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Abstract—Experimental design is a process of obtaining a
product with target property via experimentation. Bayesian
optimization offers a sample-efficient tool for experimental design
when experiments are expensive. Often, expert experimenters
have ’hunches’ about the behavior of the experimental system,
offering potentials to further improve the efficiency. In this paper,
we consider per-variable monotonic trend in the underlying
property that results in a unimodal trend in those variables for
a target value optimization. For example, sweetness of a candy
is monotonic to the sugar content. However, to obtain a target
sweetness, the utility of the sugar content becomes a unimodal
function, which peaks at the value giving the target sweetness and
falls off both ways. In this paper, we propose a novel method
to solve such problems that achieves two main objectives: a) the
monotonicity information is used to the fullest extent possible,
whilst ensuring that b) the convergence guarantee remains intact.
This is achieved by a two-stage Gaussian process modeling,
where the first stage uses the monotonicity trend to model the
underlying property, and the second stage uses ‘virtual’ samples,
sampled from the first, to model the target value optimization
function. The process is made theoretically consistent by adding
appropriate adjustment factor in the posterior computation,
necessitated because of using the ‘virtual’ samples. The proposed
method is evaluated through both simulations and real world
experimental design problems of a) new short polymer fiber with
the target length, and b) designing of a new three dimensional
porous scaffolding with a target porosity. In all scenarios our
method demonstrates faster convergence than the basic Bayesian
optimization approach not using such ‘hunches’.

Index Terms—Bayesian optimization, monotonicity knowledge,
prior knowledge, hyper-parameter tuning, experimental design.

I. INTRODUCTION

Experimental design involves optimizing towards a target
goal by iteratively modifying often large numbers of control
variables and observing the result. For hundreds of years, this
method has underpinned the discovery, development and im-
provement of almost everything around us. When experimental
design entails an expensive system then Bayesian optimization
[1] offers a sample-efficient method for global optimization.
Bayesian optimization is a sequential, model-based optimiza-
tion algorithm, which uses a probabilistic model, often a
Gaussian process, as a posterior distribution over the function
space. Based on the probabilistic model an utility function
is constructed to seek the best location to sample next,
such that the convergence towards global optima happens
quickly [2]. The detail of Bayesian optimization is provided
in background section II-B. It has been used in many real
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Figure 1: Short polymer fiber (SPF) synthesis using a mi-
crofluidic device. This device is parameterized by five pa-
rameters: geometric factors: channel width (mm), constriction
angle (degree), and device position (mm); and, flow factors:
coagulant (e.g. butanol) speed (cm/s), polymer flow (ml/h).

world design problems including alloy design [3], [4], short
polymer fiber design [5], and more commonly, in machine
learning hyper-parameter tuning [6]–[8]. However, a generic
Bayesian optimization algorithm is under-equipped to harness
intuitions or prior knowledge, which may be available from
expert experimenters.

Consider the production of short polymer fibers with spe-
cific length and diameter as an experimental design problem.
These fibers are used to coat natural fabrics to make them su-
perior in many aspects e.g. more resistive to pilling, improved
water repellence etc. Different types of fabrics generally
require different sizes of the fibers for optimal results. The
fibers are produced by injecting a polymer liquid through a
high speed coagulant (e.g. butanol) flow inside a specially
designed apparatus (see Figure 1). The differential speed
between the polymer and the coagulant flows turns the liquid
polymer into short and thin nano-scale fibers. The geometrical
parameters of the apparatus and the flow speeds control the
shapes and sizes of the fibers produced. In order to produce
fibers with the specific length and diameter, we need to find
the right values for these control parameters. Since the whole
process of producing fibers is expensive, we expect to achieve
the desired product by using fewer experiments. Bayesian
optimization offers a perfect choice for this task. However, in
this fiber production, experimenters have a prior knowledge
that fiber length monotonically decreases with respect to the
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coagulant flow speed. Such ‘hunches’ can be directly useful in
cutting down the search space if one is interested in producing
either the shortest or the longest fibers. But they are not
straightforwardly useful for our problem of producing fibers
with a target length. In this case, such hunches do not reduce
the search space, but they could still be useful in reducing the
model space for model-based optimization algorithms, such
as Gaussian process (GP) in Bayesian optimization. With a
smaller model space to search from, it might be possible that
the convergence of optimizer happens quicker.

Formally, our optimization problem based on a target yT
can be written as,

x∗ = argminx∈X g(x) , |f(x)− yT | (1)

where f(x) maps control variables x to the measured property.
For example, in the already mentioned polymer fibre design
problem, x is a vector of five parameters shown in Figure
1, f is the measured fiber length and yT is a target length.
The hunch that the experimenters posses is that fiber length
is monotonically decreasing with the coagulant flow. Whilst
the resultant function g(x) is still a complex function over all
the variables, but across the coagulant flow it is guaranteed to
be unimodal. When performing Bayesian optimization, such
knowledge can be useful in building a more accurate posterior
Gaussian process of g(x). In our experience we have found
that humans are more comfortable in giving per-variable trends
than multivariable ones. Also, hunches about monotonicity
are more available than any more complex trends. Thus, in
this work, we only consider hunches which are simple per
variable monotonicity trends, which results in a target value
optimization function that is unimodal in those variables.

Some of the recent work has examined various mechanisms
to incorporate prior shape information into GP modeling
including the enforcement on monotonicity [9], [10] and
monotone-convex/concavity [11]. Wu et al. [12] has con-
sidered incorporation of exact derivative values in Bayesian
optimization, but exact derivatives are hard to acquire in
practice. Preliminary work [13], [14] enforces unimodality
by controlling derivative sign. Unfortunately, Jauch and Pena
[13] requires specification of the turning point, thus severely
restricting application of their algorithms. Andersen et al. [14]
needs to compute an intractable marginal from a complex joint
distribution. Surprisingly, there is no details of the inference
process in [14] and thus we were unable to verify or replicate
their approach. Hence, we can safely conclude that none of the
existing works in Bayesian optimization solves our problem
where objective function is unimodal in certain dimensions,
thus the problem remains open.

Our approach is based on correctly converting the mono-
tonicity information of f(x) to the unimodality information
of g(x) and then building a better Gaussian process model
for g(x). This is non-trivial since monotonicity implies a
fixed sign for derivative of f(x), whereas unimodality implies
reversal in the sign of derivatives for g(x) at the turning point.
For our case we do not know the location of the turning
point. In absence of turning point, a naive way can be used to

derive derivative signs for g(x) based on current knowledge.
Specifically, based on the monotonicity direction and whether
f(x) is greater or smaller than the target (yT ), we can
appropriately give +1 or -1 signs on some locations of g(x).
For example, for a minimization problem if f(x) is monotonic
with decreasing direction then we can put -1 at the locations
where f(x) > fT and +1, otherwise. A more information
rich GP model for g(x) can be then built by combining
the derived derivative signs and the available observation set
{x, g(x)} using the framework of [9]. Although this naı̈ve idea
is consistent, we show that this leads to severe under-utilization
of the monotonicity information. As shown in Figure 2(b), a
vast region may remain ambiguous to which sign the derivative
of g(x) should take.

Hence, our proposed approach is built in a two-stage process
to achieve two important objectives, a) maximally use the
monotonicity information, leaving no ambiguous region and b)
theoretically remain consistent. We first model f(x) through a
Gaussian process ensuring that the mean function is monotonic
in the desired variables. We then sample “virtual observations”
from the posterior GP of f(x) and combine them with real
observations to model g(x) through another Gaussian process.
Since we can sample virtual observation wherever we want,
we do not face the problem of having ambiguous regions
again (Figure 2(d)). However, this may lead to theoretical
inconsistency. The reason is, the GP model of g(x) using
those virtual observations not only can fix the mean function,
but also may reduce the epistemic uncertainty of g(x) by an
equal measure. While the former is desirable, too much of the
latter is undesirable, since the correct computation of epistemic
uncertainty is critical for the success of Bayesian optimization
[15]. To fix this, we theoretically derive an adjustment factor
which corrects the overconfidence and ensures that our ap-
proach remains consistent.

We first demonstrate our methods on synthetic functions
and hyperparameter tuning of neural networks. Then we solve
two real world experimental design problems: a) design of
short-polymer fibers with specific length, and b) design of 3d
printed scaffolding with a target porosity. We use monotonicity
information available from the experimenters. We demonstrate
that our method outperforms the generic Bayesian optimiza-
tion in these complex experimental design tasks in terms of
reduced number of experimentation to reach target, saving
both cost and time. The significance lies in the fact that
such ’hunches’ are widely available from experimenters from
almost every domain, and thus the ability of using them to
accelerate experimental design process will further boost a
wider adoption of Bayesian optimization in real world product
and process design.

II. BACKGROUND

A. Gaussian Process with Derivative Signs

Let x be a random D-dimensional vector in a compact
set X : X → R. We denote D = {xi, yi}ti=1 as a set of
observations, where yi = f(xi) + εi is the noisy observation
of f(x) at xi and εi ∼ N (0, σ2

noise). A Gaussian process



(GP) [16] is a random process such that every finite subset of
variables has a multivariate normal distribution. A GP prior
on a latent objective function f(x) is fully specified by its
mean function µ(x) = E[f(x)] and the covariance function
k(x,x

′
) = E[(f(x) − µ(x))(f(x

′
) − µ(x

′
))]. A zero-mean

GP prior is formulated as

f(x) ∼ GP(0, k(x,x
′
)) (2)

The kernel function k encodes the prior belief regarding
the smoothness of the objective function. A popular ker-
nel is the square exponential (SE) function k(xi,xj) =
ε exp(− 1

2l2 ||xi − xj ||
2), where ε is the output variance and l

is the length scale. The predictive distribution of y+ for a test
point x+ in GP can be computed by

y+ | y1:t ∼ N (kTK−1y1:t, k(xt+1,xt+1)− kTK−1k) (3)

where N denotes a Gaussian distribution, k =
[k(x+,x1) · · · k(x+,xt)]

T and K = [k(xi, xj)]i,j∈{1,··· ,t} +
σ2
noiseI.
Since the GP is a linear operator, the derivative of Gaussian

process is still a Gaussian process [9]. Therefore, incorporating
derivative values into GP for prediction is straightforward
since the joint distribution of derivative value and function
value is still a Gaussian distribution. In our work it is hard
to acquire derivative values and we only have derivative
signs derived from the prior monotonicity knowledge. The
derivative sign ’+1’ denotes that the gradient of latent function
at the location is positive and ’-1’ denotes that the gradient is
negative at this location. We follow the work in [9] to compute
the posterior GP given function observations and derivative
signs.

Let M = {xsi , si}mi=1 denote m derivative sign obser-
vations, where si is the derivative sign at location xsi . We
specify the derivative sign as the partial one with respect to
the dth variable. It is also easy to extend to any number
of variables. For convenience, we denote X = {xi}ti=1,
Xs = {xsi}mi=1 and s = {si}mi=1. The latent function value
and the partial derivative value for the dth variable are denoted
as f and f

′
respectively.

In Gaussian process regression, the goal is to compute the
posterior predictive distribution of a test point. Similarly, given
observations and derivative signs we can express the predictive
distribution of a test point x+ by integrating out the latent f
and f

′

p(y+ | x+, X,y, Xs, s) =∫
p(y+ | x+, X,y,f,Xs, s,f

′
)p(f ,f

′
| X,y, Xs, s)dfdf

′

(4)

The first term p(y+ | x+, X,y,f , Xs, s,f
′
) at the right side

above is a Gaussian distribution (see [9]) and the second term
is the joint posterior distribution of f and f

′
. The second term

can be computed by

p(f ,f
′
| X,y, Xs, s) =

1

Z
p(f ,f

′
| X,Xs)p(y | f)p(s | f

′
)

(5)

where Z is a normalization term and p(f ,f
′
|X,Xs) is the

joint prior between f and f
′

which can be computed by

p(f ,f
′
| X,Xs) = N

(
f joint | 0,Kjoint

)
(6)

where f joint =

[
f

f
′

]
, Kjoint =

[
KXX KXS

KSX KSS

]
,KXX

and KSS are the self-covariance matrix of X and Xs, respec-
tively and KXS is the covariance matrix between X and Xs.

In Eq.(5), p(s|f ′
) is the likelihood of derivative sign con-

ditioning on derivative value. Therefore, one has to build the
link between derivative sign s and derivative value f

′
in order

to compute Eq.(5) . Riihimaki and Vehtari [9] suggest using a
probit function to represent the likelihood of derivative signs
over latent derivative values as,

p(s | f) =

m∏
i=1

Φ

(
si∂f

(i)

∂x
(i)
d

1

ν

)
(7)

where Φ(z) =
∫ z
−∞N (x | 0, 1)dx and the steepness ν

indicates the consistency between the derivative values and
derivative signs. If we are confident about the derivative signs,
we set ν as a small value, otherwise large. Since the likelihood
in Eq.(7) is not Gaussian, Eq.(5) is intractable analytically.
Similar with the GP classification [16], Riihimaki and Vehtari
[9] used expectation propagation (EP) [17] to approximate
Eq.(5). Briefly, we can use EP to approximate Eq.(5) as

q(f ,f
′
| X,y, Xs, s)

=
1

Z
p(f ,f

′
| X,Xs)p(y | f)

N∏
i=1

ti(fi | Zi, µi, σi)

where ti(fi | Z̃i, µ̃i, σ̃2
i ) ' Z̃iN (fi | µ̃i, σ̃2

i ), which defines
a un-normalized Gaussian function with site parameter Z̃i, µ̃i
and σ̃2

i . Therefore Eq.(5) would be a product of multiple Gaus-
sian distributions after approximation. The detail inference can
be found in [9]. Then the predictive mean and variance of GP
with derivative signs in Eq.(4) can be derived and they have
the similar form with those in the standard GP.

If we set derivative signs with respect to one variable to
be always negative or positive, the resulted Gaussian process
will be modeled towards the desired monotonic shape on this
variable. We denote it as monotonic GP. Usually the higher
the number of sign observations (that is a larger m), stronger is
the monotonicity imposition. However, due to the complexity
O((t + m)3) in GP with derivative signs, it is not practical
working with many derivative signs. In our experiments, we
place about five derivative signs per monotonic dimension
equally spaced within the bound of the variable.

B. Bayesian Optimization

Bayesian optimization (BO) is an efficient tool to globally
optimize an expensive black-box function. It is a greedy search
procedure guided by a surrogate function that is analytical and
cheap to evaluate. Typically, we use Gaussian process to model
the latent function in BO. The posterior mean and variance at
each point can be analytically derived based on Eq.(3). Then
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Figure 2: Illustration of the problem and solutions. (a) Objective function f(x) is monotonically decreasing and g(x) =
|f(x) − yT |. The vertical dotted line is the location of the target yT . (b) BO-DS: Posterior GP of g(x). The red dotted line
represents the mean function and the shadow represents predicted variance. The derivative signs of g(x) are derived based on
the monotonicity of f(x). Information about derivative sign is lacking in regions as discussed in text; (c) BO-MG: Posterior
GP of f(x), incorporating knowledge that f(x) is monotonically decreasing. (d) BO-MG: Posterior GP of g(x) combining
points sampled from GP in (c) and actual observations.

Algorithm 1 The standard Bayesian Optimization

1: for t = 1, 2 · · · do
2: Optimize for the next point xt+1←argmaxxt+1∈X

a(x |
D1:t)

3: Evaluate the value yt+1

4: Augment the data D1:t+1 = {D1:t, {xt+1, yt+1}}
5: Update the kernel matrix K
6: end for

the surrogate function (or called acquisition function) is con-
structed using both the predictive mean and variance. The next
sample location xt+1 is found by maximizing the acquisition
function and then yt+1 is obtained after performing a new
experiment with xt+1. The new observation {xt+1, yt+1} is
augmented to update the GP. These steps are repeated till
a satisfactory outcome is reached or the iteration budget is
exhausted. We present a generic BO in Alg. 1.

The acquisition function is designed to trade-off between
exploitation of high predictive mean and exploration of high
epistemic uncertainty. Choices of acquisition functions include
Expected Improvement (EI) [2], GP-UCB [2] and entropy
search [18]. In this paper we use GP-LCB for a minimization
problem, which minimizes the acquisition function

at(x) = µt−1(x)−
√
αtσt−1(x) (8)

where αt is a positive trade-off parameter, µt−1(x) is the
predicted mean and σt−1(x) is the predicted variance.

Simple regret at tth iteration is defined as rt = f(xt) −
f(x∗) for minimization problem where x∗ is the global optima
of f(x). Srinivas et al. [2] theoretically analyzed the regret
bound of BO using the GP-LCB acquisition function and
showed that a) Bayesian optimization with GP-LCB is a no-
regret algorithm and b) the cumulative regret (RT =

∑T
t=1 rt)

grows only sub-linearly, i.e. the convergence rate is the fastest
among all global optimizers known so far.

III. BAYESIAN OPTIMIZATION WITH MONOTONICITY
INFORMATION

Our objective is to reach a target value yT given the
monotonicity of f(x). A natural choice is to minimize the
difference between the target and function values - Eq.(1). We
now discuss how to incorporate the monotonicity of f(x) into
BO to improve efficiency.

Algorithm 2 Bayesian optimization with derivative signs

Input: observations D1:t = {xi, yi}ti=1, the target value yT ,
the monotonicity with respect to the dth variable.

1: for t = 1, 2, · · · do
2: derive derivative sign observations M = {xsi , si}Mi=1

on g(x) (Lemma 1).
3: obtain observations G = {xi, |yi − yT |}ti=1;
4: build GP on g(x) with G and M (Sec II-A);
5: optimize for the next point xt+1←argmaxxt+1∈X

a(x |
G,M)

6: evaluate the function yt+1 = f(xt+1) + ε;
7: augment the data D1:t+1 = {D1:t, {xt+1, yt+1}};
8: end for

A. Bayesian Optimization with Derivative Signs (BO-DS)

A naı̈ve method to utilize the monotonicity information is to
derive the property of g(x) based on the given monotonicity
of f(x) and locations of observations. We derive derivative
signs of g(x) through the Lemma as follows:

Lemma 1. Let f(x) be a monotonically decreasing function
with respect to the dth variable. Given the search bound
[Ld, Ud] of the d’th variable and an observation {xi, yi}(xi =
[xi1, · · · , xid, · · · , xiD]), if yi > yT , then s < 0 at xs =
[xi1, · · · , ls, · · · , xiD] for ∀ls ∈ [Ld, xnd] and if yi < yT ,
then s > 0 at xs = [xi1, · · · , ls, · · · , xiD] for ∀ls ∈ [xid, Ud].

Proof: Since f(x) is monotonically decreasing with respect
to the dth variable, then f(xs) > yi for ls < xnd. Further we
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Figure 3: The behavior of BO-MG on a 1-d example with yT = 0.7. The topmost plots shows the posterior of f(x) by using
monotonic GP. The plots in the bottom row depict the posterior of g(x) after introducing the virtual observations sampled
from the posterior GP of f(x) (denoted by green dots). The shade denotes the region covered by three times of the predictive
variance.

can get |f(xs) − yT | > |yi − yT | if yi > yT . It means that
g(xs) > gi and we can obtain the derivative sign s < 0 at xs.
We can similarly prove the latter statement in Lemma 1. This
lemma is easy to extend to multiple dimensional case.

Once a set of derivative signs M = {xsi , si}mi=1 on g(x)
is acquired in this way, they are combined with the actual
observations G = {xi, |yi−yT |}ti=1. Then a GP model can be
constructed using the method of GP with derivative signs in
section II-A and BO is performed on g(x) to acquire the next
recommendation. We term this algorithm BO with Derivative
Signs (BO-DS), which is presented in Alg. 2 .

A crucial drawback of this algorithm is that we do not know
any derivative information around the optimum, only away
from it (See Figure 2(b)). Thus we have only partially ex-
ploited the monotonicity information of f(x) in this approach.

B. Bayesian Optimization with Monotonic GP (BO-MG)

To overcome the drawback of BO-DS, we develop a two-
stage algorithm to eliminate the ambiguity of derivative signs
in search bound. We first model the mean function of posterior
GP of f(x) as a monotonic function, then sample points from
this GP and combine them with existing actual observations
to build a new GP model for g(x). Thus we make full use of
the monotonicity of f(x) and transfer this critical knowledge
to g(x) through a set of sampled points.

In detail, we model f(x) using monotonic GP by placing
the consistent derivative signs {xs, s} across the search space.
We then sample N points Xv = {xvj}Nj=1 from this monotonic
GP. We denote the sampled set V = {xvj , µf (xvj ), σ

2
f (xvj )}Nj=1

with the mean and variance. We note that it is important
to retain σ2

f (xvj ) to maintain proper epistemic uncertainty.
Combining sampled points and existing observations G =
{xi, |yi − yT |}ti=1, we construct a new GP on g(x) and then

perform Bayesian optimization. The mean and variance for a
new point xt+1 in this GP are

µg(xt+1) = kTK−1[µg(Xv); |y − yT |] (9)

σ2
g(xt+1) = k(xt+1,xt+1)− kTK−1k (10)

where µg(Xv) = |µf (Xv) − yT |, k =
[k(xt+1,x

v
1) · · · k(xt+1,x

v
N ) k(xt+1,x1) · · · k(xt+1,xt)]

and

K =

[
KV V KV X

KXV KXX

]
+

[
σ2
f (Xv) 0

0 σ2
noise

]
I (11)

and KV V is the self-covariance matrix of Xv and KXV is the
covariance matrix between X and Xv . The overall algorithm
is presented in Alg 3. The comparison between BO-MG and
BO-DS algorithms is illustrated in Figure 2. To further show
how BO-MG behaves we demonstrate this algorithm in 1-d
example in Figure 3. The BO-MG can model the true mean
function of g(x) very well and converge the optimum quickly.

A crucial step in BO-MG is to sample points from mono-
tonic GP and merge them with actual observations to build
a new GP model, which we denote as the combined GP.
Adding sample points (virtual observations) to the combined
GP may reduce predictive variance. An undesirable side effect
is that it may result in the overconfidence in exploitation due
to the shrinkage of the epistemic uncertainty resulted from
more observations. To guarantee the algorithm’s convergence,
we need to control for this overconfidence. If not corrected,
it will avoid exploration at the cost of exploitation for the
combined GP. For the acquisition function GP-LCB, a way to
avoid overconfidence is to adjust the trade-off parameter so
that the exploration can be increased. We analyze the setting
of trade-off parameter in the next section.



Algorithm 3 Bayesian optimization with monotonic GP

Input: observations D1:t = {xi, yi}ti=1, the target value yT ,
the monotonicity with respect to the dth variable

1: for t = 1, 2, · · · do
2: build monotonic GP on f(x) using the consistent

derivative signs (Sec II-A);
3: sample virtual observations V from the monotonic GP

above (Sec III-B);
4: obtain observations G = {xi, |yi − yT |}ti=1;
5: build GP on g(x) using V and G (Sec III-B);
6: sample xt+1←argmaxxt+1∈X

a(x | G,V);
7: evaluate the function yt+1 = f(xt+1) + ε;
8: augment the data D1:t+1 = {D1:t, {xt+1, yt+1}};
9: end for

C. Theoretical Analysis for BO-MG

We denote g as a sample from the combined GP model.
With N1 sampled points, the GP-LCB decision rule for the
next point is given as

xN1
t = argmin

x∈X

µN1
t (x)−

√
αtσ

N1
t−1(x) (12)

where µN1
t−1(x) and σN1

t−1(x) are the predictive mean and
variance in this GP. With N2 (N2 > N1 and x1:N1

⊂ x1:N2
)

sampled points, the decision rule is

xN2
t = argmin

x∈X

µN2
t−1(x)−

√
βtσ

N2
t−1(x) (13)

where µN2
t−1(x) and σN2

t−1(x) are corresponding predictive
mean and variance.

Suppose these two GPs use the same hyperparameters, then
µN1
t−1(x) is approximately equal to µN2

t−1(x) and σN2
t−1(x) is

less than σN1
t−1(x) due to the introduction of sampled points

for ∀t and ∀x ∈ X . To overcome the overconfidence in
exploitation of the combined GP, we must choose a proper
βt to increase its confidence intervals so that

√
βtσ

N2
t−1(x) can

contain
√
αtσ

N1
t−1(x) for ∀t and ∀x ∈ X , i.e.√

βtσ
N2
t−1(x) ≥

√
αtσ

N1
t−1(x) (14)

We use the choice of αt derived by [2]. The core task becomes
to bound the ratio

rt−1(x) = σN1
t−1(x)/σN2

t−1(x) (15)

As in [15], this ratio can be computed by the proposition as
follows:

Proposition 2. The ratio of the standard deviation of the
posterior over g(x), conditioned on observations y1:t−1 and
N1 sampled points to that when g(x) is conditioned on
observations y1:t−1 and N2 sampled points is

σN1
t−1(x)

σN2
t−1(x)

= exp
(
I(g(x); y(N1+1):N2

| y1:t−1 ∪ y1:N1

)
(16)

We prove it by expanding the mutual information as follows:

I(g(x); y(N1+1):N2
| y1:t−1 ∪ y1:N1)

= H(g(x) | y1:t−1 ∪ y1:N1)−H(g(x) | y1:t−1 ∪ y1:N2)

=
1

2
log
(

2πeσN1
t−1(x)

)
− 1

2
log
(

2πeσN2
t−1(x)

)
= log

(
σN1
t−1(x)/σN2

t−1(x)
)

It shows that there exists a constant C such that
I(g(x); y(N1+1):N2

| y1:t−1 ∪ y1:N1) ≤ C for ∀t and ∀x ∈ X .
Therefore we can successfully bound rt−1(x) ≤ exp(C).

By the monotonicity and submodularity properties of mutual
information [15], [19], we get:

I(g(x); y(N1+1):N2
| y1:t−1 ∪ y1:N1)

≤ I(g; y(N1+1):N2
| y1:t−1 ∪ y1:N1) (17)

≤ max
A⊆X ,|A|≤N2−N1

I(g; yA | y1:t−1 ∪ y1:N1) (18)

≤ max
A⊆X ,|A|≤N2−N1

I(g; yA) = γN2−N1 (19)

Generally γN2−N1 is difficult to calculate since it generally
requires to compute the information gain for all combinations
of (N2 − N1) points. Fortunately, Andreas and Carlos [19]
demonstrated an easy method to obtain upper bound on
γN2−N1

. Specifically, they show

γN2−N1
≤ e

e− 1
I(g; yN2−N1

) (20)

where I(g; yN2−N1
) the information gain by observing the set

of observations y(N1+1):N2
of the actions {xN1+1, · · · ,xN2

}
selected using uncertainty sampling [15]. It implies that we can
use uncertainty sampling to select N2−N1 sampled points in
BO-MG such that we can obtain C. With C = γN2−N1

, we
can get the regret bound as follows:

Theorem 3. Let δ ∈ (0, 1) and run BO-MG with GP-LCB
decision rule with βt = exp(2C)αt, we get a cumulative regret
bound RT with a high probability

Pr{RT ≤
√
C1T exp(2γN2−N1)αtγT + 2,∀T ≥ 1} = 1− δ

(21)
where C1 = 8/ log(1 + σ2

noise), γT is the maximum in-
formation gain between the function values f1:T and the
noisy observations y1:T , γN2−N1

is defined in Eq.(19), and
αt = 2 log(2t2π2/(3δ)) + 2d log

(
dt2bl

√
log(4da/δ)

)
.

The proof is similar to that in [2].
Discussion: We have explicitly discussed that the conver-

gence rate of BO-MG can be guaranteed if βt = exp(2C)αt
and C = γN2−N1

. In practice, N1 can be a very small one
and then the maximum information gain γN2−N1

grows with
the size of N2 and C would be very large and thus the
algorithm tends to over-explore if we use the computed C
for βt. Fortunately we can also set βt = (max (rt−1(x)))

2
αt

in order to guarantee βt ≥ r2t−1(x)αt (Eq. 14) for ∀t and
∀x ∈ X . Actually we can obtain the maximal value of rt−1(x)
by maximizing Eq.(15) for ∀x ∈ X at iteration t. In this
way we can guarantee the convergence of BO-MG. For good



practical performance, a more aggressive method is to reduce
βt by a correction factor η [2]

βt = (max (rt−1(x)))
2
ηαt (22)

Eq.(15) indicates that the value max (rt−1(x)) is increasing
with N2 (assume N1 is fixed) and therefore we can adjust η
for different N2 for better practical performance.

IV. EXPERIMENTS

We compare our proposed method with the following algo-
rithms:
• Bayesian optimization with monotonic GP (BO-MG)

which incorporates the sampled points from the mono-
tonic GP into Bayesian optimization (Alg. 3);

• Bayesian optimization with derivative signs (BO-DS)
which directly incorporates the derivative signs derived
from prior monotonicity into BO (Alg. 2);

• standard Bayesian optimization (standard BO) which
does not include any prior knowledge (Alg. 1).

For all three algorithms, we automatically estimate the hy-
perparameters of the SE kernel in GP including the length
scale l and the output variance ε and the noise variance σ2

noise

at each iteration. Both BO-DS and BO-MG requires the GP
with derivative signs. We empirically set ν = 0.01 and used
the GPstuff toolbox [20] to implement the GP with derivative
signs. The acquisition function we used for all algorithms
is the GP-LCB. For standard BO and BO-DS, the trade-off
parameter αt in Eq.(8) can be set by following [2] but is scaled
down with a small factor as [2] and [15] did (we use 0.1 in our
experiments). For BO-MG, we used the trade-off parameter βt
in Eq.(22). To compute max (rt−1(x)) we sampled N1 = 5,
N2 = 10 for 2D functions, N1 = 5, N2 = 20 for 5D functions
and N1 = 5, N2 = 40 for 7D functions using Latin hypercube
sampling and ensured sampled points x1:N1 ⊂ x1:N2 . BO-MG
provides competitive performance with η = 0.1 for 1D˜5D
functions and η = 0.01 for 7D functions in our experiments.
We run experiments for 20 trials with random initial points
and report the average mean and the standard error. The code
is available in https://bit.ly/2sDFQ35.

We first compared algorithms on the optimization of bench-
mark functions and hyperparameter tuning in neural network.
We then solved two real-world applications - the optimization
of short fibers with targeted length and porous architecture
(scaffold) design for biomaterials with target porosity using
3D printing.

A. Optimization of benchmark functions

We optimize the following benchmark functions:
(a) 2D function: f1(x) = 1

20 (x1− 5)2 + 1
20 (x2− 4)2, fT =

1.5, x ∈ [0, 5];
(b) 5D function: f2(x) = 1

30 (x1 − 3)2 + 1
30 (x2 − 2)2 +

GN (x3:5|0,1), fT = 1.5, x ∈ [−2, 3], where GN (x3:5|0, 1)
is a un-normalized Gaussian PDF for x3 ∼ x5;

(c) 7D function: f3(x) = 1
30 (x1 − 3)2 + 1

30 (x2 − 2)2 +
GN (x3:7|0,1), fT = 1.3, x ∈ [−3, 3], where GN (x3:7|0, 1)
is a un-normalized Gaussian PDF for x3 ∼ x7;

(d) 2D function: f4(x) = 1
20 (x1 − 5)x2, fT = 0.8, x ∈

[0, 5];
(e) 5D function: f5(x) = 1

20 (x1 − 5)x2 + GN (x3:5|0,1),
fT = 1.5, x ∈ [0, 5],

(f) 7D function: f6(x) = 1
20 (x1 − 5)x2 + GN (x3:7|0,1),

fT = 1.5, x ∈ [0, 5],
f1 , f2 and f3 are monotonically decreasing with x1 at the

given search space. D + 1 initial observations are randomly
sampled. The optimization results for f1, f2 and f3 are shown
respectively in Figure 4 (a), (b) and (c). We see that BO-MG
approaches the specified target quicker than standard BO. Note
that BO-DS performs better in the beginning than BO-MG in
the 2D function. It is possible since derivative signs away from
optimum can still make effectiveness on the optimum on the
low-dimensional space. However, it does not happen in higher
dimensions. Further, we also run the target optimization for
f4, f5 and f6 which are monotonically decreasing with x1 and
increasing with x2 at the given search space. Results show that
BO-MG converges faster than other baselines.

B. Hyperparameter tuning in neural network

We test our algorithm for hyperparameter tuning in neural
networks. The goal is to obtain the number of hidden neurons
in each layer for a stipulated (target) test time. We know that
the test time increases with the number of neurons i.e. it is
monotonic with the number of neurons. We split the MNIST
dataset into training and testing data. The target test time
is set at 2s (A Xeon Quad-core PC 2.6 GHz with 16 GB
of RAM is used). We assume that the number of neurons
are the same in each layer and allowed to vary between 10
to 1600. The other hyperparameters in this neural network
includes hidden layers (10), dropout rate at the input layer
(0.2), dropout rate at the hidden units (0.5), learning rate for
10 layers (0.9980, 0.9954, 0.9543, 0.8902, 0.8138, 0.6519,
0.5223, 0.4184, 0.3352, 0.2685). We only optimize the number
of hidden neurons given a target test time. Result are shown
in Figure 5. BO-MG approaches the target time significantly
quicker than standard BO and random search. 20 out of 20
runs (100%) in BO-MG achieve 0.05s difference to the target
test time whilst only 15 runs (75%) in standard BO and 6 runs
(30%) in random search reach target test time. The expected
number of neurons in BO-MG is 765 (standard deviation: 49)
and that in standard BO is 768 (standard deviation: 75).

C. Optimization of short fibers with target length

We test our algorithm on a real-world application: optimiz-
ing short polymer fiber (SPF) for a specified target length
[5]. This involves the injection of one polymer into another
in a special microfluidic device of given geometry - Figure
1 before. To achieve the targeted SPF length specification,
we optimize five parameters: geometric factors: channel width
(mm), constriction angle (degree), and device position (mm);
and, flow factors: butanol speed (cm/s), polymer concentra-
tion (ml/h). Our experimenter collaborators have confirmed
that the fiber length monotonically decreases with respect to
the butanol speed. The goal of this task is to leverage this prior
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Figure 4: The results of optimizing benchmark functions. The graph shows the comparison of difference to the target value
between different algorithms. The vertical axis represents the difference to the target value.

knowledge to facilitate the optimization. We test our algorithm
on two devices, and in each device we conduct experiments
to satisify two different targets :

• Device A uses a gear pump [21]. The butanol speed used
is 86.42, 67.90 and 43.21. The target length specifications
are 70µm and 120µm.

• Device B uses a lobe pump [21], and has different
plumbing configuration than device A, while retaining
the main fibre production chamber. The butanol speeds
are equally spaced: 98, 63 and 48. The target length
specifications are 80µm and 120µm.

We seed the process with five random experiments. We
compare BO-MG to standard BO in Figure 6 displaying
the distance to the target length at each iteration. BO-MG
approaches the target faster than standard BO in 3 out of 4
target lengths and performs similar in 1 out of 4 target lengths.
The reduction in the number of experiments is significant.
Although we only show the difference to target length vs
iteration in the graphs, the real cost difference is much larger.
For example, in Figure 6(a), BO-MG takes 10 iterations to
reach 10um difference to the target while the standard BO
takes 15 iterations. Mapping to the real time, the standard BO
takes 3 days more than BO-MG. It firmly establishes the utility
of using prior knowledge through our proposed framework.
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Figure 5: Comparable performance of different algorithms on
hyperparameter tuning in neural network. The vertical axis
represents the difference to the pre-set test time.

D. Optimization of scaffold with target porosity in 3D printing

With the maturity of 3D printing processes, complex three
dimensional porous architectures, or scaffolds, are becoming
a favorable feature in a range of product designs applications
ranging from topology optimization to tissue engineering
structures. Such scaffold structures could not be fabricated
by any other form of technology. The ability to derived
precise solutions for the overall porosity of a resulting scaffold
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Figure 6: Optimization of Short Polymer Fibre with specified target lengths: BO-MG vs standard BO. The vertical axis
represents the difference from target length (T ). Results for Device A are (a)T = 70µm and (b)T = 120µm; Results for for
Device B (c)T = 80µm and (d)T = 120µm.
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Figure 7: (a) Optimization of scaffold for a target porosity 60%. Standard BO (circle) vs BO-MG (triangle) Results for two
independent runs are shown; (b) 3D printed scaffolds with final BO-MG recommendations: Scaffold porosity 60% (left) and
scaffold porosity 50.27% (right).



can be problematic, requiring laborious trial and error based
approaches to derive a solution.

Our objective is to derive solution for reduced material
consumption when creating a cylindrical structure, with two
absolute porosity targets of 50% or 60%. To adjust the poros-
ity, the thickness of the scaffold was adjusted by uniformly
projecting the surface outward closing the free volume. This
projection was dictated by a design software parameter, named
the smallest detail, which has a lower value of 0.05 and can
be adjusted in increments of 0.001.

We employ the BO-MG to accelerate scaffold design to
achieve the two targeted porosities with fewer number of
experiments. We have a hunch that the porosity decreases with
the smallest detail. Starting from three random points, we rec-
ommended three sequential experiments for targeted porosity
60%. The search range of the smallest detail is between 0.05
and 2. We run this process independently twice and compare
the best suggested one from different algorithms. The result
for T=60% is shown in Figure 7. BO-MG recommendations
are closer to the targeted porosity.

We also exploit all previous experimental results to suggest
only one experiment for targeted porosity 50%. The recom-
mended experiment from BO-MG acheives porosity of 50.27%
whilst standard BO reaches porosity of 49.22%. The results
clearly demonstrate the effectiveness of our method.

V. CONCLUSION

We have proposed a Bayesian optimization algorithm to in-
corporate the hunches experimenters possess about the change
of experimental results with respect to certain variables to ac-
celerate experimental designs. We have explicitly discussed the
monotonicity information and how to model it into Bayesian
optimization framework. We also provide the regret bound
for our method to demonstrate its convergence. The experi-
mental results show that the proposed algorithm significantly
outperforms the standard Bayesian optimization and it reduces
significant cost in real world applications. Regarding the future
work we seek a smart way to automatically detect the trends
of the function so that BO strategies can switch freely between
different trends. More broadly we have envisaged the benefit of
the use of monotonicity information in Bayesian optimization
and exploring the use of other types of prior knowledge is a
promising direction for efficient experimental design.
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