h(k)| is the number of hidden neurons in h(k).

Proof 5: The proof of Lemma 5 is in Appendix D1.
Lemma 6: Algorithm 1 preserves ε3-differential privacy in

the computation of FL(θt) (line 27).
Proof 6: The proof of Lemma 6 is in Appendix E1.

D. The Correctness and Characteristics of the AdLM

The following theorem illustrates that the Alg. 1 preserves
ε-differential privacy, where ε = ε1 + ε2 + ε3.

Theorem 1: Algorithm 1 preserves ε-differential privacy,
where ε = ε1 + ε2 + ε3.

Proof: At a specific training step t ∈ T , it is crystal clear
that the computation of h0L is ε2-differentially private (Lemma
4). Therefore, the computation of the hidden layers h1, . . . ,hk
and normalization layers h are differentially private. This is
because they do not access any additional information from
the data. At the output layer, the loss function FL(θt) is ε3-
differentially private (Lemma 6). The computation of gradients
1
|L|OθtFL(θt) and descents is an optimization process, without
using any additional information from the original data. Thus,
θt+1 is differentially private (line 29, Alg. 1).

This optimization process is repeated through T steps with-
out querying the original data D (lines 21-30). This is done
because Laplace noise is injected into input features xij and
coefficients φ(R)

lxi
as preprocessing steps (lines 3-19). Note that

xij and φ
(R)

lxi
are associated with features xi and the label yi

respectively. h0L and FL(θt) are computed based on xij and
φ

(R)

lxi
. As a result, the noise and privacy budget consumption

will not be accumulated during the training process.
Finally, FL(θt) uses the outputs of h0L, which essentially

uses the differentially private relevances R(D) as of one
inputs. R(D), h0L, and FL(θt) are achieved by applying
ε1, ε2, and ε3-differential privacy mechanisms. Furthermore,
FL(θt) and h0L access the same training batch L at each
training step. Therefore, based on the composition theorem
[11], the total privacy budget in Alg. 1 must be the summation
of ε1, ε2, and ε3.

Consequently, Algorithm 1 preserves ε-differential privacy,
where ε = ε1 + ε2 + ε3. �

Note that ∆R and ∆h0
are dependent on the number of

input features d. ∆R is negatively proportional to the number
of tuples in D. The larger the size of D, the less noise will be
injected into the private relevance R. ∆F is only dependent
on the number of neurons in the last hidden layer and the
output layer. In addition, ∆R,∆h0

, and ∆F do not depend on
the number of training epochs. Consequently:

(1) The privacy budget consumption in our model is totally
independent of the number of training epochs.

(2) In order to improve the model utility under differential
privacy, our mechanism adaptively injects Laplace noise into
features based on the contribution of each to the model output.

(3) The average error incurred by our approximation ap-
proach, F̂L(θ), is bounded by a small number M × e2+2e−1

e(1+e)2

(Please refer to Lemma 7 in Appendix F1).
(4) The proposed mechanism can be applied to a variety

of deep learning models, e.g., CNNs [30], deep auto-encoders



[13], Restricted Boltzmann Machines [31], convolution deep
belief networks [32], etc., as long as we can perturb the first
affine transformation layer.

With these characteristics, our mechanism has a great po-
tential to be applied in large datasets, without consuming
excessive privacy budgets. In the experiment section, we will
show that our mechanism leads to accurate results.

IV. EXPERIMENTAL RESULTS

We have carried out an extensive experiment on two well-
known image datasets, MNIST and CIFAR-10. The MNIST
database of handwritten digits consists of 60,000 training ex-
amples, and a test set of 10,000 examples [16]. Each example
is a 28 × 28 size gray-level image. The CIFAR-10 dataset
consists of color images categorized into 10 classes, such as
birds, dogs, trucks, airplanes, etc. The dataset is partitioned
into 50,000 training examples and 10,000 test examples [17].

Competitive Models. We compare our mechanism with
the state-of-the-art differentially private stochastic gradient
descent (pSGD) for deep learning proposed by [12]. CNNs
are used in our experiments for both algorithms. The hyper-
parameters in pSGD are set to the default values recom-
mended by Abadi et al. [12]. To comprehensively examine
the proposed approaches, our mechanism is implemented in
two different settings: (1) The Adaptive Laplace Mechanism
(Alg. 1)-based CNN with ReLUs, simply denoted AdLM; and
(2) An Identical Laplace Mechanism-based CNN with ReLUs
(ILM), in which an identical Laplace noise 1

|L|Lap(
∆h0

ε2
) is

injected into each feature xij to preserve ε2-differential privacy
in the computation of the affine transformation layer h0. In
the ILM algorithm, we do not need to use the differentially
private relevances R(D). More details about the ILM are in
the Appendix C1. The implementation of our mechanism is
publicly available1.

A. MNIST Dataset

The designs of the three models are the same on the
MNIST dataset. We used two convolution layers, one with
32 features and one with 64 features. Each hidden neuron
connects with a 5x5 unit patch. A fully-connected layer with
25 units and an output layer of 10 classes (i.e., 10 digits)
with cross-entropy loss with LRN are used. The batch size
is 1,800. This also is the structure of the pre-trained model,
which is learned and used to compute the average relevances
R(D). The experiments were conducted on a single GPU, i.e.,
NVIDIA GTX TITAN X, 12 GB with 3,072 CUDA cores.

Fig. 4a illustrates the prediction accuracy of each model as
a function of the privacy budget ε on the MNIST dataset. It
is clear that our models, i.e., AdLM and ILM, outperform the
pSGD, especially when the privacy budget ε is small. This is
a crucial result, since smaller privacy budget values enforce
stronger privacy guarantees. When the privacy budget ε is
large, e.g., ε = 2, 4, 8, which means small noise is injected
into the model, the efficiencies of all the models are almost
converged to higher prediction accuracies.

1https://github.com/haiphanNJIT/PrivateDeepLearning

The AdLM model achieves the best performance. Given a
very small privacy budget ε = 0.25, it achieves 90.2% in terms
of prediction accuracy, compared with 88.46% obtained by the
ILM and 82.09% obtained by the pSGD. Overall, given small
values of the privacy budget ε, i.e., 0.2 ≤ ε ≤ 0.5, the AdLM
improves the prediction accuracy by 7.7% on average (i.e.,
91.62%) compared with the pSGD (i.e., 83.93%). The result
is statistically significant with p < 0.01 (t-test).

Figs. 4b-c illustrate the prediction accuracy of each model
vs. the number of epochs under ε = 0.5 and ε = 2.0
respectively. Given large noise, i.e., ε = 0.5, the pSGD quickly
achieves higher prediction accuracies (i.e., 88.59%) after a
small number of epochs, compared with other models (Fig.
4b). However, the pSDG can only be applied to train the model
by using a limited number of epochs; specifically because the
privacy budget is accumulated after every training step. Mean-
while, our mechanism is totally independent of the number
of epochs in the consumption of privacy budget. Therefore,
after 500 epochs, our models outperform the pSGD. The
AdLM achieves the best performance, in terms of prediction
accuracy: 93.66%, whereas the ILM and the pSGD reached
only 92.39% and 88.59%, respectively. Interestingly, given
small noise, i.e., ε = 2.0, our models achieve higher accuracies
than the pSGD after a small number of epochs (Fig. 4c). This
result illustrates the crucial benefits of being independent of
the number of training epochs in preserving differential privacy
in deep learning. With our mechanism, we can keep training
our models without accumulating noise and privacy budget.

B. CIFAR-10 Dataset

The designs of the three models are the same on the
CIFAR-10 dataset. We used three convolution layers, two with
128 features and one with 256 features. Each hidden neuron
connects with a 3x3 unit patch in the first layer, and a 5x5
unit patch in other layers. One fully-connected layer with 30
neurons, and an output layer of 10 classes with a cross-entropy
loss with LRN are used. The batch size is set to 7,200. This
also is the structure of the pre-trained model, which is learned
and used to compute the average relevances R(D).

Fig. 5a shows the prediction accuracies of each model as
a function of the privacy budget ε on the CIFAR-10 dataset.
Figs. 5b-c illustrate the prediction accuracy of each model vs.
the number of epochs under different noise levels. Similar to
the results on the MNIST dataset, the results on CIFAR-10
strengthen our observations: (1) Our mechanism outperforms
the pSGD in terms of prediction accuracy, given both modest
and large values of the privacy budget ε (Fig. 5a); and (2) Our
mechanism has the ability to work with large-scale datasets,
since it is totally independent of the number of training epochs
in the consumption of privacy budget (Figs. 5b-c).

In fact, the AdLM improves the prediction accuracy by
5.9% on average (i.e., to 77%) compared with the pSGD (i.e.,
71.1%). The result is statistically significant with p < 0.01
(t-test). Given large noise, i.e., ε = 2.5, our models including
the AdLM and ILM outperform the pSGD after 800 epochs
(Fig. 5b).

https://github.com/haiphanNJIT/PrivateDeepLearning


(a) accuracy vs. ε (b) ε = 0.5 (large noise) (c) ε = 2.0 (small noise)

Fig. 4. Accuracy for different noise levels on the MNIST dataset.

(a) accuracy vs. ε (b) ε = 2.5 (large noise) (c) ε = 8.0 (small noise)

Fig. 5. Accuracy for different noise levels on the CIFAR-10 dataset.

C. Adaptive Laplace Noise
It is important to note that by adaptively redistributing the

noise into input features based on the relevance of each to
the model output, we can achieve much better prediction
accuracies in both MNIST and CIFAR-10 datasets given
both small and large values of privacy budget ε. This is
clearly demonstrated in Figs. 4a and 5a, since the AdLM
outperforms the ILM in all cases. Overall, the AdLM improves
the prediction accuracy by 2% and 5% on average on MNIST
and CIFAR-10 datasets correspondingly, compared with the
ILM. The result is statistically significant with p < 0.05 (t-
test). Note that the ILM injected an identical amount of noise
into all input features, regardless of their contributions to the
model output. This is an important result, since our mechanism
is the first of its kind, which can redistribute the noise injected
into the deep learning model to improve the utility. In addition,
the reallocation of ε1, ε2, and ε3 could further improve the
utility. This is an open research direction in the future work.

D. Computational Efficiency
In terms of computation efficiency, there are two differences

in our mechanism, compared with a regular deep neural
network: (i) The pre-trained model; and (ii) The noise injection
task. In practice, the pre-trained model is not necessarily
identical to the differentially private network trained by our
AdLM. A simple model can be used as a pre-trained model to
approximate the average relevance R(D), as long as the pre-
trained model is effective in terms of prediction accuracy even
over a small training dataset. Achieving this is quite straight-
forward, because: (1) The pre-trained model is noiseless; and
(2) The number of training epochs used to learn a pre-trained
model is small compared with the one of differentially private

models. In fact, we only correspondingly need 12 and 50
extra epochs to learn the pre-trained models on MNIST and
CIFAR-10 datasets. Training pre-trained models takes about
10 minutes on a single GPU, i.e., NVIDIA GTX TITAN X,
12 GB with 3,072 CUDA cores. Therefore, the model pre-
training for the computation of R(D) is efficient.

Another difference in our mechanism is the noise injection
into input attributes and coefficients of the loss function F̂ .
In this task, the computations of ∆R, ∆h0

, ∆F , Rj , βj , x,
and φ are efficient and straight-forward, since there is not
any operation such as arg min, arg max, sorting, etc. The
complexity of these computations is O

(
|D|(d + M)

)
, which

is linear to the size of the database D. In addition, these
computations can be efficiently performed in either a serial
process or a parallel process. Therefore, this task does not
affect the computational efficiency of our mechanism much.

V. CONCLUSIONS

In this paper, we proposed a novel mechanism, called
Adaptive Laplace Mechanism (AdLM), to preserve differential
privacy in deep learning. Our mechanism conducts both sensi-
tivity analysis and noise insertion on deep neural networks. It
is totally independent of the number of training epochs in the
consumption of privacy budget. That makes our mechanism
more practical. In addition, our mechanism is the first of its
kind to have the ability to redistribute the noise insertion
toward the improvement of model utility in deep learning.
In fact, our mechanism has the ability to intentionally add
more noise into input features which are less relevant to the
model output, and vice-versa. Different activation functions
can be applied in our mechanism, as well. These distinctive
characteristics guarantee the ability to apply our mechanism on



large datasets in different deep learning models and in different
contexts. Our mechanism can clearly enhance the application
of differential privacy in deep learning. Rigorous experimental
evaluations conducted on well-known datasets validated our
theoretical results and the effectiveness of our mechanism.
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APPENDIX

A. Proof of Lemma 1

Proof 1: Assume that D and D′ differ in the last tuple. Let
xn (x′n) be the last tuple in D (D′). We have that

∆R =
1

|D|

d∑
j=1

∥∥∥ ∑
xi∈D

Rxij
(xi)−

∑
x′
i∈D′

Rx′
ij

(x′i)
∥∥∥

1

=
1

|D|

d∑
j=1

∥∥∥Rxnj (xn)−Rx′
nj

(x′n)
∥∥∥

1

≤ 2

|D|
max
xi∈D

d∑
j=1

‖Rxij
(xi)‖1 ≤

2d

|D|

Eq. 13 holds.

B. Proof of Lemma 2

Proof 2: Let D and D′ be two neighbor databases. Without
loss of generality, assume that D and D′ differ in the last tuple
xn (x′n). Rj(D) is calculated as done in line 6, Alg. 1, and
R(D) =

{
Rj(D)

}
j∈[1,d]

is the output of the Alg. 1 (line 7).
The perturbation of the relevance Rj(D) can be rewritten as:

Rj =
1

|D|
∑
xi∈D

Rxij (xi) + Lap(
∆R

ε1
) (26)

Since all the input features are perturbed, we have that

Pr
(
R(D)

)
Pr
(
R(D′)

) =

∏d
j=1 exp

( ε1‖ 1
|D|

∑
xi∈D Rj(xi)−Rj‖1

∆R

)
∏d
j=1 exp

( ε1‖ 1
|D|

∑
x′
i
∈D Rj(x′

i)−Rj‖1
∆R

)
≤

d∏
j=1

exp(
ε1

|D|∆R

∥∥∥ ∑
xi∈D

Rj(xi)−
∑

x′
i∈D′

Rj(x
′
i)
∥∥∥

1
)

≤
d∏
j=1

exp(
ε1

|D|∆R

∥∥∥Rj(xn)−Rj(x′n)
∥∥∥

1
)

≤
d∏
j=1

exp(
ε1

|D|∆R
2 max
xn∈D

∥∥Rj(xn)
∥∥

1
)

≤ exp(ε1
2 maxxn∈L

∑d
j=1‖Rj(xn)‖1

|D|∆R
)

≤ exp(ε1)

Consequently, the computation of R(D) preserves ε1-
differential privacy in Alg. 1.

C. Identical Laplace Mechanism (ILM)

We can add an identical noise distribution 1
|L|Lap(

∆h0

ε2
) to

all input features, where ∆h0
= 2

∑
h∈h0

d (line 9, Alg. 1) to
preserve differential privacy in the computation of h0. In fact,

we have that ∀xi ∈ D, j ∈ [1, d] : xij = xij + 1
|L|Lap(

∆h0

ε2
).

For each h ∈ h0L, h can be re-written as:

hL(W ) =

d∑
j=1

[ ∑
xi∈L

(
xij +

1

|L|
Lap(

∆h0

ε2
)
)
WT

]
+
∑
xi∈L

(
b+

1

|L|
Lap(

∆h0

ε2
)
)

(27)

Let us consider the static bias b = 1 as the 0-th input feature
and its associated parameter Wb, i.e., xi0 = b = 1 and W =
Wb ∪W , we have that

hL(W ) =

d∑
j=0

[ ∑
xi∈L

(
xij +

1

|L|
Lap(

∆h0

ε2
)
)
WT

]
(28)

=

d∑
j=0

[ ∑
xi∈L

xij + Lap(
∆h0

ε2
)
]
WT =

d∑
j=0

φ
h

jW
T (29)

where φ
h

j =
[∑

xi∈L xij + Lap(
∆h0

ε2
)
]
.

We can see that φ
h

j is the perturbation of the input feature
xij associated with the j-th parameter Wj ∈W of the hidden
neuron h on L. Since all the hidden neurons h in h0 are
perturbed, we have that:

Pr
(
h0L(W0)

)
=
∏
h∈h0

d∏
j=0

exp
(ε2‖∑xi∈L xij − φ

h

j ‖
∆h0

)
∆h0

is set to 2
∑
h∈h0

d and h0L(W0) = {hL(W )}h∈h0
is

the output, we have that

Pr
(
h0L(W0)

)
Pr
(
h0L′(W0)

) =

∏
h∈h0

∏d
j=0 exp

( ε2‖∑xi∈L xij−φ
h
j ‖1

∆h0

)
∏
h∈h0

∏d
j=0 exp

( ε2‖∑x′
i
∈L′ x′

ij−φ
h
j ‖1

∆h0

)
≤
∏
h∈h0

d∏
j=0

exp(
ε2

∆h0

∥∥∥ ∑
xi∈L

xij −
∑

x′
i∈L′

x′ij

∥∥∥
1
)

≤
∏
h∈h0

d∏
j=1

exp(
ε2

∆h0

∥∥∥xnj − x′nj∥∥∥
1
)

≤
∏
h∈h0

d∏
j=1

exp(
ε2

∆h0

2 max
xn∈L

∥∥xnj∥∥1
) ≤

∏
h∈h0

d∏
j=1

exp(
2ε2
∆h0

)

≤ exp(ε2
2
∑
h∈h0

d

∆h0

) = exp(ε2)

Consequently, based on the above analysis, the computation
of h0L(W0) preserves ε2-differential privacy in Alg. 1 by
injecting an identical Laplace noise 1

|L|Lap(
∆h0

ε2
) into all input

features. In addition, given the identical Laplace noise, we
do not need to use the differentially private relevance R(D),
since we do not need to redistribute the noise in the first affine
transformation layer h0.



D. Proof of Lemma 5

Proof 5: Assume that L and L′ differ in the last tuple. Let
xn (x′n) be the last tuple in L (L′). We have that

∆F =

M∑
l=1

2∑
R=0

∥∥∥ ∑
xi∈L

φ
(R)
lxi
−
∑

x′
i∈L′

φ
(R)
lx′

i

∥∥∥
=

M∑
l=1

2∑
R=0

∥∥φ(R)
lxn
− φ(R)

lx′
n

∥∥ (30)

We can show that φ(0)
lxn

=
∑2
q=1 f

(0)
ql (0) = ynl log 2 + (1 −

ynl) log 2 = log 2. Similarly, we can show that φ(0)
lx′

n
= log 2.

As a result, φ(0)
lxn

= φ
(0)
lx′

n
. Therefore

∆F =

M∑
l=1

2∑
R=0

∥∥φ(R)
lxn
− φ(R)

lx′
n

∥∥ =

M∑
l=1

2∑
R=1

∥∥φ(R)
lxn
− φ(R)

lx′
n

∥∥
≤

M∑
l=1

2∑
R=1

(∥∥φ(R)
lxn

∥∥+
∥∥φ(R)

lx′
n

∥∥) ≤ 2 max
xn

M∑
l=1

2∑
R=1

‖φ(R)
lxn
‖

≤ 2 max
xn

[ M∑
l=1

(
1

2
− ynl)

|h(k)|∑
e=1

hexn(k)

+

M∑
l=1

(1

8

∑
e,g

hexn(k)hgxn(k)

)]
≤ 2(

1

2
M × |h(k)|+

1

8
M × |h(k)|2)

= M(|h(k)|+
1

4
|h(k)|2)

where hexn(k) is the state of e-th hidden neuron in h(k).

E. Proof of Lemma 6

Proof 6: Let L and L′ be two neighbor batches. Without
loss of generality, assume that L and L′ differ in the last
tuple xn (x′n). ∆F is calculated as done in line 17, Alg. 1,
and FL(θt) =

∑M
l=1

∑
xi∈L

∑2
R=0 φ

(R)

lxi

(
hxi(k)W

T
l(k)

)R
is the

output of line 27 of the Alg. 1. Note that hxi(k) is the state
of h(k) derived from h0xi

by navigating through the neural
network. The perturbation of the coefficient φ(R)

l , denoted as
φ

(R)

l , can be rewritten as:

φ
(R)

l =
[ ∑
xi∈L

φ
(R)
lxi

+ Lap(
∆F
ε3

)
]

(31)

We can see that φ
(R)

l is the perturbation of the coefficient
φ

(R)
l associated with the labels yil in the training batch L. We

have that

Pr
(
FL(θt)

)
Pr
(
FL′(θt)

) =

∏M
l=1

∏2
R=0 exp

( ε3‖∑xi∈L φ
(R)
lxi
−φ(R)

l ‖1
∆F

)
∏M
l=1

∏2
R=0 exp

( ε3‖∑x′
i
∈L′ φ

(R)
lxi
−φ(R)

l ‖1
∆F

)
≤

M∏
l=1

2∏
R=0

exp(
ε3

∆F

∥∥∥ ∑
xi∈L

φ
(R)
lxi
−
∑

x′
i∈L′

φ
(R)
lx′

i

∥∥∥
1
)

≤
M∏
l=1

2∏
R=0

exp(
ε3

∆F

∥∥∥φ(R)
lxn
− φ(R)

lx′
n

∥∥∥
1
)

≤
M∏
l=1

2∏
R=0

exp(
ε3

∆F
2 max
xn∈L

∥∥φ(R)
lxn

∥∥
1
)

≤ exp(ε3
2 maxxn∈L

∑M
l=1

∑2
R=0‖φ

(R)
lxn
‖1

∆F
)

≤ exp(ε3
M(|h(k)|+ 1

4 |h(k)|2)

∆F
) = exp(ε3)

Consequently, the computation of FL(θt) preserves ε3-
differential privacy in Alg. 1.

F. Approximation Error Bounds

The following lemma illustrates the result of how much
error our approximation approach, F̂L(θ) (Eq. 25), incurs. The
error only depends on the number of possible classification
outcomes M . In addition, the average error of the approxima-
tions is always bounded. As in [10, 29], the approximation of
the loss function FL(θ) by applying Taylor Expansion without
removing all polynomial terms with order larger than 2 is as
follows:

F̃L(θ) =

M∑
l=1

∑
xi∈L

2∑
q=1

∞∑
R=0

f
(R)
ql (zql)

R!

(
gql(hxi(k),Wl(k))−zql

)R
∀l ∈ {1, . . . ,M}, let f1l, f2l, g1l, and g2l be four functions
defined as follows:

g1l(hxi(k),Wj) = hxi(k)W
T
l(k) (32)

g2l(hxi(k),Wj) = hxi(k)W
T
l(k) (33)

f1l(z1l) = yil log(1 + e−z1l) (34)
f2l(z2l) = (1− yil) log(1 + ez2l) (35)

where ∀q, l : zql is a real number.
∀q, l, by setting zql = 0, the above equation can be

simplified as:

F̃L(θ) =

M∑
l=1

∑
xi∈L

2∑
q=1

∞∑
R=0

f
(R)
ql (0)

R!

(
hxi(k)W

T
l(k)

)R
(36)

As in [10], our approximation approach works by truncating
the Taylor series in Eq. 36 to remove all polynomial terms with



order larger than 2. This leads to a new objective function in
Eq. 25 with low-order polynomials as follows:

F̂L(θ) =

M∑
l=1

∑
xi∈L

2∑
q=1

2∑
R=0

f
(R)
ql (0)

R!

(
hxi(k)W

T
l(k)

)R
=

M∑
l=1

∑
xi∈L

[ 2∑
q=1

f
(0)
ql (0) +

( 2∑
q=1

f
(1)
ql (0)

)
hxi(k)W

T
l(k)

+
( 2∑
q=1

f
(2)
ql (0)

2!

)
(hxi(k)W

T
l(k))

2
]

We are now ready to state the following lemma to show the
approximation error bound of our approach.

Lemma 7: Given two polynomial functions F̃L(θ) (Eq. 36)
and F̂L(θ) (Eq. 25), the average error of the approximation is
always bounded as follows:

|F̃L(θ̂)− F̃L(θ̃)| ≤M × e2 + 2e− 1

e(1 + e)2
(37)

where θ̃ = arg minθ F̃L(θ) and θ̂ = arg minθ F̂L(θ).
Proof 7: Let θ̃ = arg minθ F̃L(θ) and θ̂ = arg minθ F̂L(θ),

U = maxθ
(
F̃L(θ)−F̂L(θ)

)
and S = minθ

(
F̃L(θ)−F̂L(θ)

)
.

We have that U ≥ F̃L(θ̂) − F̂L(θ̂) and ∀θ∗ : S ≤ F̃L(θ∗) −
F̂L(θ∗). Therefore, we have

F̃L(θ̂)− F̂L(θ̂)− F̃L(θ∗) + F̂L(θ∗) ≤ U − S
⇔ F̃L(θ̂)− F̃L(θ∗) ≤ U − S +

(
F̂L(θ̂)− F̂L(θ∗)

)
In addition, F̂L(θ̂) − F̂L(θ∗) ≤ 0, so F̃L(θ̂) − F̃L(θ∗) ≤

U − S. If U ≥ 0 and S ≤ 0 then we have:

|F̃L(θ̂)− F̃L(θ∗)| ≤ U − S (38)

Eq. 38 holds for every θ∗. Therefore, it still holds for θ̃. Eq.
38 shows that the error incurred by truncating the Taylor series
approximate function depends on the maximum and minimum
values of F̃L(θ) − F̂L(θ). To quantify the magnitude of the
error, we first rewrite F̃L(θ)− F̂L(θ) as:

F̃L(θ)− F̂L(θ) =

M∑
l=1

[
F̃L(Wl(k))− F̂L(Wl(k))

]
=

M∑
l=1

[ ∑
xi∈L

2∑
q=1

∞∑
R=3

f
(R)
ql (zql)

R!

(
gql(hxi(k),Wl(k))− zql

)R]
To derive the minimum and maximum values of the function

above, we look into the remainder of the Taylor Expansion for
each l. Let zl ∈ [zql−1, zql+1]. According to the well-known
result [33], 1

|D|
(
F̃L(Wl(k)) − F̂L(Wl(k))

)
must be in the in-

terval
[∑

q

minzl
f
(3)
ql (zl)(zl−zql)3

6 ,
∑
l

maxzl
f
(3)
ql (zl)(zl−zql)3

6

]
.

If
∑
q

maxzl
f
(3)
ql (zl)(zl−zql)3

6 ≥ 0 and∑
q

minzl
f
(3)
ql (zl)(zl−zql)3

6 ≤ 0, then we have that:∣∣∣ 1

|L|

[
F̃L(θ)− F̂L(θ)

]∣∣∣
≤

M∑
l=1

∑
q

maxzl f
(3)
ql (zl)(zl − zql)3 −minzl f

(3)
ql (zl)(zl − zql)3

6

(39)

This analysis applies to the case of the cross-entropy
error-based loss function as follows. First, for the functions
f1l(z1l) = yil log(1 + e−z1l) and f2l(z2l) = (1− yil) log(1 +
ez2l), we have

f
(3)
1l (z1l) =

2yile
z1l

(1 + ez1l)3

f
(3)
2l (z2l) = (1− yil)

e−z2l(e−z2l − 1)

(1 + e−z2l)3

It can be verified that arg minz1l f
(3)
1l (z1l) = −2e

(1+e)3 < 0,

arg maxz1l f
(3)
1l (z1l) = 2e

(1+e)3 > 0, arg minz2l f
(3)
2l (z2l) =

1−e
e(1+e)3 < 0, and arg maxz2l f

(3)
2l (z2l) = e(e−1)

(1+e)3 > 0. Thus,
the average error of the approximation is at most∣∣F̃L(θ̂)− F̃L(θ̃)

∣∣ ≤M × [( 2e

(1 + e)3
− −2e

(1 + e)3

)
+
(e(e− 1)

(1 + e)3
− 1− e
e(1 + e)3

)]
= M × e2 + 2e− 1

e(1 + e)2

Therefore, Eq. 37 holds.

G. Corrections of the Paper
The differences between this correction and the first sub-

mission of our paper can be summarized as follows:
1. There was a mistake in terms of model configurations

reported in our original version. The number of layers,
hidden neurons, unit patches, and batch sizes are updated
in this correction version. The experimental results of
our algorithms and the differentially private Stochastic
Gradient Descent algorithm (pSGD) [12] are updated as
well. In fact, the code release of the pSGD algorithm2 is
used in this version. The pSGD algorithm is significantly
improved in terms of accuracy, and the computation of
the privacy budget ε is also more accurate.

2. We replace the equations of coefficients {φ(0)
lxi
, φ

(1)
lxi
,

φ
(2)
lxi
}, i.e., after the Eq. 25, with a more detailed ex-

planation, since it may cause some misunderstanding
to the readers in terms of identifying coefficients of
the Taylor Expansion in Eq. 25. To be clear, we de-
note {φ(0)

lxi
, φ

(1)
lxi
, φ

(2)
lxi
} as the coefficients, where φ(0)

lxi
=∑2

q=1 f
(0)
ql (0) and φ

(1)
lxi

and φ
(2)
lxi

are coefficients at the
first order and the second order of the function F̂L(θ).
φ

(1)
lxi

and φ(2)
lxi

are combinations between the approxima-

tion terms
∑2
q=1 f

(1)
ql (0),

∑2
q=1

f
(2)
ql (0)

2! , and hxi(k).

2https://github.com/tensorflow/models/tree/master/research/differential privacy

https://github.com/tensorflow/models/tree/master/research/differential_privacy

