
Edge-Based Wedge Sampling to Estimate Triangle
Counts in Very Large Graphs
Duru Türkoğlu

DePaul University, Chicago, IL
dturkogl@cs.depaul.edu

Ata Turk
Boston University, Boston, MA

ataturk@bu.edu

Abstract—The number of triangles in a graph is useful to
deduce a plethora of important features of the network that
the graph is modeling. However, finding the exact value of
this number is computationally expensive. Hence, a number of
approximation algorithms based on random sampling of edges, or
wedges (adjacent edge pairs) have been proposed for estimating
this value. We argue that for large sparse graphs with power-
law degree distribution, random edge sampling requires sampling
large number of edges before providing enough information
for accurate estimation, and existing wedge sampling methods
lead to biased samplings, which in turn lead to less accurate
estimations. In this paper, we propose a hybrid algorithm between
edge and wedge sampling that addresses the deficiencies of
both approaches. We start with uniform edge sampling and
then extend each selected edge to form a wedge that is more
informative for estimating the overall triangle count. The core
estimate we make is the number of triangles each sampled edge
in the first phase participates in. This approach provides accurate
approximations with very small sampling ratios, outperforming
the state-of-the-art up to 8 times in sample size while providing
estimations with 95% confidence.

I. INTRODUCTION

Graphs are heavily employed in modeling relationships,
networks, and interactions of many real world applica-
tions. User interactions and usage patterns in social or
mobile networks, compound/atom/amino-acid/molecule bond-
ing/interaction tendencies in chemistry or biology, pro-
cess/data/resource interaction/communication/dependency pat-
terns in parallel/distributed systems can be listed among the
examples where graph-based modeling is heavily used.

Triangles in a graph represent ternary relationships among
the modeled objects/entities. The count of triangles in a graph
is an important metric that can be used in determining the
degree of clustering of the modeled networks. Graph metrics
such as clustering coefficient [1] or transitivity ratio [2] make
use of triangle count, and they are used as features for critical
applications such as social network analysis [3], gene expres-
sion microarray data analysis [4], or text summarization [5].

Currently, the best known theoretical algorithm for iden-
tifying the exact number of triangles in a given graph G
has a complexity of O

(
m2γ/(γ+1)

)
≈ O(m1.407) [6], where

m is the number of edges in G, and γ < 2.372864. This
algorithm computes the third power of the adjacency matrix
on the high-degree vertices and γ is the exponent of the state-
of-the-art matrix multiplication algorithm [7]. The practically
used triangle counting and listing algorithms, however, take

O(m3/2) time [8]. Moreover, since finding the exact triangle
count is computationally expensive for very large graphs with
billions of edges that do not fit in memory, some studies focus
on minimizing the number of disk I/Os performed [23], [24]
during counting.

In many scenarios finding the exact triangle count is not nec-
essary and an approximate number is sufficient as the graphs
are very dynamic. A number of studies propose approximation
solutions for estimating the triangle count [8]–[16]. These
studies can be categorized based on the settings they consider:
the streaming setting where graph components arrive as a
data stream [9]–[11], [14], the semi-streaming setting where
a constant number of passes over the edges are allowed [17],
[18], and the static setting where the entire graph is available
for analysis [13], [15], [19]. Another vein of studies consider
efficient parallelization of this estimation process [20]–[22]. In
this paper, we focus on the triangle count estimation problem
under the static sequential setting. However, the intuition we
provide can be used in a streaming setting as well.

The state-of-the-art approximation approaches are mostly
based on random edge or wedge sampling. Random wedge
sampling approaches first sample random vertices where ver-
tex sampling probability is proportional to wedge participation
probability of that vertex. After vertex sampling, two edges of
each selected vertex are sampled to form wedges. The ratio
of sampled wedges to closed wedges is used to estimate the
number of triangles in the original graph [15]. When deployed
on power-law degree graphs, wedge sampling approaches can
suffer from bias (mostly high degree vertices are selected as
hinge points of selected wedges), as they start with vertex sam-
pling. Random edge sampling approaches count the number of
triangles [13] or the number of wedges that are “closed” [16]
(that have a third closing edge in the original graph) in the
sampled subgraph, and use this count to estimate the triangle
count. However, if graphs are sparse and the sampling ratio
is low, these approaches can suffer from scarcity of valuable
information (e.g. triangles, wedges) in the sampled subgraph.

We propose an algorithm for the graph triangle count
estimation problem that combines the strong points of edge
and wedge sampling while alleviating their deficiencies. Our
approach starts with random edge sampling to avoid challenges
arising in power-law graphs. Then we first estimate the number
of triangles the sampled edges participate in the original graph.
We use that first estimate to estimate the triangle count of the

ar
X

iv
:1

71
0.

09
96

1v
1

 [
cs

.D
S]

 2
7

O
ct

 2
01

7

original graph. We accomplish this by turning the sampled
edges into wedges in a second random edge selection phase
and by checking if these sampled wedges are closed.

Our contributions can be listed as follows: (i) We propose an
approach that offers highly accurate triangle count estimations
even when employed over sparse power-law degree graphs
and the sampling ratio is low. (ii) We theoretically prove
the bounds of our algorithm and show with experiments that
found bounds are tight. We also provide theoretical bounds
for the state-of-the-art approaches. (iii) We theoretically and
practically show that the proposed approach achieves up to
eight times sampling size reduction over the state-of-the-art
on large-scale real-world graphs.

The remainder of this paper is organized as follows. We
present existing approximation approaches in Section II along
with our observations that led to the development of the
proposed algorithm. Section III discusses details of our pro-
posed edge-based wedge selection algorithm. We provide a
theoretical analysis of the proposed method and other methods
in the literature in Section IV. We evaluate the performance of
the proposed method and compare it against the state-of-the-
art in Section V. In Section VI we conclude.

II. COUNTING TRIANGLES IN A GRAPH

Given an undirected graph G = (V, E) defined by a set of
vertices V and a set E of pairwise relations (edges) among
vertices in V , we would like to estimate ∆, the number of
triangles (three edge cycles) in G. Approximation approaches
to this problem mostly consider randomly sampling edges or
adjacent edge pairs (wedges) from the original graph G and
try to estimate the number of triangles in G based on analysis
conducted on the sampled graph entities.

Existing approximation methods have certain deficiencies
when applied to graphs modeling real networks that exhibit
power-law degree distributions with many low-degree vertices
and few very high-degree vertices [25]. Using the current
random edge sampling methods, sampled subgraphs can be
too sparse to reveal sufficient information for accurate esti-
mation when low sampling ratios are employed. Using the
current random wedge-sampling methods, the uniformity on
the wedge selection scheme favors high-degree vertices, and
this leads to less accurate estimations.

In the remainder of this section, we explain the state-of-
the-art edge and wedge sampling based approaches in detail,
discuss their strengths and deficiencies, and provide our intu-
itions to address these deficiencies. In Table I we summarize
the important notations that we use in our discussions and in
the remainder of the paper.

A. Random edge sampling

Random edge sampling based approaches first construct a
subgraph GS of G by traversing over each edge in E and adding
each edge to the subgraph GS with probability p. They then
extract features from GS for estimating ∆.

Symbol Description
G Original graph with vertex set V and edge set E
∆ Number of triangles in G
Λ Number of wedges in G
GS Random subgraph by edge selection
∆S Number of triangles in GS
Λ+
S Number of closed wedges in GS

T (e) Number of triangles in G that contain edge e
TS Sum of T (e) for edges in GS :

∑
e∈GS

T (e)

τ Estimate on TS (EWSAMPLE)
du Degree of vertex u
δ(e) Degree of lower degree end vertex of edge e=(u, v):

δ(e)=min(du, dv)
σ(t) Sum of δ(e) for edges in triangle t:

∑
e∈t δ(e)

TABLE I: Summary of the notations.

1) Counting triangles in GS: The idea of random edge
sampling to construct a subgraph GS was first proposed by
Tsourakakis et al. [13]. In their work, they use the number
of triangles in GS to estimate ∆ as ∆S/p

3, where ∆S =
|{(u, v, w) | (u, v), (v, w), (w, u) ∈ GS}|. This estimation is
based on the fact that all three edges of any triangle in GS
has to be selected with probability p from G. A drawback of
this approach is that when p is small, GS is very unlikely to
contain even one triangle, making this approach impractical
for small sampling ratios.

2) Counting closed wedges in GS: Recently, Etemadi et
al. [16] proposed an approach that improves upon [13]. They
first identify all of the wedges formed in GS , and then check
for edges in G to determine whether the wedges in GS are
closed in G. That is, for any wedge u−v−w in GS , they check
whether the third edge (w, u) is in G or not. They use the
count of such closed wedges to estimate ∆ as Λ+

S /3p
2, where

Λ+
S =|{(u, v, w) | (u, v), (v, w) ∈ GS , (w, u) ∈ G}|.1 This esti-

mation is due to the following two facts that the two edges
forming a wedge in GS have to be independently selected with
probability p, and that any triangle contains three wedges.

Although [16] enables selection of smaller p values com-
pared to the proposed approach in [13], we note that achieving
accurate estimates still requires a large sampling probability
p as the chance of observing sufficient number of wedges
remains low when sampling edges from large sparse graphs.
In particular, for a graph G with m edges and ∆ triangles,
the expected number of wedges in the sampled graph that is
part of a triangle in the original graph is 3∆p2 [16] . In our
subsequent experiments, ∆ can be in the order of 1010, and
we would like to support p values in the range [10−5, 10−6].
In such a scenario, clearly, the number of closed wedges in
the sampled subgraph (each of which form a triangle in the
original graph) will be too low to provide accurate estimations.

3) Strengths of edge-based sampling approaches: Random
edge-based sampling methods do not require any previous
knowledge on the structure of G and can be applied without
any preprocessing. Furthermore, in power-low graphs, factor-
ing computations over edges instead of vertices can alleviate
challenges associated with the power-law degree distribution
of vertices and can also ease parallelism [26].

1 The original definition in [16] has the 1
3

multiplier but we instead count
the actual number of closed wedges and report one third to estimate ∆.

4) Deficiencies of edge-based sampling approaches: The
core problem of existing edge-based sparsification approaches
is that the relationship between the findings they extract from
the sampled graph GS and the estimation they make for
triangle count in G is a cubic or quadratic function of p.
This prevents accurate estimation for low p values. Ideally,
the estimation should be directly proportional to p.

5) Proposed improvement over edge sampling: The intu-
ition behind our proposed approach is similar in nature to
the improvement proposed by [16] over [13]. In [16], they
point out that instead of counting entities that appear with
probability p3 (triangles in GS), they can count entities that
appear with probability p2 (closed wedges in GS) and thus
enable using lower sampling ratios while achieving the same
accuracy. In this work, we take one more step further and
estimate ∆ using entities that appear with probability p.

In our approach, we also start with randomly selecting a set
of edges ES ⊂ E . Then, using each edge e in ES , we directly
estimate the number of triangles that e is a part of. More
formally, let T (e) be the number of triangles in G that e is a
part of. Furthermore, let TS be the total number of triangles in
G that each edge in ES is a part of, i.e. TS =

∑
e∈ES T (e). In

our approach, we estimate TS , which can also be written as:
TS = |{(u, v, w) | (u, v) ∈ ES , (v, w), (w, u) ∈ G}|. We call
our estimation for TS as τ and further estimate ∆ as τ/3p,
since an edge can be selected with probability p and since
each triangle has three edges. Our estimate of TS is directly
proportional to p. We explain in detail how we estimate TS
and why the probability associated with TS estimation is
proportional to p in Section III and Section IV respectively.

B. Random wedge sampling

Random wedge sampling approaches extract wedges from
G and analyze properties of extracted wedges to estimate ∆.

1) Uniform wedge sampling: Random uniform wedge sam-
pling for triangle counting was first proposed by Schank and
Wagner [27]. More recently, Seshadhri et al. [15], [19] analyze
this approach in depth for counting various triadic measures,
including counting triangles. Similar appraoches have also
been considered in a streaming setting [14].

In a nutshell, uniform random wedge sampling first picks
a vertex v in V based on the number of wedges hinging at v
and then investigates if a randomly created wedge that consists
of two randomly selected edges of v is a closed wedge or
not. The ratio of closed wedges to sampled wedges is used
to estimate ∆ by multiplying one third of the ratio with Λ,
the total number of wedges in G. This estimation is based on
the fact that there are three different closed wedges for each
triangle in G.

2) Strengths of uniform wedge sampling: This approach
does not get adversely impacted from the sparsity of graphs
and can support small sampling probabilities as each sampled
entity (wedge) is an entity of interest and overall search target
(the number of triangles in the graph) is directly proportional
to the findings about sampled entities (ratio of closed wedges).

1000 2000 3000 4000 5000
vertex degree

0

1%

2%

pe
rc

en
t e

nt
iti

es
 (w

ed
ge

s
or

 tr
ia

ng
le

s)

wedge percentage by degree
triangle percentage by degree

Web-Google

Fig. 1: Wedge and triangle distribution per vertex degree for
the Web-Google dataset [28].

3) Deficiencies of uniform wedge sampling: For graphs
with power-law degree distributions, triangles are not uni-
formly distributed across wedges, as shown on an example in
Figure 1. In this figure, we present the percentage of wedges
hinging at vertices with a given degree (indicated via green
circles) and the percentage of triangles that vertices with a
given degree participate in (indicated via red triangles) for
a real-world power-law Web graph from Google [28]. As
can be seen from the figure, the uniform wedge sampling
approach would select more wedges hinging at higher degree
vertices simply because there are more such wedges. In fact,
as expected, as the vertex degree d increases, the number of
wedges hinging at vertices with degree d increases almost
quadratically. However, the number of triangles that vertices
with degree d participate in have a linear relationship with the
degree. These characteristics demonstrate that uniform wedge
sampling will provide biased estimations. We observe similar
characteristics in many real world networks and they become
more prominent as graphs grow larger and sparser.

It is also important to note that, for applying uniform wedge
sampling, one needs to compute the degree distribution of
the vertices and the number of wedges in G; therefore, such
approaches require a preprocessing step which takes linear
time in the number of edges.

4) Proposed improvement over uniform wedge sampling:
To avoid favoring high degree vertices, our algorithm starts
by random edge sampling instead of uniform wedge sampling.
We then extend each sampled edge to a wedge, and check for
the existence of the closing edge in G to determine whether
the vertices of the wedge define a triangle or not. To increase
the accuracy of our estimate, we only consider the wedges
that hinge at the lower degree vertex of the selected edges. By
selecting random edges in the first step, we ensure that we start
with a good sampling distribution. Note that the probability of
sampling a wedge in our schema is linearly proportional with
the degree of the vertex that the wedge hinges at, whereas
for uniform wedge sampling, that probability is quadratically
proportional with the degree of the hinge vertex.

III. EDGE-BASED WEDGE SAMPLING

Our approach to estimating the number of triangles in G
is based on sampling a set of edges ES and estimating the
number of triangles in G that the sampled edges are part of.
To accomplish this, after sampling a set of edges ES in a
first step, we keep sampling further edges in a second step to
form wedges with each sampled edge in ES . To increase the
accuracy of our estimate, in the second step, we only consider
edges that form wedges hinging at the lower degree vertices of
the edges selected in the first step. In a third step, we perform
a check for the third edge to determine whether the vertices of
a selected wedge define a triangle or not. If any such wedge
is closed, we estimate the number of triangles the originally
sampled edge contributes in to be the degree of its lower-
end vertex. If a sampled wedge is not closed, we estimate the
number of triangles the originally sampled edge contributes in
to be zero. Using these estimates, we then estimate the total
number of triangles in the original graph.

Since our approach is initially based on random edge
sampling, we do not need to perform a preprocessing step to
obtain degree distributions of vertices in G; we only consider
degrees of vertices of sampled edges ES . Furthermore, via edge
sampling, we avoid being highly biased towards high degree
vertices. By constructing wedges via a second sampling stage
we ensure that all sampled edges turn into entities of interest.
By selecting low-end of each sampled edge as wedge hinge
points, we reduce the search space. Finally, by making an
estimation associated with each sampled edge (i.e. the number
of triangles that edge participates in), we ensure that our
overall estimation correlates linearly with the sampling size,
which enables us to significantly reduce sampling ratio.

Next, we discuss in detail our edge-based wedge selection
and triangle estimation algorithm EWSAMPLE. Pseudocode of
EWSAMPLE is depicted in Algorithm 1. Given a graph G and
a sampling probability p, we first randomly sample edges ES as
shown in lines 2–5. For any edge e = (u, v) ∈ ES selected in
the first step, let us assume dv ≤ du without loss of generality.
In lines 6–7, for any selected edge in ES , we randomly select
one more edge, say (v, w) among the remaining edges incident
to v to form a path or wedge u-v-w. In lines 8–9, we check for
the existence of the edge (u,w) in the original graph. If the
original graph indeed contains the edge (u,w), we increment
the total triangle count τ by dv − 1. That is, if the sampled
wedge originating from e = (u, v) is closed and forms a
triangle, then we estimate T (e), the number of triangles e
participates in, as the number of edges adjacent to e at v,
which is equal to dv − 1. The rationale of this estimation
is based on a single wedge, hence, we estimate T (e) to be
0 or dv − 1 depending on the outcome. Finally, in line 10,
we return τ/3p as an estimate for ∆ since a triangle can be
counted by all of its three edges’ estimates. The complexity
of our algorithm is O(m): the subgraph sampling takes O(m)
time, and the rest of the algorithm takes O(pm) time.

We illustrate our algorithm EWSAMPLE on an exam-
ple (see Figure 2). Our example graph G contains 11

vertices, 16 edges and 5 triangles (Figure 2(a)). The tri-
angles are {v1, v2, v6}, {v1, v2, v7}, {v1, v3, v4}, {v1, v7, v8},
and {v2, v5, v6}. Running EWSAMPLE with probability p =
3/16, let us assume that the sampled edges ES in the first step
are (v2, v5), (v1, v4), and (v7, v8) (Figure 2(b)). In the second
step, we randomly select an edge incident to the low degree
vertices of these edges (Figure 2(c)); for e = (v2, v5) let the
randomly selected edge be e′ = (v5, v4), for e = (v1, v4) let
e′ = (v4, v3), and for e = (v7, v8) let e′ = (v8, v1) (note
that the last selection is with probability 1 since dv8 −1 = 1).
Then, we compute τ based on whether these wedges are closed
or not (Figure 2(d)): v2−v5−v4 is not closed so that wedge
does not increase τ , but the other two wedges v1−v4−v3 and
v7−v8−v1 are closed and they both increase τ by their low
degrees - 1 respectively. In particular, τ gets increased by 2
for the edge (v1, v4) and by 1 for the edge (v7, v8). Finally,
EWSAMPLE outputs the final estimate as:

τ

3p
=

3

3× 3
16

=
16

3
≈ 5.33

To compare our approach to existing approaches, Fig-
ure 3(a) showcases a potential run of the algorithm proposed
in [15] with a sampling rate of p = 3/16, i.e., k = 3 random
wedges. As seen in the figure, their randomly selected wedges
are v1−v4−v5, v1−v2−v7, and v11−v1−v3, and only one of
them is closed: v1−v2−v7. In this graph number of wedges
Λ = 56, therefore their estimate can be calculated as:

1× Λ

3k
=

56

9
≈ 6.22

Figure 3(b) showcases a potential run of the algorithm
proposed in [16]. One can argue that since our approach and
uniform wedge sampling work with wedges, the random edge
sampling method should be allowed to pick twice the number
of edges. However, note that random edge selection requires
constructing the subgraph GS , and identifying all the wedges
in GS , which can be very costly. Practically, sampling an
edge and sampling a wedge have similar costs and algorithms
should be compared based on their performance when they
sample the same number of entities (edges or wedges).

We note that when p is very low, finding even one closed
wedge using the algorithm in [16] becomes very difficult even
in our simple example. So we pick twice the number of edges
to be able to find some closed wedges in the sampled graph,
i.e., we use a sampling rate of 2p. As seen in the figure,
their sample graph contains 6 edges and these sampled edges
form 4 wedges. Out of these 4 wedges, Λ+

S = 3 of them are
closed: v5−v2−v6, v1−v2−v6, and v1−v4−v3. Noting that
the probability used in their first step is 3/8, their estimate
can be computed as:

Λ+
S

3p2
=

3

3× (3
8)2

=
64

9
≈ 7.11

(a) Example graph G with 11
vertices, 16 edges, and 5 trian-
gles. Sampling probability p is
given as p=3/16.

(b) Random edge sampling
over the example graph G
provides three selected edges:
ES={(v2, v5), (v1, v4), (v7, v8)}.

(c) Informed wedge sampling
for selected edges. Each wedge
hinges on the lower degree end
of the initially selected edges.

(d) Triangle check in G. Wedges
hinging at v4, v8 form triangles,
τ=(dv4 − 1)+(dv8 − 1)=3. Es-
timate is τ/3p ≈ 5.33.

Fig. 2: Illustration of EWSAMPLE on an example graph.

Algorithm 1 EWSAMPLE(G = (V, E), p)

1: τ ← 0, ES ← ∅
2: for each edge e ∈ E do
3: randomly select edge e = (u, v) with probability p
4: if e is selected then
5: ES ← ES ∪ {e}
6: for each selected edge e = (u, v) ∈ ES do
7: randomly select an edge e′ = (v, w) incident to v,

where dv ≤ du and w 6= u
8: if e′′ = (u,w) ∈ E then
9: τ ← τ + dv − 1

10: return τ/3p

(a) Random-wedge sampling
algorithm proposed in [15].
Out of the 3 sampled wedges,
only 1 wedge is closed. Esti-
mate is 56/9≈6.22.

(b) Random-edge sampling and
wedge counting algorithm pro-
posed in [16]. The edges form
4 wedges, 3 of which are
closed. Estimate is 64/9≈7.11.

Fig. 3: Illustration of applying the state-of-the-art approaches:
(a) uniform wedge sampling approach proposed in [15], and
(b) random edge sampling approach proposed in [16].

IV. EXPECTED VALUE, VARIANCE, AND RSE

We analyze the expected value, variance, and relative stan-
dard error (RSE) of our estimate τ in order to investigate the
confidence interval of the outputs of EWSAMPLE. We also
analyze the same terms for the state-of-the-art approaches to
provide theoretical comparisons. We provide the theoretical
analysis in this section, and show empirical evidences that
corroborate our theory in the next section.

A. Expected Value, Variance, and RSE of EWSAMPLE

To provide this analysis we first express our output in
terms of indicator variables. First, we number the edges in
the original graph as e1, . . . , em. For any given edge ei, we
represent each of the T (ei) triangles that ei participates in
by the wedges that hinge on the lower degree vertex of ei.
To that extent, we number each such edge that belongs to a
triangle with ei and adjacent to ei on the lower degree vertex.
Letting these edges be ei1, . . . , eiT (ei), we define our indicator
variable wij as the indicator for selecting ei in the first step
and eij in the second step as the wedge for ei. Finally, defining
δ(ei) to be the degree of the lower degree vertex of ei, we
express τ , our estimate for TS as:

τ =

m∑
i=1

T (ei)∑
j=1

wij · (δ(ei)− 1).

Using this expression, we show that the expected value of τ is
3p∆, and thus the expected value of the output of EWSAMPLE
is ∆.

Lemma 1. The expected value of τ is 3p∆.

Proof. We have τ =
∑m
i=1

∑T (ei)
j=1 wij · (δ(ei) − 1) for the

EWSAMPLE algorithm. Hence:

E(τ) =

m∑
i=1

T (ei)∑
j=1

E(wij) · (δ(ei)− 1)

The probability that wij = 1 is p/(δ(ei)− 1), therefore:

E(τ) =

m∑
i=1

T (ei)∑
j=1

p =

m∑
i=1

pT (ei) = 3p∆

where the latter equality holds as each triangle is counted in
each of its edges’ T (e) values.

Next, we argue that the variance of τ is low, however, our
arguments involve some features of the original graph G. More
specifically, the variance of τ involves the terms K and φ,
where K is the number of pairs of triangles that share an edge
in G [16], and we define φ as φ =

∑∆
i=1 σ(ti)−3, where σ(ti)

is the sum of δ(e) for edges in triangle ti: σ(ti) =
∑
e∈ti δ(e).

Intuitively, one can think of φ as the sum of the degrees of each
vertex in each triangle in G, except that instead of summing
the maximum degree vertex, the sum involves the minimum
degree vertex twice. This is due to fact that we select the low
degree vertex of the initially selected edge as hinge point in
our edge-based wedge construction mechanism.

Lemma 2. The variance of τ is pφ − p2(3∆ + 2K), where
φ =

∑∆
i=1 σ(ti)− 3.

Proof. Since the indicator variables wi1j1 and wi2j2 are inde-
pendent for i1 6= i2, we have:

var(τ) =

m∑
i=1

var

T (ei)∑
j=1

wij · (δ(ei)− 1)


This can be rewritten as

var(τ) =

m∑
i=1

T (ei)∑
j=1

(δ(ei)− 1)2 · var(wij)

+
∑
j 6=k

(δ(ei)− 1)2 · covar(wij , wik)


We have var(wij) = (p/(δ(ei)− 1)− p2/(δ(ei)− 1)2) and
since we are selecting only one wedge for each edge, we have
covar(wij , wik) = (0−p2/(δ(ei)−1)2). Further simplifying:

var(τ) =

m∑
i=1

T (ei)∑
j=1

p · (δ(ei)− 1)−
T (ei)∑
j=1

p2 −
∑
j 6=k

p2


= p

m∑
i=1

T (ei) · (δ(ei)− 1)− p2
m∑
i=1

T (ei)

− p2
m∑
i=1

T (ei)(T (ei)− 1)

The first term can be written as a sum over the triangles where
for each triangle, the value δ(e) − 1 is summed for each of
its edges. The second term can be written in terms of ∆, the
number of triangles in G. And, the third term can be written
in terms of K, the number of pairs of triangles that share an
edge in G. Finally, we prove:

var(τ) = p

(
∆∑
i=1

σ(ti)− 3

)
− p2(3∆ + 2K)

where σ(ti) is the sum of δ(e) for edges in triangle ti.

In order to compare our method to previous work, we
use the Relative Standard Error (RSE) values of all of the
methods and base our arguments on the RSE values. Apply-
ing the formula for the relative standard error RSE(τ) =√
var(τ)/E(τ), we obtain:

RSE(τ) =

√
pφ− p2(3∆ + 2K)

3p∆
=

√
φ

9p∆2
− 3∆ + 2K

9∆2

The above formula is complex, however, we can approx-
imate it by simply dropping the negative term inside the
square root. We argue that this will not affect our actual
RSE values too much since the p values we choose for
our experiments will be very low, and in addition the actual
value of the negative term, (3∆ + 2K)/9∆2, will be too low
for the graphs we consider making the negative term very
insignificant. Therefore, we approximate our RSE using the
following formula:

RSE(τ) ≈

√
φ

9p∆2
(1)

where φ =
∑∆
i=1 σ(ti) − 3 is a constant depending only on

the original graph G. In our experiments, we show that we
achieve RSE values that are very close to the approximation
we provide in Equation 1.

B. RSE of Other Methods

We also analyze the expected value, variance, and the RSE
of the other methods to offer a theoretical comparison with
our method. We consider two state-of-the-art methods, the
method introduced by Etemadi et al. [16], which we call
EDGESAMPLE, as well as the method introduced by Seshadhri
at al. [15], which we call WEDGESAMPLE.

We begin with the analysis of WEDGESAMPLE, the method
introduced by Seshadhri et al. [15]. We define indicator
variables for each of the 3∆ closed wedges in order to express
the random variable that counts the number of closed wedges
observed in WEDGESAMPLE. Letting wi to be an indicator
for the ith closed wedge, indicator for whether it is one of the
randomly selected k = pm wedges, we define:

ω =

3∆∑
i=1

wi

Using ω, WEDGESAMPLE outputs ωΛ/3k to estimate ∆.
In the next lemma, we provide the expected value and the
variance analysis of ω to be used in the relative standard error
analysis of ω, where C = 3∆/Λ is the clustering coefficient:

Lemma 3. The expected value of ω is pmC, and the variance
of ω is pmC(1− C)

(
1− pm−1

Λ−1

)
.

Proof. We have E(ω) =
∑3∆
i=1 E(wi) =

∑3∆
i=1 k/Λ = 3∆k/Λ,

which implies E(ω) = pmC by definition.

For variance, we have var(wi) = k
Λ (1− k

Λ). Also, we have
covar(wj , wk) = k

Λ (k−1
Λ−1 −

k
Λ) for any wj 6= wk. Therefore,

we write variance as:

var(ω) =

3∆∑
i=1

var(ri) +
∑
j 6=k

covar(rj , rk)

= 3∆
k

Λ

(
1− k

Λ

)
+ 3∆(3∆− 1)

k

Λ

(
k − 1

Λ− 1
− k

Λ

)
= kC

(
1− k

Λ

)
+ kC(3∆− 1)

(
k − 1

Λ− 1
− k

Λ

)
= kC

(
1− k − 1

Λ− 1
+ 3∆

(
k − 1

Λ− 1
− k − 1

Λ
− 1

Λ

))
= kC

(
1− k − 1

Λ− 1
+ 3∆

k − 1

Λ(Λ− 1)
− 3∆

1

Λ

)

The last equation simplifies as pmC(1 − C)
(

1− pm−1
Λ−1

)
proving the variance stated in the lemma.

Using this lemma, we obtain the formula for their relative
standard error RSE(ω) =

√
var(ω)/E(ω):

RSE(ω) =

√
pmC(1− C)

(
1− pm−1

Λ−1

)
pmC

=

√
1− C
pmC

(
1− pm− 1

Λ− 1

)
Similarly, we can drop the insignificant negative terms

from the above formula and get an approximation with fewer
simpler terms:

RSE(ω) ≈

√
1− C
pmC

(2)

In the next section, we provide empirical evidence that
verifies the above approximation given in Equation 2.

Next, we analyze EDGESAMPLE, the method proposed by
Etemadi et al. [16]. Once again, we define an indicator variable
for each of the 3∆ closed wedges in order to express the closed
wedge count of this method. Letting ri to be an indicator for
the ith closed wedge, indicator for whether it is included in
GS in the first step of EDGESAMPLE, we define:

ρ =

3∆∑
i=1

ri

Using ρ, EDGESAMPLE outputs ρ/3p2 to estimate ∆. In
the next lemma, we provide the expected value and variance
of ρ based on the discussion from their original work [16]:

Lemma 4. The expected value of ρ is 3p2∆, and the variance
of ρ is 3∆(p2 − p4) + 8K(p3 − p4).

Using this lemma, we obtain the formula for their relative
standard error RSE(ρ) =

√
var(ρ)/E(ρ):

RSE(ρ) =

√
3∆(p2 − p4) + 8K(p3 − p4)

3p2∆

=

√
1

3p2∆
− 1

3∆
+

8K

9p∆2
− 8K

9∆2

Once again, we can drop the insignificant negative terms
from the above formula to get an approximation with fewer
simpler terms.

RSE(ρ) ≈

√
1

3p2∆
+

8K

9p∆2
(3)

Note that the approximation in Equation 3 is different than
the one in proposed in the work of Etemadi et al. [16] and the
main reason to include the extra term is to ensure a much better
approximation. In the next section, we verify the validity of
our approximation schemes and argue that we can simply use
the theoretical approximations to compare the performance of
the three methods.

V. EVALUATION

In this section, we provide an empirical and theoretical
evaluation of the proposed algorithm.

A. Experimental Setup

We compare the performance of our edge-based wedge
sampling algorithm (EWS) with the state-of-the-art edge sam-
pling (ES) and wedge sampling (WS) approaches proposed by
Etemadi et al. [16] and Seshadhri et al. [15] both theoretically
and experimentally using graphs modeling real-world large-
scale networks. We also corroborate the theoretical analysis
we provided in Section IV with empirical evidence. In the
forthcoming experiments and analysis, we sample the same
number of entities for the three different approaches; edges
for ES, and wedges for WS and EWS. All approaches perform
closed wedge checks as necessary; however, we do not account
for the cost of those checks. In practice, the costs are almost
exactly the same for WS and EWS, however, ES performs
more checks as it considers closed wedge checks for any pair
of adjacent edges in the sampled subgraph.

For comparison and also in order to verify our theoretical
analysis, we observe the relative standard error (RSE) values
of different algorithms for each of the datasets and compare
these values with the theoretical analysis we provided in
Section IV.

In order to provide comparable results, as was done in [16],
we either fix the sampling probability, and report the corre-
sponding RSE values of the three algorithms, or fix an RSE
value and report the corresponding sampling rates. We calcu-
late the experimental RSE values observed with k different
runs of the algorithms using the formula:

RSE =

√
1
k

∑k
i=1(∆i − µ)

∆
,

TABLE II: Datasets used in experiments and their features.

Dataset n m ∆ C= 3∆
Λ

3∆
m

φ
3∆

K
∆

Description

Ego-Facebook [29] 4K 88K 1612K 0.5192 54.8 115.5 141.9 Online social network (OSN) in Facebook
Enron-email [28] 36K 183K 727K 0.0853 11.9 102.1 50.2 Email communication network in Enron
Brightkite [29] 58K 214K 494K 0.1106 6.9 76.6 59.1 OSN in Brightkite
Dblp-coauthor [29] 317K 1049K 2224K 0.3064 6.4 37.6 47.2 Co-authorship network in DBLP
Amazon [29] 334K 925K 667K 0.2052 2.2 7.1 5.3 Co-purchasing network from Amazon
Web-NotreDame [28] 325K 1090K 8910K 0.0877 24.5 119.4 174.2 Web graph of Notre Dame
Citeseer [28] 384K 1736K 1351K 0.0496 2.3 26.6 11.6 Citation network in Citeseer
Dogster [28] 426K 8543K 83499K 0.0143 29.3 1085.2 503.8 OSN from dogster.com website
Web-Google [28] 875K 4322K 13391K 0.0552 9.3 35.4 46.4 Web graph from Google
YouTube [29] 1134K 2987K 3056K 0.0062 3.1 257.7 82.4 OSN in Youtube
DBLP [28] 1314K 5362K 12184K 0.1703 6.8 38.0 35.8 Co-authorship network in DBLP
As-skitter [29] 1696K 11095K 28769K 0.0054 7.8 796.4 713.3 Internet connections from Skitter project
Flicker [28] 2302K 22838K 837605K 0.1076 110.0 1239.9 732.8 Online social network in Flicker
Orkut [28] 3072K 117185K 627584K 0.0413 16.1 371.3 106.9 Online social network in Orkut
LiveJournal [29] 3997K 34681K 177820K 0.1253 15.4 204.3 222.1 OSN in LiveJournal
Orkut2 [30] 11514K 327036K 223127K 0.0003 2.0 1229.0 155.4 OSN in Orkut
Web-Arabic [30] 22743K 553903K 36895360K 0.0313 199.8 2047.7 3042.7 Web graph from Arabian countries
MicrosoftAG [31] 46742K 528463K 578188K 0.0151 3.3 97.1 33.9 Citation network from Microsoft Academic
Twitter [28] 41652K 1202513K 34824916K 0.0008 86.9 11638.5 5061.5 OSN from Twitter
Friendster [28] 65608K 1806067K 4173724K 0.0174 6.9 311.6 44.4 OSN of website Friendster

where ∆i is the estimate obtained in the i-th run and µ is the
mean of all of the k runs, i.e., µ = 1

k

∑k
i=1 ∆i. In all of our

experiments, we use k = 1000.
The experiments are conducted on a server with 16 CPUs

and 64 GB of RAM. In our experimental analysis we use 20
real-world datasets that were also used in [16]. These datasets
vary in size; largest containing vertices in the order of ten
millions and triangles in the order of ten billions, and the
smallest containing vertices in the order of thousands and
triangles in the order of millions. Features of these datasets
are presented in Table II.

In addition to graph features, we also provide metrics of
graphs that impact the performance of ES, WS and EWS in
Table II as well. For example the higher the value of global
clustering coefficient C = 3∆/Λ, the better the performance
of WS, as the chances of finding closed wedges during
sampling increase. Similarly, 3∆/m indicates the number of
triangles an average edge participates in a graph, and the
higher this number the better the performance of EWS in
general. EWS performance also gets impacted from the value
of φ/3∆ as well, which can be considered as the degree of the
lowest degree or medium degree vertex in an average triangle.
The higher this number gets, the courser the estimations made
by EWS, hence the worse its performance. A similar argument
can be made for ES and K/∆.

B. Empirical Analysis and Verification of Theory

Figure 4, provides an empirical analysis of ES, WS, and
EWS over the 20 datasets listed in Table II. The figure also
depicts the RSE estimations indicated by Equations 1, 2, and 3
for EWS, WS, and ES, respectively. In this figure, the x-axis
ranges between the sampling probabilities that provides RSE
values between 0.50 and 0.04 for EWS and we report the
corresponding RSE values for ES, WS, and EWS when using
the same sampling rates.

For all datasets depicted in Figure 4, the empirical RSE
observations we make for EWS, WS, and ES match the

theoretical bounds EWS-est, WS-est, and ES-est that we
compute using Equations 1, 2, and 3, respectively. This proves
the validity of our theoretical analysis.

Interestingly, we can observe in Figure 4 that the datapoints
for EWS and WS follow a similar pattern and they exhibit
parallel trends irrespective of the sampling ratio. In fact, this
is to be expected as the theoretical RSE approximations in
Equations 1 and 2 both depend linearly on the sampling ratio
and hence the estimations EWS-est and WS-est are parallel.
Therefore, the ratio of their RSE values remain the same
accross various sampling probabilities. Whichever of these two
algorithms will perform better is based on the parameters of
the graph. In 14 of the datasets EWS performs better than WS
and in 6 datasets WS performs better than EWS. We note that
since this is a log-log figure, the slight difference between the
two lines in fact indicate a multiplicative difference.

In Figure 4, for all datasets and most p values, EWS and WS
perform significantly better than ES. On the other hand, the
slope for ES-est is much steeper—also to be expected because
of the quadratic dependence on the sampling ratio—and even
though ES provides much higher RSE values for low p values,
as p increases, the accuracy of ES increases significantly.

To provide a deeper understanding of the difference between
the three algorithms we compare, we also present Table III,
where we fix the RSE to 0.05 (95% confidence value) and
compare the number of sampled entities that allows all ap-
proaches to achieve this given RSE value using the theoretic
approximations from Equations 1, 2, and 3. As seen in the
table, in all datasets either EWS or WS provides the lowest
sampling size. Hence, in the last column of the table we
provide the ratio of the sampling sizes for WS and EWS.
Similar to the results provided in Figure 4, in 14 datasets
the WS

EWS value is higher than one, indicating that EWS
outperforms WS, and for 6 datasets it is lower. Furthermore,
because the RSE values of both approaches depend linearly on
the sampling ratio, the WS

EWS ratio in Table III would remain

9.6e-05 2.9e-04 8.6e-04 2.6e-03 7.7e-03
p (log scale)

0.02

0.05

0.11

0.23

0.48

1.00
R

SE
 (l

og
-s

ca
le

)

ES-est
ES
WS-est
WS
EWS-est
EWS

Ego-Facebook

(a) Ego-Facebook.

1.9e-04 5.6e-04 1.7e-03 5.1e-03 1.5e-02
p (log scale)

0.02

0.05

0.11

0.23

0.48

1.00

R
SE

 (l
og

-s
ca

le
)

ES-est
ES
WS-est
WS
EWS-est
EWS

Enron-email

(b) Enron-email.

6.2e-04 1.9e-03 5.6e-03 1.7e-02
p (log scale)

0.02

0.05

0.11

0.23

0.48

1.00

R
SE

 (l
og

-s
ca

le
)

ES-est
ES
WS-est
WS
WS-est
EWS

Brightkite

(c) Brightkite.

2.3e-05 6.8e-05 2.0e-04 6.1e-04 1.8e-03
p (log scale)

0.02

0.05

0.11

0.23

0.48

1.00

R
SE

 (l
og

-s
ca

le
)

ES-est
ES
WS-est
WS
EWS-est
EWS

Dblp-Coau

(d) Dblp-Coau.

4.3e-05 1.3e-04 3.8e-04 1.2e-03
p (log scale)

0.02

0.05

0.11

0.23

0.48

1.00

R
S

E
 (l

og
-s

ca
le

)

ES-est
ES
WS-est
EWS-est
WS
EWS

Amazon

(e) Amazon.

1.8e-05 5.3e-05 1.6e-04 4.7e-04 1.4e-03
p (log scale)

0.02

0.05

0.11

0.23

0.48

1.00

R
S

E
 (l

og
-s

ca
le

)

ES-est
ES
WS-est
WS
EWS-est
EWS

Web-NotreDame

(f) Web-NotreDame.

2.6e-05 7.8e-05 2.4e-04 7.1e-04 2.1e-03
p (log scale)

0.02

0.05

0.11

0.23

0.48

1.00

R
S

E
 (l

og
-s

ca
le

)

ES-est
ES
WS-est
WS
EWS-est
EWS

Citeseer

(g) Citeseer.

1.7e-05 4.6e-05 1.2e-04 3.2e-04 8.3e-04 2.2e-03
p (log scale)

0.02

0.05

0.11

0.23

0.48

1.00

R
S

E
 (l

og
-s

ca
le

)

ES-est
ES
WS-est
WS
EWS-est
EWS

Dogster

(h) Dogster.

7.8e-06 1.7e-05 3.9e-05 8.6e-05 1.9e-04 4.2e-04
p (log scale)

0.02

0.05

0.11

0.23

0.48

1.00

R
S

E
 (l

og
-s

ca
le

)

ES-est
ES
WS-est
WS
EWS-est
EWS

Web-Google

(i) Web-Google.

1.1e-04 3.0e-04 7.9e-04 2.1e-03 5.5e-03 1.5e-02
p (log scale)

0.02

0.05

0.11

0.23

0.48

1.00

R
S

E
 (l

og
-s

ca
le

)

ES-est
ES
WS-est
WS
EWS-est
EWS

YouTube

(j) YouTube.

4.2e-06 1.1e-05 2.9e-05 7.7e-05 2.1e-04 5.4e-04
p (log scale)

0.02

0.05

0.11

0.23

0.48

1.00

R
S

E
 (l

og
-s

ca
le

)

ES-est
ES
WS-est
WS
EWS-est
EWS

DBLP

(k) DBLP.

3.7e-05 9.8e-05 2.6e-04 6.9e-04 1.8e-03 4.8e-03
p (log scale)

0.02

0.05

0.11

0.23

0.48

1.00

R
S

E
 (l

og
-s

ca
le

)

ES-est
ES
WS-est
WS
EWS-est
EWS

As-skitter

(l) As-skitter.

5.2e-06 1.4e-05 3.7e-05 9.7e-05 2.6e-04
p (log scale)

0.02

0.05

0.11

0.23

0.48

1.00

R
S

E
 (l

og
-s

ca
le

)

ES-est
ES
WS-est
WS
EWS-est
EWS

Flicker

(m) Flicker.

7.9e-07 1.9e-06 4.7e-06 1.1e-05 2.8e-05 6.8e-05
p (log scale)

0.02

0.05

0.11

0.23

0.48

1.00

R
S

E
 (l

og
-s

ca
le

)

ES-est
ES
WS-est
WS
EWS-est
EWS

Orkut

(n) Orkut.

1.5e-06 5.2e-06 1.8e-05 6.0e-05 2.0e-04
p (log scale)

0.02

0.05

0.11

0.23

0.48

1.00

R
S

E
 (l

og
-s

ca
le

)

ES-est
ES
WS-est
WS
EWS-est
EWS

LiveJournal

(o) LiveJournal.

7.3e-06 2.5e-05 8.5e-05 2.9e-04 9.8e-04
p (log scale)

0.02

0.05

0.11

0.23

0.48

1.00

R
S

E
 (l

og
-s

ca
le

)

ES-est
ES
WS-est
WS
EWS-est
EWS

Orkut2

(p) Orkut2.

7.4e-08 1.6e-07 3.3e-07 6.9e-07 1.4e-06 3.0e-06 6.3e-06
p (log scale)

0.02

0.05

0.11

0.23

0.48

1.00

R
S

E
 (l

og
-s

ca
le

)

ES-est
ES
WS-est
WS
EWS-est
EWS

Web-Arabic

(q) Web-Arabic.

2.2e-07 4.5e-07 9.2e-07 1.9e-06 3.8e-06 7.7e-06 1.6e-05
p (log scale)

0.02

0.05

0.11

0.23

0.48

1.00

R
S

E
 (l

og
-s

ca
le

)

ES-est
ES
WS-est
WS
EWS-est
EWS

MicrosoftAG

(r) MicrosoftAG.

4.5e-07 1.2e-06 3.1e-06 8.3e-06 2.2e-05 5.8e-05
p (log scale)

0.02

0.05

0.11

0.23

0.48

1.00

R
S

E
 (l

og
-s

ca
le

)

ES-est
ES
WS-est
WS
EWS-est
EWS

Twitter

(s) Twitter.

1.0e-07 3.3e-07 1.1e-06 3.4e-06 1.1e-05
p (log scale)

0.02

0.05

0.11

0.23

0.48

1.00

R
S

E
 (l

og
-s

ca
le

)

ES-est
ES
WS-est
WS
EWS-est
EWS

Friendster

(t) Friendster.

Fig. 4: RSE vs p for the 20 datasets.

TABLE III: Sample sizes to achieve RSE=0.05.

Dataset m ES WS EWS WS
EWS

Ego-Facebook 88K 2978 370 843 0.44
Enron-email 183K 5619 4288 3443 1.25
Brightkite 214K 10299 3217 4417 0.73
Dblp-coauthor 1049K 13005 905 2369 0.38
Amazon 925K 14460 1549 1316 1.18
Web-NotreDame 1090K 9459 4162 1948 2.14
Citeseer 1736K 20102 7660 4554 1.68
Dogster 8543K 23326 27631 14805 1.87
Web-Google 4322K 16556 6842 1525 4.49
Youtube 2987K 38692 63923 33586 1.90
DBLP 5362K 20763 1949 2228 0.87
As-skitter 11095K 103336 73852 40950 1.80
Flicker 22838K 13332 3315 4507 0.74
Orkut 117185K 57679 9293 9244 1.01
LiveJournal 34681K 38703 2791 5314 0.52
Orkut2 327036K 296516 1519667 240184 6.33
Web-Arabic 553903K 42394 12363 4098 3.02
MicrosoftAG 528463K 259340 26135 11836 2.21
Twitter 1202513K 111704 472194 53584 8.81
Friendster 1806067K 326237 22621 17976 1.26

the same if some other fixed RSE value was used instead.
Noticeably, the datasets that WS outperforms EWS are

datasets with high global clustering coefficient values (e.g.
C ≥ 0.1). This is expected as in these datasets the probability
of observing closed wedges when sampling wedges increase
significantly and the advantage of EWS over WS is lost.
However, EWS outperforms WS for all graphs with low global
clustering coefficient values (C < 0.1) as the performance
of WS is directly tied to this coefficient. We also note that
advantage of EWS over WS becomes more prominent as the
sizes of graphs increase.

Complexity of EWS, ES, and WS are all O(m) and practical
runtimes of these algorithms with low sampling ratios over
very large graphs are very fast. As an example, on the Twitter
dataset, with a sampling ratio of p ≈ 0.00006, EWS, ES, and
WS takes 1.12, 1.11, and 0.26 seconds.

VI. CONCLUSION

We proposed an edge-based wedge sampling approach for
estimating the number of triangles in very large power-law
degree graphs. Our approach combines the benefits of edge
and wedge sampling to offer highly accurate estimations
even for very large sparse graphs and for very low sampling
ratios. Furthermore, it does not require any preprocessing to
be performed over the graphs. Through analysis conducted
over graphs modeling large-scale real-world networks, we
theoretically and empirically show that our approach offers
highly confident estimations and up to eight times sampling
size reduction over the state-of-the-art alternatives even when
the sampling ratio is low.

REFERENCES

[1] M. E. Newman, “The structure and function of complex networks,”
SIAM review, vol. 45, no. 2, pp. 167–256, 2003.

[2] S. Wasserman and K. Faust, Social network analysis: Methods and
applications. Cambridge university press, 1994, vol. 8.

[3] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, and Y. Dai,
“Uncovering social network sybils in the wild,” ACM Transactions on
Knowledge Discovery from Data (TKDD), vol. 8, no. 1, p. 2, 2014.

[4] G. Kalna and D. J. Higham, “A clustering coefficient for weighted
networks, with application to gene expression data,” AI Commun.,
vol. 20, no. 4, pp. 263–271, Dec. 2007.

[5] Y. A. AL-Khassawneh, N. Salim, and O. A. Isiaka, “Extractive text sum-
marisation using graph triangle counting approach: Proposed method,”
in 1 st International Conference of Recent Trends in Information and
Communication Technologies in Universiti Teknologi Malaysia, Johor,
Malaysia, 2014, pp. 300–311.

[6] N. Alon, R. Yuster, and U. Zwick, “Finding and counting given length
cycles,” Algorithmica, vol. 17, no. 3, pp. 209–223, Mar 1997.

[7] F. Le Gall, “Powers of tensors and fast matrix multiplication,” in
Proceedings of the 39th International Symposium on Symbolic and
Algebraic Computation, ser. ISSAC ’14. New York, NY, USA: ACM,
2014, pp. 296–303.

[8] T. Schank and D. Wagner, “Finding, counting and listing all triangles
in large graphs, an experimental study,” in Experimental and Efficient
Algorithms: 4th International Workshop, WEA, S. E. Nikoletseas, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 606–609.

[9] Z. Bar-Yossef, R. Kumar, and D. Sivakumar, “Reductions in stream-
ing algorithms, with an application to counting triangles in graphs,”
in Proceedings of the Thirteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, ser. SODA’02. Society for Industrial and Applied
Mathematics, 2002, pp. 623–632.

[10] H. Jowhari and M. Ghodsi, “New streaming algorithms for counting tri-
angles in graphs,” in Proceedings of the 11th Annual International Con-
ference on Computing and Combinatorics, ser. COCOON’05. Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 710–716.

[11] L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, and
C. Sohler, “Counting triangles in data streams,” in Proceedings of the
Twenty-fifth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, ser. PODS ’06, 2006, pp. 253–262.

[12] M. Latapy, “Main-memory triangle computations for very large (sparse
(power-law)) graphs,” Theoretical Computer Science, vol. 407, no. 1-3,
pp. 458–473, 2008.

[13] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos, “Doulion:
Counting triangles in massive graphs with a coin,” in Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ser. KDD ’09. ACM, 2009, pp. 837–846.

[14] M. Jha, C. Seshadhri, and A. Pinar, “A space efficient streaming algo-
rithm for triangle counting using the birthday paradox,” in Proceedings
of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’13. ACM, 2013, pp. 589–
597.

[15] C. Seshadhri, A. Pinar, and T. G. Kolda, “Wedge sampling for computing
clustering coefficients and triangle counts on large graphs,” Statistical
Analysis and Data Mining, vol. 7, no. 4, pp. 294–307, 2014.

[16] R. Etemadi, J. Lu, and Y. H. Tsin, “Efficient estimation of triangles
in very large graphs,” in Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management, ser. CIKM
’16. New York, NY, USA: ACM, 2016, pp. 1251–1260.

[17] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis, “Efficient semi-
streaming algorithms for local triangle counting in massive graphs,” in
Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD’08, 2008, pp. 16–24.

[18] M. N. Kolountzakis, G. L. Miller, R. Peng, and C. E. Tsourakakis,
Efficient Triangle Counting in Large Graphs via Degree-Based Vertex
Partitioning, 2010, pp. 15–24.

[19] C. Seshadhri, A. Pinar, and T. G. Kolda, “Triadic measures on graphs:
The power of wedge sampling,” in Proceedings of the 2013 SIAM
International Conference on Data Mining. SIAM, 2013, pp. 10–18.

[20] S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last
reducer,” in Proceedings of the 20th International Conference on World
Wide Web, ser. WWW ’11, 2011, pp. 607–614.

[21] R. Pagh and C. E. Tsourakakis, “Colorful triangle counting and a
mapreduce implementation,” Information Processing Letters, vol. 112,
no. 7, pp. 277 – 281, 2012.

[22] T. G. Kolda, A. Pinar, T. Plantenga, C. Seshadhri, and C. Task, “Counting
triangles in massive graphs with mapreduce,” SIAM Journal on Scientific
Computing, vol. 36, no. 5, pp. S48–S77, 2014.

[23] X. Hu, Y. Tao, and C.-W. Chung, “I/O-efficient algorithms on triangle
listing and counting,” ACM Trans. Database Syst., vol. 39, no. 4, pp.
27:1–27:30, Dec. 2014.

[24] H. Kim, J. Lee, S. S. Bhowmick, W.-S. Han, J. Lee, S. Ko, and M. H.
Jarrah, “Dualsim: Parallel subgraph enumeration in a massive graph on
a single machine,” in Proceedings of the 2016 International Conference
on Management of Data, ser. SIGMOD’16, 2016, pp. 1231–1245.

[25] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[26] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
ergraph: Distributed graph-parallel computation on natural graphs,” in
Presented as part of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12). USENIX, 2012, pp. 17–30.

[27] T. Schank and D. Wagner, “Approximating clustering coefficient and
transitivity,” Journal of Graph Algorithms and Applications, vol. 9, p.

2005, 2005.
[28] J. Kunegis, “Konect: the koblenz network collection,” in Proceedings of

the 22nd International Conference on World Wide Web. ACM, 2013,
pp. 1343–1350.

[29] J. Leskovec and A. Krevl, “{SNAP Datasets}:{Stanford} large network
dataset collection,” 2015.

[30] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propaga-
tion: A multiresolution coordinate-free ordering for compressing social
networks,” in Proceedings of the 20th international conference on World
wide web. ACM, 2011, pp. 587–596.

[31] “Microsoft academic graph.” http://research.microsoft.com/en-us/
projects/mag/, 2015.

